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Abstract

Background

The World Health Organization (WHO)-defined radiological pneumonia is a preferred end-

point in pneumococcal vaccine efficacy and effectiveness studies in children. Automating

the WHO methodology may support more widespread application of this endpoint.

Methods

We trained a deep learning model to classify pneumonia CXRs in children using the World

Health Organization (WHO)’s standardized methodology. The model was pretrained on

CheXpert, a dataset containing 224,316 adult CXRs, and fine-tuned on PERCH, a pediatric

dataset containing 4,172 CXRs. The model was then tested on two pediatric CXR datasets

released by WHO. We also compared the model’s performance to that of radiologists and

pediatricians.

Results

The average area under the receiver operating characteristic curve (AUC) for primary end-

point pneumonia (PEP) across 10-fold validation of PERCH images was 0.928; average

AUC after testing on WHO images was 0.977. The model’s classification performance was

better on test images with high inter-observer agreement; however, the model still outper-

formed human assessments in AUC and precision-recall spaces on low agreement images.

Conclusion

A deep learning model can classify pneumonia CXR images in children at a performance

comparable to human readers. Our method lays a strong foundation for the potential inclu-

sion of computer-aided readings of pediatric CXRs in vaccine trials and epidemiology

studies.
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Introduction

Pneumonia is the leading infectious cause of death in children. Streptococcus pneumoniae, a

gram positive bacterium, is a common cause of bacterial pneumonia in children. In 2015,

almost 300,000 deaths due to pneumococcal pneumonia were estimated to have occurred in

children less than 5 years, primarily in Africa and Asia [1].

Pneumococcal conjugate vaccines (PCV) are highly effective at preventing pneumococcal

disease [2], but estimating their impact on pneumonia in children requires large studies and

standardized case definitions. Currently available biological tests are insufficient to identify the

etiology of pneumonia in children; as antigen tests lack specificity, blood cultures lack sensitiv-

ity, and lung aspirates are impractical to obtain [3]. Chest x-ray (CXR) findings of lobar con-

solidation is associated with bacterial pneumonia, while mild interstitial changes or

infiltratesare associated with viral pneumonia. Lobar consoliation is considered to be a more

specific outcome measure for pneumococcal pneumonia by the World Health Organization

(WHO), leading the WHO to develop = a methodology to standardize the radiologic defini-

tions of childhood pneumonia for use in pneumococcal vaccine efficacy trials and epidemiol-

ogy studies [3]. Primary endpoint pneumonia (PEP), defined as the presence of consolidation

or pleural effusion, has since been used as an endpoint in a number of vaccine efficacy and

impact studies [4–8]. In addition to PEP, the WHO methodology has conclusions for other

infiltrates, normal (i.e. no consolidation, other infiltrates, or effusion), and uninterpretable.

Although the use of radiological endpoints is valuable for assessing vaccine efficacy and

impact, it requires radiologist or physician engagement that is time- and cost-intensive. Most

evaluations of PCV impact on radiological pneumonia have not used the WHO methodology

for CXR interpretation [9]. Among studies that have used the WHO methodology, the number

of CXR images analyzed varies given different resource constraints. Smaller studies have evalu-

ated approximately 4,000 CXRs in the 3 years prior to and post-PCV introduction [10], while

larger time series analyses have evaluated over 72,000 hospitalizations over 14 years (~10,000

PEP cases) [11], and 2.7 million visits over 9 years (~13,000 PEP cases) [8]. Automating the

CXR reading task could not only standardize CXR interpretations across time and settings,

but could also reduce the resources required to conduct these studies.

In addition to resource constraints, the subjective nature of the reading process and the

varying level of expertise among radiologists or physicians can lead to considerable inter and

intra-observer variability [12]. The WHO methodology is designed to standardize interpreta-

tions of CXRs, which is important for accurately determining the impact of PCVs in clinical

trials and observational studies. In a randomized controlled trial of the 7-valent PCV, per pro-

tocol vaccine efficacy against radiological pneumonia, read by a radiologist at the point of care,

was 20.5% in children less than 5 years of age [4]. After reevaluating the CXRs using the WHO

methodology, vaccine efficacy against radiological pneumonia increased to 30.3% due to the

improved specificity of the endpoint [13]. This illustrates the potential for discordant interpre-

tations by humans and the impact it can have on evaluating interventions as well as prevalence

estimates and epidemiological trends in disease.

Recent advancements in deep learning have enabled the automation of CXR reading at a

performance comparable to experienced radiologists [14–17]. Automating the CXR reading

task may improve sample efficiency by reducing discrepancies in interpretation and facilitating

more widespread application of radiological endpoints in epidemiological research. In one

previous study by Mahomed et al., the researchers automated the recognition of primary-end-

point pneumonia (PEP) using lung segmentation and texture analysis [18], using images from

the same dataset as our current study. The analysis was run on data from the South African

research site, which is only one of 7 sites in the PERCH (Pneumonia Etiology Research for
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Child Health) study. The study achieved an area under the receiver operator characteristic

curve (ROC) of 0.85 (95%CI: 0.823–0.876) for PEP within the South African dataset. In this

study, we were able to train the model on the entire dataset from all research sites. We opted to

use the deep learning approach, which requires less feature engineering than classical image

analysis that typically involves manual filter selection. The final model will be tested on addi-

tional external datasets to further validate its performance, and to better understand its limita-

tions beyond the PERCH study.

Methods

The WHO methodology classifies pediatric CXRs into four endpoint conclusions: ‘PEP’ (pri-

mary endpoint pneumonia, i.e. consolidation or pleural effusion), ‘other (non-endpoint) infil-

trates’, both ‘PEP and other infiltrates’, or ‘Normal’ (no consolidation, infiltrate, or effusion).

The two PEP categoroies were merged into one in the analysis to represent “any PEP”. To

train a deep learning algorithm for this classification task, we utilized transfer learning where

we pretrained a model on CheXpert, a large public CXR dataset [16], and finetuned it on the

smaller Pneumonia Etiology Research for Child Health (PERCH) dataset with CXRs labeled

according to the WHO methodology [12], and then tested it on two pediatric CXR datasets

released by the WHO [3, 19].

CheXpert dataset

The CheXpert dataset consists of 224,316 CXRs from 65,240 patients seen at Stanford Hospital

inpatient and outpatient centers between October 2002 and July 2017 [16] CheXpert is primar-

ily an adult CXR dataset containing 224,313 images from adults and 3 images from newborns.

Natural language processing was used to extract text from radiology reports and label images

as positive, negative, and uncertain for the presence of 14 common chest radiographic observa-

tions (S1 Fig). Further details can be found in Irvin, J. et al. [16].

PERCH dataset

The PERCH study was a seven-country case-control study of causes and risk factors of child-

hood pneumonia in Africa and Asia [20, 21]. Cases were children between 1–59 months of age

who were hospitalized with WHO-defined (pre-2013 definition) severe or very severe pneu-

monia [22, 23]. A total of 4,172 CXR images were available from 4,232 cases enrolled between

August 2011 and January 2014. The PERCH study protocol was approved by the Institutional

Review Boards or Ethical Review Committees for each of the seven institutions and at The

Johns Hopkins School of Public Health. Parents or guardians of participants provided written

informed consent, and all data were fully anonymized [24].

PERCH images were labeled by a 14-person reading panel comprised of radiologists and

pediatricians from 7 study sites, along with a 4-person arbitration panel, consisting of radiolo-

gists experienced with the WHO methodology. Each image was reviewed by two randomly

selected reviewers; images that received a discordant interpretation were then reviewed by two

randomly selected arbitrators who were blinded to the previous interpretation. Discordant

interpretations during arbitration were resolved through a final consensus discussion. Images

were classified as PEP, other infiltrates, both PEP and other infiltrates, normal or uninterpret-

able (Table 1). Further details can be found in Fancourt et al. [12, 25].

PLOS ONE Deep learning for WHO-standardized chest x-ray interpretation

PLOS ONE | https://doi.org/10.1371/journal.pone.0253239 June 21, 2021 3 / 14

https://doi.org/10.1371/journal.pone.0253239


WHO-original and WHO-CRES datasets

In 1997, WHO released a teaching dataset with 222 CXRs to support the standardized inter-

pretation of radiological pneumonia in children [3]. Each image was read by 20 radiologists

and clinicians and labeled as PEP, other infiltrates, normal or uninterpretable. In the released

dataset, 124 images were labeled as high agreement images since more than two-thirds of read-

ers agreed on a single conclusion for these images. We refer to the remaining images in the

dataset as low agreement images.

Two decades later, the WHO initiated the Chest Radiography in Epidemiological Studies

(CRES) project to further clarify their classification methodology, with the objective of

improving inter-observer agreement for each of the 3 endpoints [19]. The published

WHO-CRES dataset contains only high agreement images (N = 209). Of these images, 176

were contributed by PERCH, including 14 uninterpretable images.

Training procedures

We first pretrained the model on CheXpert to classify CXRs as positive or negative for 14

radiological findings with ImageNet initialization. The model was then finetuned on PERCH

to detect PEP, other infiltrates, and normal findings with CheXpert initialization (S1 Fig). Ini-

tializing the model training with pretrained weights allows the model to achieve high perfor-

mance on a smaller dataset by leveraging knowledge from models trained on a larger dataset

[26]. In several previous studies using CXR images, DenseNet121 was selected as the convolu-

tional neural network architecture [15–17]. Following the approach of previous studies, we

also tried multiple available network architectures that have shown top-ranked performance

on image classification including ResNet50 [27], InceptionV3 [28],VGG16 [29], NASNetMo-

bile [30], NASNetLarge, Xception [31], DenseNet121 [32], and InceptionResnetV2 [33]. The

DenseNet121 and NASNetLarge produced the highest overall AUC scores across the 3 WHO-

defined categories, but DenseNet121 had slightly better performance on PEP and its relatively

smaller size posed less risk of overfitting on a small dataset. Therefore, DenseNet121 was the

chosen architecture in this study.

For pretraining on CheXpert, we follow the same process used in Irvin, J. et al. [16], where

images were downscaled to 320 × 320 pixels, normalized based on the ImageNet training set,

and augmented with a 50% random horizontal flipping and affine transformation such as

rotate, shear, and translate by 10 degrees or 10%. Adam optimizer with default β parameters

(β1 = 0.9, β2 = 0.999) was used. We fixed the learning rate at 1 × 10−4 throughout the training

with a batch size of 16 images. Class imbalance was handled by reweighting the binary cross

Table 1. Conclusions of CXR-reading by radiologists and pediatricians in training (PERCH) and testing (WHO) datasets.

Image Class Training Dataset: PERCH (N = 4172) Test Dataset: WHO (N = 431)

Final Conclusion

(N = 4,172)

Round-1 Conclusions by Primary

Readers

Round-2 Conclusions by Arbitrators WHO-Original

(n = 222)

WHO-CRES

(n = 209)

(N = 4,172) (n = 2,358)

Concordant

(n = 1,814)

Discordant

(n = 2,358)

Concordant

(n = 1,144)

Discordant

(n = 1,214)

Primary Endpoint

Pneumonia

1,075 (25.8%) 458(11%) 617(14.8%) 228(9.7%) 389(32%) 90 (40.5%) 71(34.0%)

Other Infiltrates 993 (23.8%) 361(8.7%) 632(15.1%) 276(11.7%) 356(29.3%) 44 (19.8%) 26 (12.4%)

Normal 1,692 (40.6%) 854(20.5%) 838(20.1%) 521(22.9%) 317(26.1%) 75 (33.8%) 106 (50.7%)

Uninterpretable 412 (9.8%) 141(3.4%) 271(6.4%) 119(5%) 152(12.5%) 13 (5.9%) 6 (2.9%)

https://doi.org/10.1371/journal.pone.0253239.t001
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entropy losses of each class by its inverse class frequency. The models were trained for 3 epochs

with model checkpoint being saved and evaluated on the default validation set after every

epoch. In the CheXpert study, the researchers tried multiple approaches to handle the uncer-

tain labels. We opted for simple binary mapping and coded all “uncertain” labels with 0, noting

that variations in coding for uncertain labels during pretraining had minimal impact on the

transfer learning results.

Prior to finetuning on PERCH, images were manually cropped to focus on the pulmonary

area and exclude body parts such as the abdomen, head, legs and arms (S2 Fig), in order to pre-

vent the model from being adversely impacted by learning irrelevant features [34]. The manual

cropping process also helps generate masks to train an image segmentation model to automate

the cropping in the future (S3 Fig). The model was initiated with the weights from the best pre-

trained model on CheXpert. We used 10-fold cross-validation to reduce potential bias in

model evaluation. The dataset was split into ten non-overlapping sets of images, and trained

for 10 times with each set being held as a validation set each time. The area under receiver

operating characteristic curves (AUCs) were calculated from the validation set and averaged

across the 10 folds. The 95% confidence interval of the AUC was calculated using the non-

parametric DeLong method [35].

During fine-tuning, we reduced the image size to 224 × 224 pixels, which yielded slightly

better performance than 320 × 320, and kept the same augmentation as in the pre-training.

We trained the networks with a batch size of 32 and used an initial learning rate of 1 × 10−4,

which was reduced by a factor of 10 each time the loss plateaued on the validation set. Early

stopping was performed by saving the model after every epoch and choosing the saved model

with the lowest validation loss. Although freezing lower layers in transfer learning has previ-

ously yielded better results [36], we found that freezing any of the lower layers resulted in sub-

optimal results compared to updating the entire model.

For both pretraining and fine-tuning, the parameters of the network were initialized with

parameters from the pretrained network, except for the final fully connected layer, which was

replaced with a new fully connected layer producing an output with the same dimension as the

number of outcome classes. The weight of the replace layer was initialized with Glorot/Xavier

Uniform initializer, with bias terms being set to zero. The outputs were then activated using

sigmoid function to produce predicted probabilities of the presence of each of the outcome

classes.

Model evaluation

Uninterpretable images were removed from all analyses. AUCs were calculated separately for

high and low agreement WHO test set images. We also compared model confidence between

high and low agreement images for each outcome, using predicted probabilities as a measure

of model confidence.

In addition to the WHO test sets, We also evaluated the PERCH model on its own hold-out

set. The hold-out set included concordant and discordant images, analogous to the high and

low agreement images in the WHO datasets. To create the hold-out set, we selected 150 images

(50 per class) with concordant interpretations at either the primary or arbitration readings and

another 150 images with discordant interpretations during arbitration. The remaining 3,460

images were used for training.

Discordant images were the most difficult for pediatricians and radiologists to interpret

and required a consensus discussion to assign the final conclusion. To investigate how the

model classified hard-to-interpret images, we used the same 150 discordant PERCH images

described above as a hold-out test set and retrained the model on the remaining images
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(n = 3,610). Since these discordant images required arbitration, a total of 4 readings for each

image (two reviewers and two arbitrators) were available. For each of the 4 readings, we com-

puted its sensitivity (recall), specificity, and positive predictive value (precision) against the

final conclusion. We plotted the operating points from each of these readings along with the

model’s receiver operating characteristic (ROC) curve and Precision-Recall (PR) space to com-

pare model results to that of the readers.

We also trained a model on all PERCH images with concordant interpretations only at

either the primary or arbitration readings (n = 2,698) and used it to predict conclusions for all

images that received a discordant interpretation during the arbitration reading (n = 1,062).

Given the disagreement between highly trained arbitrators, the certainty of conclusion for

these images is assumed to be relatively low. It is of interest to see what conclusions neural net-

works would assign to these hard-to-interpret images after being trained on images for which

the certainty of conclusion is relatively high.

We assessed whether the model could correctly highlight the diseased area on a CXR image

using guided Gradient-weighted Class Activation Mappings (Grad-CAMs). Grad-CAMs pro-

duce both a low resolution highlight (i.e. heat map) of the regions important to a class predic-

tion and a high resolution class-discriminative visualization [37].

An small ablation experiment was conducted to evaluate the extent to which model perfor-

mance was impacted by image cropping. We trained the model on uncropped images from the

PERCH dataset and tested it on the WHO datasets.

Results

Table 2 shows the validation and test AUCs achieved by the PERCH model on the PERCH val-

idation, PERCH test, and WHO test datasets. The validation AUCs were 0.928 for PEP, 0.780

for other infiltrates and 0.897 for normal. The model achieved better performance on the

external test set (WHO-Original and WHO-CRES images); the test AUCs increased to 0.977

for PEP, 0.891 for other infiltrates and 0.951 for normal.

Further analysis showed that the increase in model performance was related to the larger

proportion of (78.78%) of high-agreement images in the WHO dataset. The PERCH model

predicted PEP almost perfectly on WHO high agreement images (AUC = 0.993 and 0.996 for

WHO-Original and WHO-CRES images respectively) but performance dropped by 14% on

WHO low agreement images (AUC = 0.845 for WHO-Original images) (Table 2). A similar

decline in performance was observed on discordant images in the PERCH dataset. The

Table 2. AUROC scores (averaged across 10-fold) on the validation set, and WHO test set by level of inter-observer agreement of the image labels.

Category Validation

Results

Test Results

PERCH�

(n = 346)

PERCH WHO

All

(N = 410)

WHO-Original WHO-CRES

Concordant

(n = 150)

Discordant

(n = 150)

High (n = 120) Low (n = 88) High + Low

(n = 208)

High (n = 203)

Primary Endpoint

Pneumonia

0.928

(0.919,0.938)

0.944

(0.930,0.957)

0.859

(0.837,0.879)

0.977

(0.974,0.981)

0.993

(0.990,0.996)

0.845

(0.817,0.873)

0.952

(0.943,0.960)

0.996

(0.995,0.998)

Other Infiltrates 0.780

(0.764,0.797)

0.810

(0.788,0.832)

0.741

(0.715,0766)

0.891

(0.879,0.903)

0.969

(0.957,0.980)

0.726

(0.692,0.759)

0.856

(0.838,0.875)

0.935

(0.919,0.950)

Normal 0.897

(0.887,0.907)

0.896

(0.880,0.911)

0.788

(0.765,0.812)

0.951

(0.945,0.957)

0.995

(0.992,0.997)

0.749

(0.714,0.784)

0.921

(0.909,0.932)

0.974

(0.968,0.980)

� Average sample size of the 10-fold validation set.

https://doi.org/10.1371/journal.pone.0253239.t002

PLOS ONE Deep learning for WHO-standardized chest x-ray interpretation

PLOS ONE | https://doi.org/10.1371/journal.pone.0253239 June 21, 2021 6 / 14

https://doi.org/10.1371/journal.pone.0253239.t002
https://doi.org/10.1371/journal.pone.0253239


predicted probabilities of classification were higher for high versus low agreement images

across all classes, with higher predicted probabilities for PEP compared to other classes (Fig 1).

To illustrate the model performance in the context of discontinuous accuracy scores, we

took the optimal cut-off of AUC score that maximizes the Youden’s index [38]. Among high-

agreement WHO images, the test AUCs correspond to 95.3%, 96.7%, 91.1% of sensitivity, and

95.5%, 96.8%, 91.8% of specificity for PEP, normal and other-infilrates, respectively. Among

low-agreement WHO images, the sensitivity dropped to 76.7%, 69.7%, 71.9% and specificity

dropped to 76.9%, 70%, 66.4% for the three outcomes, respectively. The specificity is higher

than sensitivity for all outcomes, reflecting the intended specificity of the WHO definition, a

criteria that is important for estimating vaccine efficacy and impact.

Fig 2 shows the comparison between the model’s prediction and the 4 readings against the

final conclusion determined during the consensus discussion for discordant images. ROC and

precision-recall (PR)-curves from 10-fold validation are displayed with the average curves

highlighted in blue. Four operating points are also displayed representing the conclusions

given by the 4 readings. Averaging across ten folds, the model’s performance on all three clas-

ses was better than the 4 readings provided by pediatricians and radiologists.

Fig 3a and 3b show a side by side comparison of WHO’s annotation and the localized

regions that the model predicted to be most indicative of an outcome class. The model

Fig 1. Comparison of model predicted probabilities and 95% confidence intervals by endpoint and level of human reader

agreement.

https://doi.org/10.1371/journal.pone.0253239.g001
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identified the area of infection for PEP with high accuracy (p = 0.980). The identification of

other infiltrates was relatively less accurate given the dispersed nature of the infected area

(p = 0.917).

Additional results

The ablation experiment showed that image cropping improved model performance by 1–3%

on AUC (S1 Table).

Table 3 shows the agreement between the model’s prediction and the final conclusion

assigned to images that received a discordant interpretation during arbitration. The model’s

prediction agreed with that of pediatricians and radiologists on 60% of the discordant images

(Table 3). Agreement was highest for PEP and lowest for other infiltrates. Predicted probabili-

ties were higher when the model’s conclusion agreed with the final conclusion for PEP (85.6%

vs 70%, p<0.001) and normal (76.9% vs 69.9%, p<0.001), but not for other infiltrates (60.6%

vs 60.5%). No association was found between agreement status and other variables.

In S2 Table, we present various comparison matrices, where diagonal cells indicate agree-

ment between the model and the final conclusion, and off diagonal cells indicate disagreement.

The model and the readers were both more likely to classify normal images as other infiltrates

than PEP. However, the model was more likely to classify other infiltrates as normal than PEP,

while readers were more likely to classify other infiltrates as PEP than normal. When the mod-

el’s prediction differed from the final conclusion, 22% of its predictions agreed with the con-

clusion that received a majority of votes where one reviewer agrees with one arbitrator, and

the other reviewer disagrees with the other arbitrator prior to final consensus discussion (S4

Fig).

Fig 2. Comparison of model performance to radiologist and pediatricians on discordant images. The four operating points represent the

conclusions given by the 4 readings. The lines represent model’s performance, with the average of 10-fold validation in blue color. The top rows shows

the receiver operating characteristic (ROC) curve and the bottom shows the Precision-Recall (PR) curve.

https://doi.org/10.1371/journal.pone.0253239.g002
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Discussion

This is one of the first studies to automate detection of WHO-defined radiological pneumonia

using deep learning. The neural network’s performance is better than a previous study using

classical image texture analysis on a subset of PERCH images. The increase in performance

could be due to either the modeling approach, or the increase in sample size. The model’s per-

formance is also comparable to the performance of human readers on all 3 WHO-defined

pneumonia categories. We also noticed a boost in model performance on external test sets,

and were able to identify the root cause to be related to inter-rater agreement in the human-

assigned image labels from the external test sets.

Model performance was higher on the WHO test images than on the validation or test

images from PERCH. This is atypical, as one would expect an independent test sample to have

poorer classification performance than validation or test samples retrieved from the training

set. We concluded that the improvement in AUCs on the WHO datasets, ranging from 5–11%

across the 3 conclusions, was due to a larger proportion of images having high inter-observer

agreement. This also explains why model performance was higher on PERCH concordant

than discordant images.

Previous studies have shown that inter-observer agreement is highest for PEP and lowest

for other infiltrates, even when a rigorous standardization process is implemented [3, 12]. This

Fig 3. (a). Activation map of PEP. Frontal radiographs of the chest in a child with WHO-defined primary endpoint pneumonia; the

child is rotated to the right with dense opacity in the right upper lobe; the model localizes consolidation with a predicted probability

p = 0.980; the discriminative visualization shows fine-grained features important to the predicted class. (b). Activation map of other-

infiltrates. Frontal radiograph of the chest presents patchy opacity consistent with non-endpoint infiltrate. The model correctly

classifies the image as infiltrate with a probability of p = 0.917 and localizes the areas of opacity. The class discriminative visualization

highlights important class features.

https://doi.org/10.1371/journal.pone.0253239.g003
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also appears to be the case in our study, where the model achieved the best classification per-

formance for PEP. In contrast, a finding of “other infiltrates” is known to have the lowest

inter-observer agreement among human readers and was also the most difficult for the model

to identify. Compared to PEP, the model generated lower predicted probabilities for classifying

other infiltrates even when its conclusions agreed with the readers.

We also observed that the model was more likely to classify images as normal than PEP

when it disagreed with the conclusion of other infiltrates, while the readers were more likely to

classify these images as PEP. It is not clear if the observed difference reflects any underlying

bias in the labeling procedure or in the model’s prediction. However, this may lower the poten-

tial of the model to overestimate vaccine impact or pneumonia disease burden when applied

to new settings.

To better understand the predictive qualities of the model, two radiologists reviewed a

selection of the WHO images that were misclassified as PEP by the model. For PEP images

that the model falsely predicted as negative, the CXR films were generally more penetrated,

with more photons hitting the film. The areas of consolidation that were missed also tended to

be adjacent to the cardiac silhouette or scapula. One of the false negatives may be a mislabeled

image as neither radiologist could identify any consolidation. On images with false positive

predictions, CXR films appeared to be less penetrated. This is consistent with human intuition,

as under-penetration may obscure lung parenchyma, which happens more focally with consol-

idation. This underscores the importance of quality control, including technical processes and

patient positioning, in research studies using pediatric CXRs.

Table 3. Final conclusion and model prediction on discordant CXR images (N = 1,062) by key features.

Model = Final conclusion (n = 637) Model 6¼ Final conclusion (n = 425)

Final conclusion (n,%) �

Primary Endpoint Pneumonia

(PEP)

257(40.4%) 132(31.1%)

Other Infiltrates (OI) 149(23.4%) 207(48.7%)

Normal 231(36.3%) 86(20.2%)

CXR + (PEP or OI)�� 558/789(70.7%) 187/273(68.5%)

Predicted Probability (mean, SD)

PEP � 85.6%(0.16) 70.0%(0.20)

OI 60.6%(0.13) 60.5%(0.12)

Normal� 76.9%(0.15) 69.9%(0.16)

Gender (n,%)

Male 351(55.1%) 233(54.8%)

Female 286(44.9%) 192(45.2%)

Age in months (mean, SD) 10.50(10.69) 11.19(10.96)

Countries (n,%)

Bangladesh 70(11.0%) 52(12.2%)

Gambia 93(14.6%) 70(16.5%)

Kenya 82(12.9%) 68(16.0%)

Mali 81(12.7%) 48(11.3%)

South Africa 186(29.2%) 105(24.7%)

Thailand 33(5.2%) 27(6.4%)

Zambia 92(14.4%) 55(12.9%)

� p<0.0001 for Pearson’s chi-squared test or two-proportion z-test.

�� Differences between PEP and OI are ignored so a greater number of images have concordant results.

https://doi.org/10.1371/journal.pone.0253239.t003
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Limitations

One potential limitation of training a large neural network on a small dataset is overfitting.

The validation loss on average plateaued after 3–5 epochs of fine-tuning. However, transfer

learning allows the model to converge faster without excessive training [26]. Although the

model achieved high performance on the WHO dataset, additional validation may be needed

when applying it to new settings given that the WHO dataset is a teaching set with mostly high

agreement images. The model is developed for epidemiologic purposes, and not intended to

be used as a diagnostic tool in clinical practice. The model is trained on images from children

hospitalized for WHO-defined severe and very severe pneumonia and its application should

be restricted to images from children with a diagnosis of pneumonia to avoid misclassification

of non-pneumonia cases as PEP.

Conclusion

A deep learning model can identify primary endpoint pneumonia in children at a performance

comparable to human readers. It can be implemented without manual feature engineering and

achieves better performance than classical image analysis. This study lays a strong foundation

for the potential inclusion of computer-aided pediatric CXR readings in vaccine trials and epi-

demiology studies.
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