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A T M O S P H E R I C  S C I E N C E

Population dynamics modify urban residents’ exposure 
to extreme temperatures across the United States
Jiachuan Yang1*†, Leiqiu Hu2*†, Chenghao Wang3

Exposure to extreme temperatures is one primary cause of weather-related human mortality and morbidity. Global 
climate change raises the concern of public health under future extreme events, yet spatiotemporal population 
dynamics have been long overlooked in health risk assessments. Here, we show that the diurnal intra-urban 
movement alters residents’ exposure to extreme temperatures during cold and heat waves. To do so, we incorpo-
rate weather simulations with commute-adjusted population profiles over 16 major U.S. metropolitan areas. 
Urban residents’ exposure to heat waves is intensified by 1.9° ± 0.7°C (mean ± SD among cities), and their expo-
sure to cold waves is attenuated by 0.6° ± 0.8°C. The higher than expected exposure to heat waves significantly 
correlates with the spatial temperature variability and requires serious attention. The essential role of population 
dynamics should be emphasized in temperature-related climate adaptation strategies for effective and success-
ful interventions.

INTRODUCTION
Extreme heat and cold weather have proved deadly to global resi-
dents (1–5). Adaptation to climate extremes becomes increasingly 
important for urban areas, as cities are and will continue to be the 
major habitat of global population (6, 7). The ambient temperature-
mortality relations in cities often have U- or J-shaped profiles and 
suggest rapid increases in mortality at extreme temperatures (8, 9). 
In the context of climatic change, these relations lead to growing 
concerns about heat-related mortality (10, 11), as heat waves are 
projected to be more frequent under the warming globe (12). Exist-
ing studies on mortality risk commonly use time series of tempera-
ture data aggregated over the entire city/region (13–15), with the 
assumption that the temporal temperature variability can appropri-
ately pick up the risk signal under extreme events. The heteroge-
neous built-up landscape, nevertheless, causes substantial spatial 
temperature variations under the same meteorological forcing, where 
the urban-rural temperature difference can reach more than 10°C 
across a metropolitan area (16). Furthermore, individual urban ag-
glomerations respond differently to extreme heat and cold (17, 18), 
e.g., heat islands can intensify extreme urban heat under future heat 
waves by 2.1° to 4.6°C (19). Robust assessment of residents’ mortality 
risk linked to climate change should therefore account for both 
spatial and temporal variabilities of temperatures in the complex 
urban environment.

In light of estimating residents’ exposure to extreme tempera-
tures, the spatiotemporal distribution of urban population is equally 
important as the temperature variability. Recent analysis found that 
migration patterns at the continental scale could substantially alter 
U.S. residents’ exposure to future extreme heat (20). Within the 
complex urban environment, the concurrent variations of ambient 
temperature and population distribution can largely modify indi-
viduals’ exposure. The modification becomes critical during extreme 

events, as a 1° or 2°C change in temperature can be consequential 
for human mortality (21). Work-related commutes can notably 
increase the daytime urban population in large metropolitan areas, 
for example, by 95% in New York County, NY (22). Despite the 
large diurnal population variation, the effect of intra-urban spatio-
temporal population dynamics on mortality risk has rarely been 
studied. The classic temperature-mortality relations, assuming all 
residents have identical exposures to the mean temperature of each 
city, are still generally adopted in risk assessment studies (6, 23). 
One pioneering study looking into temperature-population inter-
actions in Chicago suggested that residents’ heat exposure was more 
responsive to nighttime temperatures during heat waves (24). 
Whether these findings are generalizable for other metropolitan 
areas with distinct geoclimatic conditions and landscape features 
remains unknown.

This study provides the first attempt to quantify urban residents’ 
exposure to heat and cold extremes with a full consideration of 
spatiotemporal variability of both temperature and population at 
the intra-urban and subdaily scale. We first estimate residents’ 
exposure temperature simply as the spatial average temperature 
from weather model simulations over the entire metropolitan areas 
(hereafter, Tarea). Then, via incorporating spatiotemporal patterns 
of commute-adjusted population distribution from transportation 
census, we obtain new estimates of exposure temperature accounting 
for population dynamics (hereafter, Tpop). Through the comparison 
of these two exposure temperatures over 16 major urban habitats 
(table S1) across the contiguous United States (CONUS), we aim to 
address three questions: (i) To what extent will population dynamics 
alter urban dwellers’ exposure to extreme heat and cold? (ii) How 
does this modified exposure vary among metropolitan areas? (iii) 
What are the related variables that contribute to this change? The 
objective is to measure the impact of population dynamics and to 
improve the assessment of exposure temperature under heat and 
cold waves. Examining residents’ exposure under future climate 
scenarios is undoubtedly important; nevertheless, we focus on 
historical extreme events here to minimize the uncertainty related 
to climate change and population projections. The lessons learned 
from the present-day weather hazards are expected to be applicable 
to future extreme events.
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RESULTS
Temperature anomalies during extreme weather
Here, we analyzed the extreme temperature exposure in three 
massive heat waves and one cold wave (see Materials and Methods). 
Heat and cold waves create remarkable temperature anomalies 
across the studied metropolitan areas (fig. S1). In terms of the phys-
ical hazard itself, without considering population dynamics, the 
simulated 2014 cold wave lowers the exposure temperature over the 
entire metropolitan area (area-weighted daily mean 2-m air tem-
perature, Tarea) by 11.5° ± 3.2°C (mean ± SD among 12 affected cities), 
resulting in a mean nighttime Tarea of −9.1°C over affected cities. 
The Great Lakes region—including Chicago, Indianapolis, and 
Columbus—is at the greatest risk with nighttime Tarea below −18°C 
(table S2). The mean anomaly under three simulated heat waves 
(3.6° ± 1.8°C, mean ± SD) is discernible but much smaller than the 
cold anomaly, with a distinct spatial pattern at the continental scale. 
Seattle and Los Angeles observe the largest increase of more than 
7°C on the west coast (fig. S1); these strong anomalies are partially 
due to the relatively mild temperatures during normal summer days 
in coastal cities and the small number of days under the extreme 
events (table S3).

Impact of population dynamics on exposure temperature
The exposure temperature of urban residents incorporating popu-
lation dynamics (Tpop) is obtained by weighting local hourly 2-m air 
temperatures by their corresponding population over the entire 

metropolitan area and then averaging over the diurnal cycle. We 
considered surrounding suburban zones to cover the full spatial 
extent of urban residents’ daily commute (fig. S2). The impact of 
spatiotemporal population dynamics, characterized as the difference 
between exposure temperatures with and without population dy-
namics (Tpop − Tarea), lessens the exposure of urban residents to 
extreme low temperatures in most cities during the 2014 cold wave 
(positive values in Fig. 1). Population dynamics are found to have 
similar effects in normal days (0.6° ± 0.7°C; Fig. 1A) and under the 
cold wave (0.6° ± 0.8°C; Fig. 1C), with the maximum attenuation 
effect of more than 1°C found in Albuquerque and Denver. During 
studied extreme heat events, population dynamics substantially 
increased urban residents’ exposure temperature overall. Compared 
to Tarea, Tpop is 1.9° ± 0.7°C higher over 16 affected metropolitan 
regions, where the discrepancy reached up to 3.8°C in Salt Lake City 
(Fig. 1D). Despite the smaller temperature anomaly posed by heat 
waves than by the cold wave, the larger difference between Tpop and 
Tarea suggests the greater role of daily commute in determining total 
residents’ exposure to extreme heat. More residents consistently 
experience higher than expected temperature under three simulated 
heat waves, and the discrepancy of this exacerbation among different 
metropolitan areas under heat waves is more evident than that during 
the cold wave.

As residents travel to urban cores during daytime and return to 
residential areas at night (fig. S2), we include a large studied domain 
including both urban and rural areas for estimating exposure 
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Fig. 1. Population dynamics–induced changes in residents’ exposure temperature (Tpop− Tarea) during simulated extreme events. (A) In normal winter days and 
(C) during the 2014 cold wave. (B) In normal summer days and (D) during the three simulated heat waves in 2006, 2011, and 2012. Each circle represents a metropolitan 
area affected by the extreme event, and its size is proportional to the magnitude of exposure temperature averaged over the entire metropolitan area without population 
dynamics (Tarea). The magnitude of changes for individual cities is referred to table S2.
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temperatures over each metropolitan area. Within the domain, grids 
with low urban land use intensities dominate (large gray bars near the 
left side in Fig. 2), and the exposure temperature estimates without 
population dynamics (Tarea) are largely determined by the temperature 
over less developed regions. On the other hand, population distri-
bution profiles peak over high urban land use intensity areas (color 
lines in Fig. 2), and consequently, Tpop estimates are controlled 
by highly urbanized regions of the metropolis. Cities tend to have 
higher temperatures than their rural counterparts, known as the 
urban heat island effect, which suggests a positive relation between 
urban land use intensity and air temperature. During the cold wave, 
this positive relation (see Denver as an example in Fig. 2) results in 
higher temperatures over populous parts of the city (figs. S2 and 
S3), and Tpop is greater than Tarea. Among the studied cities, Chicago 
is the only city where the movement of population intensifies their 
exposure to extreme low temperature under the cold wave (lower 
Tpop than Tarea in table S2). In particular, daytime (0600 to 1800 local 
standard time) and nighttime (1800 to 0600 local standard time) 
temperatures are relatively homogeneous across areas with different 
urban land use intensities (shaded lines in Fig. 2). Populous urban 
areas are not remarkably hotter than other regions in Chicago; 
therefore, the overall exposure temperature of residents decreases 

slightly over the diurnal cycle after accounting for population dy-
namics. Under studied heat waves, strong heat islands make heavily 
populated areas hot spots within the metropolitan area; hence, 
overall residents’ exposure temperature is augmented (Los Angeles 
and Salt Lake City in Fig. 2). It is straightforward that the spatial 
extent of studied domains, especially the inclusion of low-intensity 
grids, will affect the absolute impact of population dynamics on 
exposure temperature. When focusing on smaller and more urban-
ized areas, population dynamics’ effect declines as the study domain 
becomes more similar to populous regions within cities (fig. S4). 
Our selected domains, nevertheless, correspond to the weather 
forecast zones for individual metropolitan areas used by the National 
Weather Service. The estimated change in exposure temperature is, 
therefore, the temperature difference between what residents are 
exposed to and what they expect on the basis of weather forecast.

Figure 3 shows that the magnitude of temperature anomaly 
during the cold wave is positively related to the mean temperature 
under normal conditions (statistically significant at 0.05 level), indi-
cating that cities in colder regions are subject to more intense cold 
hazards. Conversely, metropolitan areas with lower normal tem-
peratures tend to experience larger temperature increases during heat 
waves. Daytime and nighttime anomalies are of similar magnitudes, 
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Fig. 2. Temperature, population, and grid number distributions as a function of urban land use intensity. Each gray bar stands for the percentage of grids within a 
5% urban land use intensity interval to the total number of grids within the studied metropolitan area (right-side axis). Orange and green lines denote the ratios of 
population within grids of different urban land use intensities to the total population of the metropolitan area (right-side axis) at day and night. Shaded areas around the 
daily average temperature profiles (blue and red lines) stand for the 25% and 75% quantiles over grids within a 5% urban land use intensity interval (left-side axis).
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but the trends are more statistically significant at nighttime. During 
the 2006 heat wave, the largest temperature anomaly of approximately 
8°C in the coolest city is over three times greater than the 2°C 
anomaly found in the hottest city. This is worthy of special attention 
as residents in temperate climate are less prepared for extreme heat 
(25). We further investigate whether the impact of population 
dynamics on exposure temperature for extreme events and normal 
days is related to the cities’ background climate, which contains 
temperature information in the long term. On the basis of the 
Köppen-Geiger climate classification, the relations are inconclusive 
for both heat and cold waves among studied cities (fig. S5).

Contributing factors for modified exposure
We now turn our attention to understanding how the variability of 
population and temperature and their interactions affect residents’ 
exposure under extreme events. The spatial variability of tempera-
ture (see Materials and Methods) consistently shows a positive relation 
with population dynamics–induced changes in exposure temperature 
for three simulated extreme heat events (statistically significant at 
0.05 level; Fig. 4A), while the spatial population variability shows a 
less significant relation (fig. S6A). Cities’ spatial temperature vari-
abilities are much smaller under heat waves than under the cold 
wave and fall within a narrow range. Under this circumstance, a small 
increase in the spatial temperature variability becomes important 
in affecting residents’ heat exposure; thus, the effect of population 
dynamics correlates strongly with the spatial temperature variability. 
Unlike under extreme heat, cities respond to the extreme cold with 
a wide range of spatial temperature variability across the continent 
(Fig. 4A). The influence of spatial temperature variability therefore 
drops, and the reduced exposure of residents under extreme cold 
has a statistically significant relation with the spatial correlation of 

temperature and population (Fig. 4B). Although the absolute impacts 
of population dynamics on residents’ exposure temperature are 
small under extreme cold, the results highlight the benefit of an-
thropogenic warming for urban communities with high population 
density. Changes in the exposure temperature of urban residents 
have inconclusive relations with the spatial correlation of popula-
tion and temperature under heat waves, yet we recognize that the 
effect of population dynamics is clearly larger at night than in daytime 
(fig. S6B).

DISCUSSION
The purpose of this study is to highlight the consistently overlooked 
impact of population dynamics on the exposure of urban residents 
to heat and cold waves. The modified exposure is caused by the daily 
commute of population through regions of different temperatures 
across the metropolitan area. Aggravated exposure of urban resi-
dents to extreme heat induced by intra-urban commute (1.9° ± 0.7°C) 
is more than half of the heat wave hazard (temperature anomaly 
of 3.6° ± 1.8°C), while the attenuated exposure to extreme cold 
(0.6° ± 0.8°C) is minor. Climate models project more frequent and 
more intense heat waves under the “business-as-usual” high green-
house gas emissions. Analysis of climate extreme observations sug-
gests more evident nocturnal warming than daytime warming 
during the past decades (26, 27). In combination with the larger 
increases in exposure temperature induced by population dynamics 
at night (fig. S6B), urban residents’ adaptation to nocturnal extreme 
heat needs to be taken into serious consideration.

In the United States, the National Weather Service is responsible 
for issuing warnings for hazardous extreme weather. The current 
warning service released at the weather forecast zone level does not 
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Fig. 3. Temperature anomalies over studied metropolitan areas during simulated extreme events. Solid (dashed) lines indicate the linear relationship is statistically 
significant at 0.05 (0.1) level.
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consider spatiotemporal population dynamics; hence, its tempera-
ture forecast could deviate considerably from the exposure temperature 
of urban residents. These deviations can have severe consequences: 
False warnings lead to unnecessary actions of relevant agencies and 
a waste of public resources, while failure to capture extreme tem-
peratures causes increased mortality and morbidity. Our approach 
in this study reduces the exposure bias of urban population at risk 
under extreme temperatures, and results reveal two important factors 
for modified exposure: the spatial temperature variability for heat 
wave and the temperature-population spatial covariation for cold 
wave. This finding reveals that residents’ exposure to heat waves is 
more likely to be underestimated in a spread-out city, where the 
daily commute between residential areas and urban cores would in-
duce a large change in the exposure temperature. The estimated risk 
based on the spatial average temperature performs poorly in large 
urban agglomerations, and the incorporation of population dynamics 
is essential for accurate characterizations of exposure temperature of 
urban residents in these regions. Existing heat mitigation/adaptation 
efforts have been mainly devoted to hot urban cores with high build-
ing densities (28), and these interventions are likely to be less effi-
cient without considering residents’ movement pattern. City planners 
and decision makers should identify the areas/paths of high population 
density to design climate adaptation strategies for reducing residents’ 
exposure to extreme temperatures.

Two important limitations of this study need to be acknowledged. 
First, the weather-related stress and illness risk can be attributed to 

multiple meteorological variables besides temperature, such as 
humidity, wind speed, and radiation (29), and the health outcome 
varies among population groups in different ages, socioeconomic 
statuses, and health conditions. Future analysis of resident expo-
sure will benefit from the adoption of advanced indices more rep-
resentative of human health and demographic status associated 
with the commuters. Second, the diurnal population flow in this 
study is estimated from the transportation census data and does 
not reflect the change from day to day. Population distribution is 
likely to change under extreme weather and subsequently modi-
fies the exposure temperature of urban residents differently as com-
pared to this study. A precise estimation of population dynamics 
requires the urban big data approach, which is not readily available 
at this stage.

MATERIALS AND METHODS
Definition of heat and cold waves
We collected daily mean 2-m air temperature (Tmean) data at weather 
stations in studied cities from the National Centers for Environmen-
tal Information (www.ncdc.noaa.gov/) for 1980–2010. Following the 
previous study (6), days with Tmean higher than the 95th percentile 
in warm seasons (May to September) are defined as heat waves, 
while days with Tmean lower than the 5th percentile of cool season 
(November to March) are defined as cold waves. We defined the 
normal days with Tmean between 10th and 90th percentiles for each 
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Fig. 4. The relations between population dynamics–induced changes in exposure temperature under extreme events and cities’ temperature and population spatial 
variabilities. (A) Relations between the coefficient of spatial variation for daily average temperature over individual cities and the effect of population dynamics. (B) Rela-
tions between the effect of population dynamics and the spatial correlation coefficient of daily average temperature and population. The linear regression is performed for 
cities under the humid warm temperate climate with one standard deviation confidence band. Solid lines indicate the linear relation is statistically significant at 0.05 level.

https://www.ncdc.noaa.gov/
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station. The classified periods through weather station measurements 
were applied to separate results during extreme events from normal 
days for numerical climate simulations described below.

Regional climate simulations
The advanced research version 3.8.1 of the Weather Research and 
Forecasting (WRF) model was adopted for carrying out weather 
simulations in this study. The WRF model is a powerful numerical 
tool with successful applications over major metropolitan areas 
worldwide (30). One single simulation domain was used to cover 
the entire United States with a horizontal resolution of 5 km. A set 
of well-tested physical parameterizations was used (31), including 
the rapid radiative transfer model for longwave radiation, the Dudhia 
shortwave radiation scheme, the Yonsei University planetary bound-
ary layer scheme, and the Grell three-dimensional ensemble cumulus 
scheme. Initial and boundary condition data were obtained from 
the North American Regional Reanalysis by the National Centers 
for Environmental Prediction (https://rda.ucar.edu/datasets/ds608.0/). 
The selection of extreme events for this study was based on the 
spatial span of extreme events over the CONUS. We ran the hourly 
simulations for at least 30 days for individual study events, containing 
three major heat waves (13 July to 29 August in 2006, 11 July to 
10 August in 2011, and 18 June to 20 July in 2012) and one cold wave 
(1 January to 1 February in 2014).

Land use/land cover information was obtained from the 2011 
National Land Cover Database (NLCD) at 270-m resolution. We 
used the mosaic approach to solve for eight land use categories at 
every WRF grid (32); hence, the simulated 2-m air temperatures 
(Ta) accounted for the subgrid land surface heterogeneity. For non-
urban grids, the 2-m air temperature was estimated from the Noah 
land surface model. For urban grids, air temperature was weighted 
on the basis of nonurban and urban portions of the grid cell

	​​ T​ a​​  = ​ f​ imp​​ ​T​ urb​​ + (1– ​f​ imp​​ ) ​T​ rul​​​	

where fimp is the impervious fraction of the 5-km grid retrieved 
from the 2011 NLCD, Turb is the 2-m urban air temperature computed 
by the single-layer urban canopy model (33), and Trul is the 2-m 
rural air temperature simulated from the Noah land surface model. 
The National Urban Database with Access Portal Tool dataset was 
used to accurately represent urban morphological parameters for 
studied metropolitan areas where available (34).

We evaluated the simulated 2-m air temperature against measure-
ments from 137 ground-based weather stations in studied cities (www.
ncdc.noaa.gov/). The number of urban and rural stations used for 
individual cities is summarized in table S4. Overall, the WRF simula-
tions reasonably capture the urban temperature during studied events 
over individual cities, with the mean absolute error of 2.2°C (table S4).

Diurnal population estimation
We estimated the hourly population distribution by redistributing 
the worker population during working hours (with an assumption 
of 8-hour working time and 1-hour lunch break). Residential popu-
lation data from the census best describe the nighttime population 
distribution. The worker commute information, including where 
people live and commute to and from, when leaving for work and 
travel time, was extracted from the 2006–2010 Census Transpor-
tation Planning Products (CTPP) (https://ctpp.transportation.org/) 
to characterize the daytime population flow in addition to the resi-

dential population (35). The CTPP data provide the bulk number of 
population flow in and out of a geographic zone within a time interval 
but do not contain adequate information on the mode of commuting 
(e.g., by subway or by car) or the exact path of urban travelers. The 
travel data were aggregated to a 1-hour frequency for consistency 
with the temperature data. The spatial scale of the traffic analysis 
zone (finer than the census tract scale) was initially calculated for 
the diurnal commuter-adjusted population distribution and then 
was aggregated to 5 km to match the resolution of WRF simulations. 
We considered all the weather forecast zones containing the selected 
16 metropolitan regions for the commute adjustment (fig. S2).

Temperature and population variations
To quantify the spatial variability of temperature and population with 
two distinct scales, we used a dimensionless measure of dispersion, the 
coefficient of variation (cv). It is defined as the ratio of the SD () to the 
absolute value of the mean (||). We estimated the spatial variability 
cv on the basis of the daily average of temperature and population

	​ cv  =   / ||​	

The covariation of temperature and population was measured by 
the Pearson pairwise correlation coefficient.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/12/eaay3452/DC1
Fig. S1. Anomalies in residents’ exposure temperatures during simulated heat and cold waves 
across CONUS.
Fig. S2. Map of studied domains around selected metropolitan areas across CONUS.
Fig. S3. Spatial variability of WRF-simulated mean air temperature during studied extreme 
events in four example metropolitan areas.
Fig. S4. Relations between the impact of population dynamics on temperature exposure 
during extreme events and the studied city boundaries.
Fig. S5. Population dynamics–induced changes in exposure temperature under different 
climate zones for normal days and extreme events.
Fig. S6. Relations between the effect of population dynamics under extreme events and cities’ 
temperature and population spatial variabilities.
Table S1. Population and climate information of the studied metropolitan areas.
Table S2. Tarea and Tpop (°C) estimates in normal days and under extreme events during the 
simulation periods.
Table S3. Summary of the number of extreme event days during the simulation periods.
Table S4. Summary of mean absolute errors of 2-m air temperature during four simulated 
extreme events.
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