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Meta-path Based Prioritization of 
Functional Drug Actions with Multi-
Level Biological Networks
Seyeol Yoon   1,2 & Doheon Lee   1,2

Functional drug actions refer to drug-affected GO terms. They aid in the investigation of drug effects 
that are therapeutic or adverse. Previous studies have utilized the linkage information between drugs 
and functions in molecular level biological networks. Since the current knowledge of molecular level 
mechanisms of biological functions is still limited, such previous studies were incomplete. We expected 
that the multi-level biological networks would allow us to more completely investigate the functional 
drug actions. We constructed multi-level biological networks with genes, GO terms, and diseases. Meta-
paths were utilized to extract the features of each GO term. We trained 39 SVM models to prioritize 
the functional drug actions of the various 39 drugs. Through the multi-level networks, more functional 
drug actions were utilized for the 39 models and inferred by the models. Multi-level based features 
improved the performance of the models, and the average AUROC value in the cross-validation was 
0.86. Moreover, 60% of the candidates were true.

Drug actions are defined here as single biological processes that are affected by drugs. Drugs act on biological 
systems and produce therapeutic effects. To describe them, terms, such as pathways, mechanisms of actions, and 
modes of actions, have been used. The pathways and the mechanisms of actions represent molecular sequences 
that are triggered by a drug, and the modes of action are brief descriptions of the drug actions1, while ‘drug 
actions’ is a more general term to describe how drugs act.

Drug actions can be categorized according to the biological levels where they occur: molecular drug action, 
phenotypic drug actions, and functional drug actions. Molecular drug actions are defined as drug actions on pro-
teins. These are common in studies of drug actions: target proteins, molecular paths, transcription factors, and so 
on. Phenotypic drug actions are drug actions on diseases. They have been empirically, clinically, and experimen-
tally observed, including the indications, side effects, symptoms, and so on. Functional drug actions are defined 
as drug actions on biological functions such as GO terms2 (gene ontology terms). Functional drug actions have 
also been studied. They can be observed via wet experiments or be inferred from molecular drug actions such as 
DEGs3–6 (differentially expressed genes). While no database provides information on the functional drug actions 
using standardized identifiers such as GO terms, the DrugBank database provides information about them in 
plain text. We extracted the biological terms in the textual descriptions. GO terms are almost one third of the 
terms. For example, the apoptotic process, G2 phase, DNA replication, etc. were extracted from the description 
about the drug actions of etoposide, an anti-tumour drug.

Identification of functional drug actions is beneficial for drug development because it supports the thera-
peutic hypothesis of a drug and aids in repurposing drugs for other diseases7. The therapeutic hypothesis refers 
to the hypothesis that a drug cures a specific disease. First, it provides biological interpretations that support 
the therapeutic hypothesis3,8. For example, vasodilation is the functional drug action of captopril, which is an 
anti-hypertensive drug, and it provides biological interpretation of how the drug attenuates high blood pressure 
more than its target protein, the ACE protein9. The second benefit is that a new therapeutic hypothesis can be 
inferred through functional drug actions. For example, Iorio et al.10 inferred that fasudil may be repurposed for 
several neurodegenerative disorders because fasudil-induced genes are enriched for cellular autophagy, which is 
applicable to neurodegenerative disorders. This utility is more notable when the target disease has no associated 
gene. We observed that 83.5% of phenotypes in the SIDER11 (Side Effect Resource) have no associated gene based 
on the CTD12 (The Comparative Toxicogenomics Database).
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Even though the utilities of functional drug actions have been demonstrated in drug development, informa-
tion about the functional drug actions in relevant databases is not only described in plain text without standard-
ized identifiers such as GO terms but is also scarce and confined to their own purposes in the drug development. 
Such information in the DrugBank was produced by only two or more curators using PubMed, drug references, 
Food and Drug Administration (FDA) labels, etc.13 Actually, wet lab experiments with cells, tissue, or animal 
models are a clear way to identify functional drug actions; however, the costs are high. Therefore, dry computa-
tional experiments have been conducted to prioritize the candidates for functional drug actions based on various 
drug-related information, accumulated biological networks, and computational techniques. The prioritized can-
didates will help to collect functional drug actions that have been already identified and to select proper candi-
dates for investigation in wet lab experiments.

Previous computational studies have utilized linkage information on biological networks between drugs 
and functions to distinguish between drug-affected functions, i.e., the functional drug actions from the other 
functions. This was based on molecular level biological networks that consist of molecule-to-molecule and 
molecule-to-function relations. Drug-related molecules were used for drugs to access the molecular level bio-
logical networks. In most previous studies on functional drug actions, the functions that were enriched by 
drug-related molecules have typically been considered as the functional drug actions. We briefly introduce two 
of them below. Sun et al.4 attempted to determine the functional drug actions that are related to signal trans-
duction of a drug. They collected signal transduction proteins between drug-related proteins and drug-induced 
proteins via a random walk on the networks of PPIs (protein-protein interactions). Then, the GO terms, which 
were enriched by the signal transduction proteins, were considered as the functional drug actions of the signal 
transduction. Napolitano et al.5 attempted to identify the disease-specific functional drug actions. They utilized a 
set of drugs for which the indications are the same. The pathways that are enriched by all the DEGs of the drugs 
were considered to be the disease-specific functional drug actions.

However, the previous studies are incomplete. They depend on molecular level biological networks; however, 
the current understanding of molecular level mechanisms of biological functions is still limited. For example, 
two-thirds of GO terms do not yet have associated genes. These GO terms cannot be covered by the previous stud-
ies. To overcome this limitation, we constructed and utilized multi-level biological networks that contained func-
tions, phenotypes, molecules, and the relations among them. Actually, biomedical information has accumulated 
not only on the molecular level but also on other levels. For example, the UMLS14 (Unified Medical Language 
System) provides various non-molecular entities: functions, symptoms, anatomies, diseases, etc. It also contains 
the relations between them; however, the amount of relations of function-to-function, function-to-phenotype, 
and phenotype-to-phenotype are insufficient. Therefore, we decided to use co-occurrence information about 
biological terms to supplement these relations. Co-occurrence information has gradually been used in bioinfor-
matics to complement the relations between non-molecular entities, such as symptoms, diseases, functions, and 
drugs. Zhou et al.15 measured disease-disease similarity based on co-occurrences of symptom MeSH (Medical 
Subject Headings) terms, and they asserted that it was useful to infer the similarity. Brown et al.16 measured the 
drug-drug similarity based on the co-occurrence and concluded that it aided drug repurposing. Wang et al.17 
gathered associations between drugs and genes based on their co-occurrence in the same sentence in an abstract 
or title. Himmelstein et al.18 gathered associations between diseases and tissues based on their co-occurrence 
frequency.

The expanded information on the multi-level biological networks decreased the number of missed functional 
drug actions. For the pairs of functional drug actions and the corresponding targets, the percentage of uncon-
nected pairs decreased from 12% in molecular level networks to 7% in the multi-level networks. Such expanded 
information, however, may imply accuracy loss in the approach to functional drug actions. To mitigate this loss, 
we utilized linkage information between functions and drug indications as well as linkage information between 
functions and drug targets. This narrowed the scope of our approach to the functional drug actions. An indication 
refers to a phenotype that makes a drug advisable. Before the introduction of indications, we had to confirm that 
the indications had enough linkage information with the functional drug actions in the multi-level biological 
networks. We determined that for the pairs of functional drug actions and the corresponding indications, 54.0% 
of them were connected within the 2 shortest distances in the multi-level networks.

Of note, we intended to use the general terms of molecules and phenotypes. This is because, although we only 
used genes as the molecules, other kinds of drug-related molecules, such as DNA, epigenetic pattern, and protein 
complex, can be utilized in these studies. We also considered adding more phenotype types, such as symptom, 
observation, and appearance. Therefore, in this study, the targets are the genes for which proteins are bounded by 
a drug. The genes represent the molecules. The indications are the diseases that are cured by a drug. The diseases 
represent the phenotypes.

Results
This study consisted of five parts as summarized in Fig. 1. The first part was to construct multi-level biological 
networks. A given drug was replaced with its target proteins and indications to approach functions in the net-
works. The features of each function were extracted from linkage information about the function with targets or 
indications in the multi-level biological networks. The fourth part involved obtaining positive and negative exam-
ples of the functional drug actions for cross-validation. Finally, we built an SVM (Support Vector Machine) model 
based on the examples and their features. The model produced a ranked list of candidates for the functional drug 
actions of the drug.

The multi-level biological networks.  We defined three types of nodes: molecule, function, and pheno-
type. To define the types of relations between the nodes, we combined the relation types pre-defined in CODA 
and the original resources. The molecule type in this study consisted of proteins. Proteins take the main roles in 
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drug actions as receptors and as transcription factors. The function type consisted of GO terms. The GO terms 
include the prevailing and well-organized ontology for functional concepts and include molecule functions, bio-
logical functions, and cellular components2. The phenotype consisted of diseases. We considered the functions 
and the phenotypes as single nodes in our networks. This is the same way a single protein has traditionally been 
considered as a single node in networks even though a single protein is a set of amino acids, structures, and 
domains.

For construction of the networks, we used information from published databases: CODA19, UMLS14, 
and MEDLINE20. The CODA (Context-Oriented Directed Association) is a multi-level biological data-
base that we developed. Although the CODA provides enough relations that are molecule-to-molecule and 
molecule-to-function, it contains few relations between the functions and phenotypes. Therefore, we also used 
the UMLS and MEDLINE. The UMLS is a well-known multi-level biological database and is run by the NIH. 
There were too many pre-defined relation types in the UMLS to select or categorize them. We used only the 
original resources of relations to define the types of relations for this study. From MEDLINE, we introduced 
co-occurrence information from MeSH terms to reinforce the relations between the functions and phenotypes. 
As a result, the number of nodes in our networks was 82,439, which consisted of 20,707 molecules, 17,675 func-
tions, and 44,057 phenotypes. The relations from CODA, UMLS, and MEDLINE are shown in Table 1. The rela-
tion types we defined are combinations of the database, the resource, and the relation type in the CODA. They are 
more explained in the methods section.

Drug-related information.  Drug-related information was used for drugs to gain access to the biological 
networks. The linkage information between drug-related information and functions was utilized to discriminate 
between the functions that are affected by drugs, i.e., the functional drug actions, from other functions. We used 
target proteins and indications of the drugs.

Target proteins of the drugs were used as drug-related molecules in this study. They are typically used in stud-
ies of functional drug actions along with DEGs. Target proteins are essential entities in drug actions and trigger 
consequential molecular drug actions such as alterations of gene expression. From the DrugBank, we gathered 
target proteins of drugs when it was mentioned that their Pharmacological Action is known.

Indications of drugs were used as the drug-related phenotypes in this study. The phenotypic drug actions, 
such as indications, side effects, and symptoms, have been accumulated in several resources, including in CTD, 

Figure 1.  Method overview. (a) The multi-level biological networks were constructed from information stored 
in the CODA, the UMLS, and MEDLINE. (b) The target proteins and the indications of drugs were used for 
a drug to access the multi-level networks. The targets are the genes of which proteins are bounded by a drug. 
The genes are the molecules. The indications are the diseases that are cured by a drug. The diseases are the 
phenotypes. (c) Proper features of each function were required to distinguish the drug-affected functional 
concepts, i.e., the functional drug actions from the other functional concepts. The features were calculated from 
the paths between the targets and each function and from the paths between each function and indications. (d) 
We obtained the positive examples of the functional drug actions from the DrugBank. The negative examples 
were inferred from the positive examples and from Gene Ontology hierarchical structures. (e) The SVM model 
for a drug was build based on the examples and their features. The model estimated the possibility of drug 
actions on unclassified functions by prioritizing candidates of the functional drug actions.
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OMIM21, and SIDER. To our knowledge, the phenotypic drug actions have not yet been used in studies of func-
tional drug actions. From the CTD, we gathered indications of drugs when it was tagged as Therapeutic.

As a result, there were 1,311 drugs that had at least one target protein. Among them, the 428 drugs had at least 
one indication. One target was bounded by 3.03 ± 3.53 drugs, and one indication was treated with 4.76 ± 8.00 
drugs. There were no drugs with the same targets and indications. The (±) sign means the standard deviation.

Features of each function.  We needed the features of each function to differentiate the functional drug 
actions from other functions. In this study, the features consisted of three values calculated from the linkage 
information, which them became all the meta-paths connecting a given function to the two kinds of drug-related 
information: targets or indications.

First, the linkage information was substantialized as the heterogeneous paths in the multi-level biological 
networks, as illustrated in Fig. 1c. For a given function, target-to-function paths and indication-to-function paths 
were extracted. There could be more than one target or indication.

The paths can provide us with a variety of features. However, the basic features, such as the shortest distance 
and the path count, is limited in this study because they have commonly been used for homogeneous paths but 
not heterogeneous paths. As shown in Fig. 2a for a small-scale analysis, it appeared that the shortest distances and 
the path counts were sometimes not good at distinguishing the functional drug actions from the other functions.

However, it appeared that the path counts in a type of paths were more useful for distinguishing the positive 
examples from the negative examples as shown in Fig. 2b. The types of paths are called meta-paths22–25. We deter-
mined to utilize the meta-paths to extract the features from the heterogeneous paths. A meta-path is a sequence 
of node types and edge types between two nodes at the abstract level24,25. Meta-paths have recently been used to 
investigate biomedical associations on heterogeneous biological networks. Fu et al.23 predicted the interactions 
between a drug and its target proteins. Himmelstein et al.18,26 predicted disease-associated genes and predicted 
compound-disease associations for drug repurposing. They analysed the known positive biological associations 
by meta-paths and attempted to determine the novel biological associations.

We categorized all of the targets-to-function paths and the function-to-indications paths into meta-paths. 
The meta-paths are types of paths. In this study, the meta-paths were defined as follows. They could contain three 
node types: molecule, function, and phenotype. They could contain 18 edge types that are described in the meth-
ods section. Their maximum lengths were determined to be 3 with targets and 2 with indications. These lengths 
were decided on based on the distribution of the shortest distances between targets and the functional drug 
actions and those between the functional drug actions and indications (Fig. 3). Within a distance of ten or less, 
two-thirds of the functional drug actions are located within 3 and 2. We presented 20 examples of meta-paths for 
the enalapril case in the Supplementary Material (Supplementary Table S5).

Type of relation Type of node pair

Database Resource Relation types in CODA M → M M → F F → F F → P P → P

CODA

BioGRID Undirected link 274,314 — — — —

RegNetwork Directed link 18,226 — — — —

TRANSFAC Directed link 14,116 — — — —

KEGG

Directed link 442 — — — —

Undirected link 51,696 — — — —

Positive increase 53,504 — — — —

Positive decrease 10,546 — — — —

EndoNet

Directed link 4,988 15 — — —

Positive increase 214 388 — — —

Positive decrease 355 4 — — —

Negative increase — 14 — — —

GO Undirected link — 265, 115 — — —

PhenoGO Undirected link — — 20 6,678 —

UMLS

NCI — — 6,463 480 451 58,588

OMIM — — — — 170 127,706

MEDLINEPLUS — — — 2 68 1,844

MTHMST — — — — — 330

MEDLINE Co-occurrence — — — 133,956 401,066 2,750,462

SUM 428,401 271,999 134,458 408,433 2,938,930

Table 1.  The number of relations in the multi-level biological networks. This table shows the separate 
number of relations according to the type of relation and type of node pair. The relation types are defined by 
combination of the database, the resource, and the relation type in the CODA. The relations among molecules 
from the CODA were sufficient. The molecule-to-function relations seemed to be sufficient from the CODA and 
the UMLS. The number of relations between the functions and phenotypes from the CODA were not sufficient. 
Therefore, MEDLINE and the UMLS mainly provided the relations between the functions and phenotypes. M: 
※Molecule, F: Function, P: Phenotype.
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From one meta-path, we calculated three values: the path count, the sum of the PDPs (path-degree products), 
and the maximum PDP. The path count is the number of paths in a meta-path22,23. If the path counts were solely 
considered, the specificity of a path was ignored. Thus, the paths containing low-degree nodes could be under-
estimated, and the paths containing high-degree nodes could be overestimated. The path-degree product (PDP) 
has been used to measure the specificity of one path18. The PDP was calculated with the degrees of nodes in one 
path, as shown in Fig. 4. All three kinds of values from every meta-path constituted the features of each function.

Then, we selected some informative features from all the features because there were too many features in each 
drug case. In total, 3,732 meta-paths were possible to appear according to the above definition of node types, rela-
tion types and maximum lengths. Additionally, 11,196 features were possible to appear because each meta-path 
provides three values. In each of the 39 drug cases in the application section, the number of features decreased 
but remained over hundreds. To select the informative features for each drug case, we calculated the coefficients 
of linear regression for each feature with the positive and negative examples. For each drug case, we selected the 
top 20 features because the AUROC (Area Under the Receiver Operating Characteristic) value was higher for this 
case than when selecting a different number of top features.

Figure 2.  Comparison of a positive example and a negative example. (a) Enalapril is an anti-hypertensive drug. 
ACE is its target protein. Vasoconstriction (f1) is a positive example of the functional drug action of enalapril, 
whereas sex differentiation (f2) is a negative example. In the networks we constructed, the shortest distances 
were identical. The path count (PC) did not seem to be very distinguishable. (b) In a certain meta-path, there 
were two paths between ACE and the positive example, whereas there was no path between ACE and the 
negative one. This meta-path was composed of three node types: molecule, molecule, and function. The two 
edge types were the undirected link from the BioGRID in the CODA and the undirected link from the GO in 
the CODA. The targets are the genes for which the proteins are bounded by a drug. The genes are the molecules. 
The indications are the diseases that are cured by a drug. The diseases are the phenotypes.

Figure 3.  The distribution of the shortest distances of the two-node pairs. The x-axis indicates the shortest 
distance of pairs, and the y-axis shows the ratio of each bin. We measured how far the positive examples of the 
functional drug actions were located from the corresponding targets or indications. The results are shown in 
these graphs. Note that the direction was taken into account in this calculation.
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Examples of functional drug actions.  We needed the functions that were labelled as functional drug 
actions. We called these labelled functions positive examples of the functional drug actions. The positive examples 
appear throughout this study, such as when measuring the shortest distances. They were also needed to train the 
SVM models in the application section.

Although no database provides positive examples with standardized identifiers, the DrugBank provides the 
textual descriptions of the drug actions in two data fields: Pharmacodynamics and Mechanism of Action. We 
extracted the GO terms from the descriptions via MetaMap27, which assigns UMLS concept IDs to biological 
terms. If possible, these concept IDs were converted into GO terms. The GO terms were expanded on the GO 
hierarchical structures.

We assumed that the negative examples were the GO terms with zero topology-based similarities28 to all of the 
positive examples in the GO hierarchical structures. The topology-based similarity of two nodes is zero, if they 
have only one common ancestor in a hierarchical structure. This process was conducted only if the number of 
positive examples was three or more in the same GO namespace. Of note, the multi-level biological networks we 
constructed are independent of the GO hierarchical structures.

As a result, among the 428 drugs with at least one target and one indication, all of them had at least one 
positive example. The numbers of positive examples for the drugs were 4.25 ± 3.58. We attempted to make this 
extraction procedure reproducible and objective; thus, we omitted the manual curation part. Additionally, the 
manual curation that we carefully performed in eleven of the drug cases showed that the accuracy of the extracted 
positive examples was acceptable; the precisions were 0.86 ± 0.08. The eleven drugs were selected in descending 
order of the number of positive examples among the 39 drugs in the application section. The results of the manual 
curation are presented in the Supplementary Material (Supplementary Table S1).

Application.  We applied our technique to 39 various drugs. In total, 428 drugs had at least one target, one 
indication, and one positive example. We observed that when there were more positive examples, the perfor-
mance was better. We applied our technique to drugs with ten or more positive examples; 39 drugs remained of 
the 428 drugs. In the Supplementary Material (Supplementary Table S1), we present the positive examples for the 
39 drugs. We also present the negative examples for the drugs in the Supplementary Material (Supplementary 
Table S2). They had various indications: tumours, hypertension, inflammatory disorders, local pain, vitamin D 
deficiency, etc. Following the technique shown in Fig. 1, we built 39 SVM models for each of the 39 drugs with 
their information: targets, indications, and the positive and negative examples of the functional drug actions. We 
utilized the targets-to-function meta-paths and the function-to-indications meta-paths in order to distinguish 
the positive and negative examples of the functional drug actions. In case of the enalapril case, 194 meta-paths 
appeared. And, we presented them in the Supplementary Material (Supplementary Table S3). Then, we con-
structed the 39 SVM models to prioritize candidates for the functional drug actions. We present the top 10 can-
didates of the 39 drug cases in the Supplementary Material (Supplementary Table S4).

Our technique of utilizing multi-level biological networks can cover more functional drug actions compared 
with previous methods that have utilized only molecular level biological network. We found that 19% of the posi-
tive examples had no associated gene. They could not be utilized in any of previous studies but could be utilized in 
this study. Then, 18% of the top 10 candidates had no associated gene. They could not be inferred in any previous 
studies but could be inferred in this study. This enlarged coverage was because of the multi-level biological net-
works that include functional and phenotypic relations.

Each of the 39 models was able to be cross-validated because of the positive examples, and the AUROC value 
was 0.86 ± 0.15, as shown in Fig. 5. The AUROC values for 37 cases were above 0.70, showing a consistent per-
formance. We could not compare our technique to previous techniques because none of the previous methods 
yielded an indicator of performance, such as AUROC values. They only mentioned the functional drug actions 
they predicted or suggested that they were consistent with previous literature or prior knowledge. They were all 
based on human decision and not objective validation.

However, the previous techniques can be simply viewed as approaches for determining functional drug 
actions via molecular level networks. Similarly, our technique is an approach for it via multi-level networks. The 
features used in this study can be grouped into those based only on molecular level networks and those related 
to multi-level networks. We confirmed the ratios of the two groups in the 20 selected features for the SVM model 
construction. The ratios could assess the relative usefulness of the two groups in the study of the functional drug 
actions. We determined that the 20 selected features had more of the features related to the multi-level networks 

Figure 4.  Method to calculate the PDP. The PDP was calculated by the in-degree and out-degree for all nodes 
in one path by raising each degree to the -w power, where w  ≥ 0 and is called the damping exponent, and by 
multiplying all exponential degrees to yield the PDP. The damping exponents were set to 0.5 in this study.
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than the features based only on the molecular level networks. The numbers of features based only on the molecu-
lar level networks were 7.44 ± 5.24 in the 39 drug cases. For the features related to the multi-level networks, there 
were 9.18 ± 4.52 features with function-to-function relations from targets to functions and 3.38 ± 2.37 features 
from functions to indications through the relations among functions and phenotypes. Multi-level-based features 
were more useful for the study of the functional drug actions compared with molecular level-based features. As 
an example, we presented the top 20 features for the enalapril case in the Supplementary Material (Supplementary 
Table S5).

We had the 39 SVM models prioritize candidates for the functional drug actions from the unlabelled func-
tions. Within the top candidates, we looked through the literature to evaluate whether each candidate is the func-
tional drug action. First, the drugs that were to be investigated were selected. We selected drugs from the 39 drugs 
if its AUROC value was higher than the average AUROC value, and we grouped them into five according to their 
indications. In each of the five groups, we selected one drug that had the most search results in Google Scholar, 
where we can search for even the most obscure information29. The five drugs included enalapril, paclitaxel, bupi-
vacaine, calcitriol, and fluocinolone acetonide. For these five drugs, the top 10 candidates for the functional drug 
actions were manually evaluated. As a result, 60.0% were found to be actual functional drug actions of the corre-
sponding drugs, as presented in the Supplementary Material (Supplementary Table S6). Moreover, most were not 
similar to the positive examples already provided in the DrugBank. They were expected to be novel functional 
drug actions not yet stored in the databases. We describe some of them with literature evidence below.

Enalapril is an anti-hypertensive drug. The top 10 had action potential (GO:0001508). Enalapril increases 
the action potential amplitude and the resting potential, and it has been suggested that the consequential rise 
in cardiac refractoriness may give anti-arrhythmic properties to enalapril30. Its functional drug action, action 
potential, provides a biological interpretation of how enalapril alleviates arrhythmia. Paclitaxel is an anticancer 
drug. Metaplastic ossification (GO:0036074) was included in the top 10. Metaplastic ossification is an abnormal 
formation of bone in normally soft structures. We found that paclitaxel and zoledronate synergistically reduced 
the incidence of bone metastasis from lung cancer and prolong survival31. Even though metaplastic ossification 
has no associated gene, it could be successfully prioritized in this study with multi-level networks. In the case of 
bupivacaine, which is a local anaesthetic drug, growth (GO:0040007) and locomotion (GO:0040011) were in the 
top 10 candidates. We found that bupivacaine inhibited cellular proliferation and migration in cancer cell lines32. 
Calcitriol is an active form of vitamin D. Cell death (GO:0008219), cell division (GO:0051301), mitotic cell cycle 
(GO:0007067), and endoplasmic reticulum (GO:0005783) were in the top 10 and are involved in the anticancer 
activities of calcitriol33–36. Fluocinolone acetonide is a glucocorticoid derivative used for skin disorders. Eating 
behaviour (GO:0042755), wound healing (GO:0042060), intestinal absorption (GO:0050892), and phototrans-
duction (GO:0007602) were in the top 10. It has been reported in the literature37–40 that these four were affected 
by glucocorticoid, while no associations with fluocinolone acetonide were reported.

Discussion
We showed that the introduction of multi-level biological networks is useful in the study of the functional drug 
actions. Compared with previous studies that depend only on molecular level biological networks, our technique 
utilized and inferred more functional drug actions. Moreover, multi-level network-based features were more 
useful in the prioritization than molecular level network-based features. In the bioinformatics domain, several 
studies18,23,26 have shown the utility of introducing multi-level networks. Currently, it is faster to utilize multi-level 
networks for various problems in bioinformatics.

For the first time, we cross-validated the predictive models for functional drug actions using positive examples 
of the functional drug actions. We confirmed that our technique had presentable and consistent performance for 
various 39 drugs. As more positive examples are collected, our technique could be applied to more drug cases. We 

Figure 5.  The ROC curves of the 39 drug cases. These were produced using four-fold cross validation over 20 
iterations. The mean AUROC value was approximately 0.86, and the standard deviation was 0.15.
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expect that cross-validation will become common in the study of functional drug actions. In addition, there will 
be more databases that provide functional drug action information.

Many of the top candidates prioritized by our technique were found to be actual functional drug actions, 
as described above. When referring to the top candidates, it will be much easier to collect the functional drug 
actions that have already been experimentally identified in the literature but not yet stored in databases. In addi-
tion, the top candidates of which relevance is not found in the literature are still likely to be functional drug 
actions. Therefore, they may be promising subjects for wet lab experiments for drug actions. This pre-screening 
will reduce the cost of the discovery of functional drug actions.

Methods
The multi-level biological networks.  The molecule type included genes, and the function type included 
GO terms. The phenotypic type included diseases that are MeSH terms in disease categories, and the concepts 
from some UMLS concept types: Congenital Abnormality, Acquired Abnormality, Finding, Pathologic Function, 
Disease or Syndrome, Mental or Behavioural Dysfunction, Cell or Molecular Dysfunction, Sign or Symptom, 
Anatomical Abnormality, and Neoplastic Process. Those UMLS concept types contained a considerable number of 
the MeSH terms in the disease categories.

Then, 18 types of biological relations were defined by combination of the database, the resource, and the rela-
tion type in the CODA. The 18 types are presented as the 18 rows in the Table 1.

From the CODA database, 13 types of relations for this study were defined by combining the six original 
resources and the eleven relation types that were pre-defined in the CODA. The six original resources included 
BioGRID41, RegNetwork42, TRANSFAC43, EndoNet44, KEGG45, GO, and PhenoGO46, which were released before 
2017. The six pre-defined types in the CODA included: Undirected Link, Directed Link, Positive Increase, Positive 
Decrease, Negative Increase, and Negative Decrease. Moreover, their reversal types were also made. Undirected Link 
means a non-directional association, and Positive Decrease means that the activity or the amount of a receiver 
decreases as the activity or the amount of an actor increases19.

From the UMLS database (version 2016AA), four types of relations were defined for the present study. 
They were defined only by their original resources: MedlinePlus47, MTHMST48, NCI49, and OMIM. Although 
the UMLS has more than 200 resources, only these four resources provided a considerable number of relations 
among the nodes that we considered. The pre-defined types of relations in the four resources were too numerous 
for us to properly categorize them. Therefore, we ignored them when defining the types of relations for this study.

MEDLINE database (version 2017) provided the co-occurrence frequency of the two MeSH terms. It provides 
how many times two MeSH terms have been attached to the same biomedical literature reference. Only one type 
of relation was defined for our research. Among the functions or phenotypes, if two nodes had any co-occurrence 
frequency, we determined that there is a co-occurrence relation between them. We attempted to separate them 
according to their frequency. However, the performance (AUROC values) in the application was best when the 
co-occurrence relations were not separated.

Software implementation.  We wrote most of the code in Python language to implement tasks, such as 
building networks, extracting paths, and scoring meta-paths. We utilized common libraries, such as sklearn, 
numpy, and matplotlib, to select the top 20 features based on linear regression coefficients, to build the SVM mod-
els, and to show the results. We also utilized the dagofun library to infer the negative examples of the functional 
drug actions based on the positive examples.

Data Availability
A file containing the multi-level biological networks is available at https://doi.org/10.5281/zenodo.2530389. The 
main source codes and their main related files are available at https://doi.org/10.5281/zenodo.2579579.

References
	 1.	 Borgert, C. J., Quill, T. F., McCarty, L. S. & Mason, A. M. Can mode of action predict mixture toxicity for risk assessment? Toxicology 

and applied pharmacology 201, 85–96 (2004).
	 2.	 Ashburner, M. et al. Gene Ontology: tool for the unification of biology. Nature genetics 25, 25 (2000).
	 3.	 Wu, Z., Wang, Y. & Chen, L. Drug repositioning framework by incorporating functional information. IET systems biology 7, 188–194 

(2013).
	 4.	 Sun, J. et al. Deciphering signaling pathway networks to understand the molecular mechanisms of metformin action. PLoS 

computational biology 11, e1004202 (2015).
	 5.	 Napolitano, F., Sirci, F., Carrella, D. & di Bernardo, D. Drug-set enrichment analysis: a novel tool to investigate drug mode of action. 

Bioinformatics 32, 235–241 (2015).
	 6.	 Hughes, T. R. et al. Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000).
	 7.	 Berg, E. L. Systems biology in drug discovery and development. Drug discovery today 19, 113–125 (2014).
	 8.	 Pers, T. H. et al. Biological interpretation of genome-wide association studies using predicted gene functions. Nature communications 

6, 5890 (2015).
	 9.	 Piepho, R. W. Overview of the angiotensin-converting-enzyme inhibitors. American journal of health-system pharmacy 57, S3–S7 

(2000).
	10.	 Iorio, F. et al. Discovery of drug mode of action and drug repositioning from transcriptional responses. Proceedings of the National 

Academy of Sciences 107, 14621–14626 (2010).
	11.	 Kuhn, M., Letunic, I., Jensen, L. J. & Bork, P. The SIDER database of drugs and side effects. Nucleic acids research 44, D1075–D1079 

(2015).
	12.	 Mattingly, C., Rosenstein, M., Colby, G., Forrest, J. Jr. & Boyer, J. The Comparative Toxicogenomics Database (CTD): a resource for 

comparative toxicological studies. Journal of Experimental Zoology Part A: Comparative Experimental Biology 305, 689–692 (2006).
	13.	 Wishart, D. S. et al. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic acids research 36, D901–D906 

(2007).
	14.	 Bodenreider, O. The unified medical language system (UMLS): integrating biomedical terminology. Nucleic acids research 32, 

D267–D270 (2004).

https://doi.org/10.1038/s41598-019-41814-w
https://doi.org/10.5281/zenodo.2530389
https://doi.org/10.5281/zenodo.2579579


9Scientific Reports |          (2019) 9:5469  | https://doi.org/10.1038/s41598-019-41814-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

	15.	 Zhou, X., Menche, J., Barabási, A.-L. & Sharma, A. Human symptoms–disease network. Nature communications 5, 4212 (2014).
	16.	 Brown, A. S. & Patel, C. J. MeSHDD: Literature-based drug-drug similarity for drug repositioning. Journal of the American Medical 

Informatics Association 24, 614–618 (2016).
	17.	 Wang, Y.-Y. et al. GEAR: A database of Genomic Elements Associated with drug Resistance. Scientific reports 7, 44085 (2017).
	18.	 Himmelstein, D. S. & Baranzini, S. E. Heterogeneous network edge prediction: a data integration approach to prioritize disease-

associated genes. PLoS computational biology 11, e1004259 (2015).
	19.	 Yu, H. et al. CODA: Integrating multi-level context-oriented directed associations for analysis of drug effects. Scientific reports 7, 

7519 (2017).
	20.	 Mork, J. G., Jimeno-Yepes, A. & Aronson, A. R. In BioASQ@ CLEF (2013).
	21.	 McKusick, V. A. Online Mendelian inheritance in man, OMIM. http://www. ncbi. nlm. nih. gov/omim/ (2006).
	22.	 Sun, Y., Barber, R., Gupta, M., Aggarwal, C. C. & Han, J. In Advances in Social Networks Analysis and Mining (ASONAM), 

International Conference on. 121–128 (IEEE) (2011).
	23.	 Fu, G. et al. Predicting drug target interactions using meta-path-based semantic network analysis. BMC bioinformatics 17, 160 

(2016).
	24.	 Meng, C., Cheng, R., Maniu, S., Senellart, P. & Zhang, W. In Proceedings of the 24th International Conference on World Wide Web. 

754–764 (International World Wide Web Conferences Steering Committee) (2015).
	25.	 Sun, Y., Han, J., Yan, X., Yu, P. S. & Wu, T. Pathsim: Meta path-based top-k similarity search in heterogeneous information networks. 

Proceedings of the VLDB Endowment 4, 992–1003 (2011).
	26.	 Himmelstein, D. S. et al. Systematic integration of biomedical knowledge prioritizes drugs for repurposing. Elife 6 (2017).
	27.	 Aronson, A. R. & Lang, F.-M. An overview of MetaMap: historical perspective and recent advances. Journal of the American Medical 

Informatics Association 17, 229–236 (2010).
	28.	 Mazandu, G. K. & Mulder, N. J. DaGO-Fun: tool for Gene Ontology-based functional analysis using term information content 

measures. BMC bioinformatics 14, 284 (2013).
	29.	 Falagas, M. E., Pitsouni, E. I., Malietzis, G. A. & Pappas, G. Comparison of PubMed, Scopus, web of science, and Google scholar: 

strengths and weaknesses. The FASEB journal 22, 338–342 (2008).
	30.	 De, W. M., Crespo, M. J. & Altieri, P. I. Enalapril increases cardiac refractoriness. Journal of cardiovascular pharmacology 20, 820–825 

(1992).
	31.	 Lu, S. et al. Synergistic inhibitory activity of zoledronate and paclitaxel on bone metastasis in nude mice. Oncology reports 20, 

581–587 (2008).
	32.	 Xuan, W. et al. Local anesthetic bupivacaine induced ovarian and prostate cancer apoptotic cell death and underlying mechanisms 

in vitro. Scientific reports 6, 26277 (2016).
	33.	 Trump, D. L. et al. Anti-tumor activity of calcitriol: pre-clinical and clinical studies. The Journal of steroid biochemistry and molecular 

biology 89, 519–526 (2004).
	34.	 Schwartz, G., Oeler, T., Uskoković, M. & Bahnson, R. Human prostate cancer cells: inhibition of proliferation by vitamin D analogs. 

Anticancer research 14, 1077–1081 (1994).
	35.	 Blutt, S. E., Polek, T. C., Stewart, L. V., Kattan, M. W. & Weigel, N. L. A calcitriol analogue, EB1089, inhibits the growth of LNCaP 

tumors in nude mice. Cancer research 60, 779–782 (2000).
	36.	 Haddur, E., Ozkaya, A. B., Ak, H. & Aydin, H. H. The effect of calcitriol on endoplasmic reticulum stress response. Biochemistry and 

Cell Biology 93, 268–271 (2015).
	37.	 Dallman, M. F. et al. Minireview: glucocorticoids—food intake, abdominal obesity, and wealthy nations in 2004. Endocrinology 145, 

2633–2638 (2004).
	38.	 Anstead, G. M. Steroids, retinoids, and wound healing. Advances in wound care: the journal for prevention and healing 11, 277–285 

(1998).
	39.	 Shepherd, E. J. et al. Stress and glucocorticoid inhibit apical GLUT2‐trafficking and intestinal glucose absorption in rat small 

intestine. The Journal of physiology 560, 281–290 (2004).
	40.	 Dickmeis, T. Glucocorticoids and the circadian clock. Journal of Endocrinology 200, 3–22 (2009).
	41.	 Stark, C. et al. BioGRID: a general repository for interaction datasets. Nucleic acids research 34, D535–D539 (2006).
	42.	 Liu, Z.-P., Wu, C., Miao, H. & Wu, H. RegNetwork: an integrated database of transcriptional and post-transcriptional regulatory 

networks in human and mouse. Database 2015 (2015).
	43.	 Wingender, E., Dietze, P., Karas, H. & Knüppel, R. TRANSFAC: a database on transcription factors and their DNA binding sites. 

Nucleic acids research 24, 238–241 (1996).
	44.	 Dönitz, J. & Wingender, E. EndoNet: an information resource about the intercellular signaling network. BMC systems biology 8, 49 

(2014).
	45.	 Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids research 28(1), 27–30 (2000).
	46.	 Sam, L. T. et al. In BMC bioinformatics. S8 (BioMed Central) (2009).
	47.	 Miller, N., Lacroix, E.-M. & Backus, J. E. MEDLINEplus: building and maintaining the National Library of Medicine’s consumer 

health Web service. Bulletin of the Medical Library Association 88, 11 (2000).
	48.	 Tringali, M., Hole, W. T. & Srinivasan, S. In Proceedings of the AMIA symposium. 801 (American Medical Informatics Association) 

(2002).
	49.	 Sioutos, N. et al. NCI Thesaurus: a semantic model integrating cancer-related clinical and molecular information. Journal of 

biomedical informatics 40, 30–43 (2007).

Acknowledgements
This work was supported by the Bio-Synergy Research Project (2012M3A9C4048758) of the Ministry of Science 
and ICT through the National Research Foundation.

Author Contributions
S.Y. and D.L. designed the research, S.Y. performed experiments and analysis, and S.Y. and D.L. wrote the 
manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-41814-w.
Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1038/s41598-019-41814-w
https://doi.org/10.1038/s41598-019-41814-w


1 0Scientific Reports |          (2019) 9:5469  | https://doi.org/10.1038/s41598-019-41814-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-41814-w
http://creativecommons.org/licenses/by/4.0/

	Meta-path Based Prioritization of Functional Drug Actions with Multi-Level Biological Networks

	Results

	The multi-level biological networks. 
	Drug-related information. 
	Features of each function. 
	Examples of functional drug actions. 
	Application. 

	Discussion

	Methods

	The multi-level biological networks. 
	Software implementation. 

	Acknowledgements

	Figure 1 Method overview.
	Figure 2 Comparison of a positive example and a negative example.
	Figure 3 The distribution of the shortest distances of the two-node pairs.
	Figure 4 Method to calculate the PDP.
	Figure 5 The ROC curves of the 39 drug cases.
	Table 1 The number of relations in the multi-level biological networks.




