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Introduction 

Thyroid cancer is one of the most rapidly increasing cancers throughout the world, in-
cluding South Korea [1]. Although most thyroid cancers show more favorable behavior 
than other cancers, and the 5-year disease-specific survival of thyroid cancer is above 98% 
[2], some thyroid cancers show aggressive behavior such as distant metastasis [3]. 

Next-generation sequencing (NGS) technology and efforts to identify genetic alter-
ations in cancers, such as the Cancer Genome Atlas, have revealed genetic alteration pro-
files in diverse cancers [4]. In addition to mutations and copy number alterations, gene fu-
sions are commonly identified in cancers, including thyroid cancer [5,6]. Gene fusions are 
mainly caused by chromosomal rearrangement; therefore, fusion events may have more 
tumorigenic implications than point mutations because cancer-related genes such as the 
RET oncogene can be overactivated through gene fusion [7]. The most common fusion 
events in thyroid cancer are the RET/PTC rearrangement in papillary thyroid cancer 
(10%–30%) and PPARG-PAX8 rearrangement in follicular thyroid cancer (30%–60%) 
[8]. Various other gene fusions have also been identified in thyroid cancer, including RET, 
THADA, NTRK1, NTRK3, ALK, BRAF, MET, and FGFR2 [8]. It is well known that gene 

Development of an RNA sequencing 
panel to detect gene fusions in thyroid 
cancer
Dongmoung Kim1, Seung-Hyun Jung2,3*, Yeun-Jun Chung1,3,4**
1Department of Biomedicine & Health Sciences, Graduate School, The Catholic University 
of Korea, Seoul 06591, Korea

2Department of Biochemistry, The Catholic University of Korea, Seoul 06591, Korea
3Precision Medicine Research Center, Integrated Research Center for Genome 
Polymorphism, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea

4Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 
06591, Korea

Received: October 25, 2021
Revised: November 11, 2021
Accepted: November 12, 2021

*Corresponding author: 
E-mail: hyun@catholic.ac.kr

**Corresponding author: 
E-mail: yejun@catholic.ac.kr

Original article

eISSN 2234-0742
Genomics Inform 2021;19(4):e41
https://doi.org/10.5808/gi.21061

In addition to mutations and copy number alterations, gene fusions are commonly identi-
fied in cancers. In thyroid cancer, fusions of important cancer-related genes have been 
commonly reported; however, extant panels do not cover all clinically important gene fu-
sions. In this study, we aimed to develop a custom RNA-based sequencing panel to identify 
the key fusions in thyroid cancer. Our ThyChase panel was designed to detect 87 types of 
gene fusion. As quality control of RNA sequencing, five housekeeping genes were included 
in this panel. When we applied this panel for the analysis of fusions containing reference 
RNA (HD796), three expected fusions (EML4-ALK, CCDC6-RET, and TPM3-NTRK1) were 
successfully identified. We confirmed the fusion breakpoint sequences of the three fusions 
from HD796 by Sanger sequencing. Regarding the limit of detection, this panel could de-
tect the target fusions from a tumor sample containing a 1% fusion-positive tumor cellular 
fraction. Taken together, our ThyChase panel would be useful to identify gene fusions in 
the clinical field. 

Keywords: fusion, next-generation sequencing, RNA sequencing panel, thyroid cancer

http://crossmark.crossref.org/dialog/?doi=10.5808/gi.21061&domain=pdf&date_stamp=2021-12-31


fusions can affect the tumor behavior and prognosis of thyroid can-
cer [9,10]. For example, NTRK1/3 fusions have been reported to 
be associated with advanced tumor stage and aggressive lympho-
vascular invasion [11-13]. Tumors with ALK fusions have been 
suggested to have a higher likelihood of dedifferentiation [14]. 
Therefore, detecting gene fusion events is essential both for diag-
nostic purposes and for predicting patients’ prognoses. 

From a technical standpoint, the detection of fusion genes by 
DNA-based NGS is almost impossible due to the presence of di-
verse-sized intronic sequences between the fusion target exons. 
Therefore, RNA-based NGS panel analyses are commonly con-
ducted to detect the target fusions in thyroid cancer in addition to 
the use of DNA-based NGS to detect somatic mutations. RNA-
based NGS panels should include housekeeping genes. Since 
housekeeping genes are expressed in all tissue compartments and 
cell types, they can be used for quality control and normalization 
of NGS data [15]. In addition, housekeeping genes may drive the 
expression of fusion genes such as VIT-ALK in lung adenocarcino-
ma [16,17]. Multiple panels for thyroid molecular analysis have 
been developed [9]. Among them, ThyroSeq, a DNA- and RNA-
based NGS assay including 112 genes, is the most commonly used 
panel across the world; it can detect more than 100 genetic alter-
ations, including major gene mutations, fusions, and gene expres-
sion alterations [18]. This panel provides high accuracy for detect-
ing all common types of thyroid cancer and parathyroid lesions 
using a fine-needle aspiration sample. However, no extant panels 
cover all clinically important gene fusions in thyroid cancer. 

In this study, we aimed to develop a custom RNA-based NGS 
panel to identify the important fusion events in thyroid cancer. In 
addition to the key fusions in thyroid cancer, uncommonly report-
ed fusions and fusion subtypes were also included in this panel. 

Methods 

Samples 
In this study, we used two standard materials: HD796 (Horizon 
Discovery, Cambridge, UK) as a fusion-positive control and 
HD783 (Horizon Discovery) as a fusion-negative control. HD796 
is a formalin-fixed paraffin-embedded (FFPE) tissue that contains 
the EML4-ALK, CCDC6-RET, SLC34A2-ROS1, TPM3-NTRK1, 
and ETV6-NTRK3 fusions. HD783 is an FFPE sample that does 
not contain those fusions. RNA was extracted from the FFPE sam-
ple using an FFPE Total RNA Miniprep System kit (Promega, 
Madison, WI, USA). The quality and quantity of RNA samples 
were determined using a NanoDrop 2000c spectrophotometer 
(Thermo Fisher Scientific, Waltham, MA, USA). 

Library preparation 
cDNAs were synthesized using a SuperScript VILO cDNA Synthe-
sis Kit (Thermo Fisher Scientific) and used for NGS library prepa-
ration. The libraries were manually constructed using our custom 
thyroid fusion panel, ThyChase. The amplicon library was pre-
pared with the Ion Plus Fragment Library Kit (Life Technologies, 
Waltham, MA, USA) and the Ion Xpress Barcode Adapters Kit 
(Life Technologies) according to the manufacturer’s instructions. 
In detail, 10 μL of cDNA was amplified in reaction mixtures of 59 
μL containing 45 μL of Platinum PCR SuperMix High Fidelity and 
4 μL of ThyChase panel. Polymerase chain reaction (PCR) was 
performed with a GeneAmp 9700 thermal cycler (Thermo Fisher 
Scientific) under the conditions of 95°C for 2 min followed by 35 
cycles of 95°C for 15 s, 58°C for 15 s, 68°C for 10 s, and a final hold 
at 4°C. Libraries were purified using 106 μL of AMPure XP Re-
agent (Beckman Coulter, Miami, FL, USA) on a magnetic stand 
(Thermo Fisher Scientific) and eluted with 25 μL of low tris-EDTA 
buffer. Then, adapter ligation and nick repairing were performed to 
make barcode sequencing adapters (Ion Xpress Barcode Adapters, 
Thermo Fisher Scientific). Finally, the libraries were quantified us-
ing quantitative PCR (qPCR; Ion Library Quantitation Kit, Ther-
mo Fisher Scientific) on a QuantStudio 12K Flex Real-Time PCR 
System qPCR machine (Thermo Fisher Scientific).  

Template preparation and NGS reaction  
Emulsion PCR, bead enrichment, and chip loading procedures 
were automatically performed on an Ion Chef instrument (Thermo 
Fisher Scientific) using Ion 510, 520, and 530 Kits (Thermo Fisher 
Scientific). A planned run was created for each chip within Ion Tor-
rent Suite Software v5.12.1 (Thermo Fisher Scientific) with the 
template size set at 200 bp. The NGS libraries were then sequenced 
on an Ion S5 XL sequencer (Thermo Fisher Scientific) [18]. 

Data analysis 
Raw sequence data were analyzed with the Torrent Suite (version 
5.12.1, Thermo Fisher Scientific). A custom reference genome 
was assembled to contain sequences of the 87 designed target fu-
sions and five housekeeping genes based on hg19. To call the 
mapped sequence data, we used Torrent Coverage Analysis (ver-
sion 5.12.0.0). More than five support reads were considered as 
fusion-positive. The identified fusions were then manually inspect-
ed in the Integrative Genomics Viewer (IGV, Broad Institute, 
Cambridge, MA, USA). The mean sequencing depth was 5,189 ×  
(range, 3,665 ×  to 6,729 × ) across the entire target region (Sup-
plementary Table 1). The dataset for the current study is available 
from the corresponding author upon reasonable request. 
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Limit of fusion detection and validation 
To determine the limit of detection (LOD) of fusions, we diluted 
the RNA extracted from the NCI-H2228 cell line (EML4-ALK fu-
sion-positive) by mixing it with the RNA extracted from the FTC-
133 cell line (EML4-ALK fusion-negative) from 100% to 0.5%. 
The RNAs were subjected to RNA sequencing using the Thy-
Chase panel. To verify the fusions identified by the ThyChase 
panel, we performed Sanger sequencing of the fusion amplicons. 

Results and Discussion 

Design of the RNA sequencing panel 
We designed an NGS panel named ThyChase containing 92 genes, 
targeting 87 gene fusion types and five housekeeping genes. The 
fusion targets were selected based on previous reports and the 
COSMIC database [7,8,19-64]. Of the 15 fusion targets, eight 
(RET, THADA, BRAF, ALK, FGFR2, NTRK1, NTRK3, and 
PPARG) are known to have multiple fusion partners, while the oth-

Table 1. The fusion genes and their fusion partners contained in the panel

Fusion gene Partner gene(s) Reference
THADA IGF2BP3, LOC389473, LOC100505678, TRA2A [5,19,46,47,54]
RET CCDC6, ERC1, FKBP15, GOLGA5, HOOK3, KIAA1217, KTN1, NCOA4, PCM1, PRKAR1A, TRIM24, TRIM33, TRIM27,  

SPECC1L, TBL1XR1, AKAP13, DLG5, SQSTM1, CCDC186, AFAP1L2, PPFIBP2, KIF5B,
[7,20-39,44,46,54]

BRAF AKAP9, AGK, LMO7, BCL2L11, CCNY, FAM114A2, OSBPL1A, OSBPL9, MACF1, POR, SND1, MKRN1, ZC3HAV1, PICALM, 
NFYA, AP3B1

[23,40-47,54]

ALK STRN, EML4, GFPT1, GTF2IRD1, CCDC149, [23,48-53]
FGFR2 WARS, KIAA1598, OFD1, VCL [46,47,59]
NTRK1 IRF2BP2, TFG, TPM3, TPR, SQSTM1, SSBP2 [46,47,54-58]
NTRK3 ETV6, RBPMS, SQSTM1, EML4 [41,47,54,60]
PPARG CREB3L2, PAX8 [8,41,61,62]
UACA LTK [47]
MET TFG [23]
SS18 SLC5A11 [63]
RNF213 SLC26A11 [46]
ROS1 CCDC30 [64]
RAF1 AGGF1 [23]
EZR ERBB4 [46]
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Fig. 1. Subtypes of EML4-ALK fusion.
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er seven are known to have a single fusion partner. Details of the fu-
sion genes and their fusion partners are listed in Table 1. In some 
fusions, there are different fusion breakpoints, although the fusion 
partners are the same. For example, this panel can detect four fusion 
breakpoints of EML4-ALK fusion (exon 13 of EML4 - exon 20 of 

ALK, exon 20 of EML4 - exon 20 of ALK, exon 6 of EML4 - exon 
17 of ALK, and exon 6 of EML4 - exon 20 of ALK) (Fig. 1). In total, 
27 fusion subtypes can be discriminated with this panel (Supple-
mentary Table 2). In addition to gene fusion, ThyChase includes 
five housekeeping genes for quality control of the experimental 

Fig. 2. Technical validation of RNA sequencing and detection of gene fusion. (A) RNA expression levels of the five housekeeping genes. 
We applied six different amplification conditions: two different amounts of template RNA were applied (10 ng and 100 ng) with three 
different primer concentrations (62.5, 125, and 187.5 nM). These six combinations are represented as different colors in the plot. The X-axis 
represents the gene name; the Y-axis represents read counts. (B) Identification of the fusions (EML4-ALK, CCDC6-RET, and TPM3-NTRK1) 
from the HD796 and HD783 RNAs. The Y-axis represents read counts.

Fig. 3. Identification of EML4-ALK fusion from the NCI-H2228 cell line and limits of detection (LOD). (A) Identification of the EML4-ALK 
fusion. All five housekeeping genes showed >102 read counts. (B) To determine the LOD of the fusion, we diluted the NCI-H2228 RNA from 
100% to 0.5% and performed RNA sequencing.
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procedures of RNA sequencing and analysis: CHMP2A, JUN, 
FBXW2, MET, and PUM1. 

Validation and optimization of the panel 
We used HD796 RNA as a fusion-positive standard material. 
HD796 contains EML4-ALK, CCDC6-RET, TPM3-NTRK1, 
SLC34A2-ROS1, and ETV6-NTRK3 gene fusions [65]. Of the five 
fusions, three (EML4-ALK, CCDC6-RET, and TPM3-NTRK1) 
were included in our ThyChase panel. The ETV6-NTRK3 gene 
fusion was also included in ThyChase; however, the ETV6-
NTRK3 fusion breakpoint of the HD796 RNA was different from 
the fusion breakpoint covered by ThyChase. Therefore, we target-
ed the three gene fusions for optimization and validation of Thy-
Chase. HD783 RNA was used as a fusion-negative control that did 
not harbor any of the above-mentioned gene fusions [65].  

Before detecting the gene fusions, as technical validation, we 

checked whether the RNA expression of the housekeeping genes 
included in this panel could be stably detected under various ex-
perimental conditions with the HD796 RNA. As expected, ex-
pression of the housekeeping genes was stably detected and the 
read counts mapped to each target gene were above 102, suggesting 
that our custom thyroid gene fusion panel is suitable for RNA se-
quencing (Fig. 2A). In parallel, to optimize the library preparation, 
we applied six different amplification conditions: two different 
amounts of template RNA were applied (10 ng and 100 ng) with 
three different primer concentrations (62.5, 125, and 187.5 nM). 
All five genes showed similar levels of the sequencing read counts 
in the six conditions (Fig. 2A). Therefore, we set the reaction con-
dition as 10 ng of template RNA and 187.5 nM of primers. Re-
garding the quality control of ThaChase, we set > 102 read counts 
for every housekeeping gene as a threshold of a reliable RNA se-
quencing reaction, meaning that we could interpret the gene fu-

Fig. 4. Integrative Genomics Viewer plot of the fusion breakpoints. (A) CCDC6-RET fusion breakpoint (exon 1 of CCDC6 and exon 12 of RET). 
(B) EML4-ALK fusion breakpoint (exon 13 of EML4 and exon 20 of ALK). (C) TPM3-NTRK1 fusion breakpoint (exon 7 of TPM3 and exon 10 of 
NTRK1). (4) EML4-ALK fusion breakpoint (exon 6 of EML4 and exon 20 of ALK).
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Fig. 5. Confirmation of the fusion breakpoints by Sanger sequencing. Vertical red lines represent fusion breakpoints.

sions identified by this panel sequencing analysis as true when the 
read counts of all housekeeping genes were above 102. 

Detection of gene fusions 
We next examined the three (EML4-ALK, CCDC6-RET, and 
TPM3-NTRK1) fusions in the HD796 reference RNA. RNA pan-
el sequencing was performed based on the optimized reaction 
conditions described above. As expected, all three fusion targets 
were successfully detected in the HD796 RNA, whereas they were 
not identified in the HD783 RNA (Fig. 2B). When we checked 
the read count of the housekeeping genes, all the target genes had 
> 102 read counts (Supplementary Fig. 1), suggesting that the fu-
sions detected by our thyroid gene fusion panel were reliable. 
These data also support the specificity of the fusions detected by 
our ThyChase panel. 

Next, we applied ThyChase to cell lines. For this, we used the 
RNA extracted from a lung cancer cell line (NCI-H2228), which 
is known to harbor the EML4-ALK fusion [66]. As expected, the 

EML4-ALK fusion was successfully detected in the NCI-H2228 
cell line (Fig. 3A). Through this experiment, we confirmed that 
the ThyChase panel could identify the target fusions from cancer 
cell lines in addition to the fusion-positive reference RNA. This re-
sult suggests that our system is applicable for cancer samples. 

To determine the LOD of the ThyChase panel for calling fu-
sions with high confidence, the lowest tumor percent with 
high-confidence detection was examined. To achieve this, we ana-
lyzed NCI-H2228 (EML4-ALK fusion-positive) samples that 
were diluted with FTC-133 (EML4-ALK fusion-negative) by dif-
ferent dilution factors (100% to 0.5%). As a result, the read count 
of EML4-ALK fusion decreased in a dose-dependent manner from 
100% to 0.5%, and we could identify fusion-supporting reads from 
the 0.5% fusion-positive tumor cellular fraction (Fig. 3B). Howev-
er, the lowest percentage satisfying our high- confidence fusion 
calling criterion ( > 5 fusion-supporting reads) was a > 1% fu-
sion-positive tumor cellular fraction. Therefore, a 1% tumor frac-
tion was determined to be the LOD of our assay. 

EML4 exon 13

CCDC6 exon 1

TPM3 exon 7

ALK exon 20

RET exon 12

NTRK1 exon 10
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Verification of fusion breakpoints 
To verify the three fusions identified by our ThyChase panel from 
HD796 RNA, the RNA sequencing results were visualized using 
IGV. IGV showed the CCDC6-RET fusion breakpoint where exon 
1 of CCDC6 was fused with exon 12 of RET (Fig. 4A). In the 
EML4-ALK fusion, exon 13 of EML4 was fused with exon 20 of 
ALK (Fig. 4B). In the breakpoint of TPM3-NTRK1 fusion, exon 7 
of TPM3 and exon 10 of NTRK1 were fused (Fig. 4C). In addi-
tion, we confirmed the fusion subtype of EML4-ALK fusion, 
which was identified from NCI-H2228, where exon 6 of EML4 
was fused with exon 20 of ALK (Fig. 4D). 

As a final confirmation of the fusions and their breakpoints, we 
performed Sanger sequencing of the amplicons of the fusions from 
HD796. Sanger sequencing revealed the fusion breakpoint sequences 
of the EML4-ALK (exon 13 of EML4 and exon 20 of ALK), CCDC6-
RET (exon 1 of CCDC6 and exon 12 of RET), and TPM3-NTRK1 
(exon 7 of TPM3 and exon 10 of NTRK1) fusions (Fig. 5). 

In conclusion, we developed an RNA-based sequencing panel 
focused on identifying fusions in thyroid cancer. The ThyChase 
panel was designed to detect 87 gene fusion types. As quality con-
trol for RNA sequencing, five housekeeping genes were included 
in this panel. When we applied this panel for the analysis of fu-
sions contained in the reference RNA (HD796), the three ex-
pected fusions (EML4-ALK, CCDC6-RET, and TPM3-NTRK1) 
were successfully identified. We also confirmed that this fu-
sion-focused panel could identify the target fusions from a cancer 
cell line in addition to the fusion-positive reference RNA. In 
terms of the LOD, this panel could detect the target fusions from 
a tumor sample containing a 1% fusion-positive tumor cellular 
fraction. We finally verified the fusion breakpoint sequences of 
the three fusions from HD796. Although we could not verify all 
of the designed fusions in this study due to limitations of the fu-
sion reference materials, all the data in this study indicate that the 
ThyChase panel can reliably identify the key fusions in thyroid 
cancer. Taken together, the ThyChase panel would be useful to 
identify gene fusions in the clinical field. 
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