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Metabolic adaptation is not a major barrier to weight-loss maintenance
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ABSTRACT
Background: The existence of metabolic adaptation, at the level
of resting metabolic rate (RMR), remains highly controversial,
likely due to lack of standardization of participants’ energy balance.
Moreover, its role as a driver of relapse remains unproven.
Objective: The main aim was to determine if metabolic adaptation
at the level of RMR was present after weight loss and at 1- and 2-
y follow-up, with measurements taken under condition of weight
stability. A secondary aim was to investigate race differences in
metabolic adaptation after weight loss and if this phenomenon was
associated with weight regain.
Methods: A total of 171 overweight women [BMI (kg/m2):
28.3 ± 1.3; age: 35.2 ± 6.3 y; 88 whites and 83 blacks] enrolled in a
weight-loss program to achieve a BMI <25, and were followed for 2
y. Body weight and composition (4-compartment model) and RMR
(indirect calorimetry) were measured after 4 wk of weight stability at
baseline, after weight loss and at 1 and 2 y. Metabolic adaptation was
defined as a significantly lower measured compared with predicted
RMR (from own regression model).
Results: Participants lost, on average, 12 ± 2.6 kg and regained
52% ± 38% and 89% ± 54% of their initial weight lost at 1 and 2 y
follow-up, respectively. Metabolic adaptation was found after weight
loss (−54 ± 105 kcal/d; P < 0.001), with no difference between races
and was positively correlated with fat-mass loss, but not with weight
regain, overall. In a subset of women (n = 46) with data at all time
points, metabolic adaptation was present after weight loss, but not at
1- or 2-y follow-up (−43 ± 119, P = 0.019; −18 ± 134, P = 0.380;
and − 19 ± 166, P = 0.438 kcal/day respectively).
Conclusions: In overweight women, metabolic adaptation at the
level of RMR is minimal when measurements are taken under
conditions of weight stability and does not predict weight regain up
to 2 years follow-up. The JULIET study is registered at https://clin
icaltrials.gov/ct2/show/NCT00067873 as NCT00067873. Am J
Clin Nutr 2020;112:558–565.
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Introduction
The reduced obese state is associated with a significantly

reduced total energy expenditure (TEE), attributable to both a
reduction in resting and nonresting energy expenditure (EE) (1).
Even though this reduction is likely to be mainly driven by the
loss of metabolically active tissue (2–6), some have reported a
reduction in TEE and/or its components (resting and nonresting
EE) in excess of what would be predicted, given the measured
losses in both fat mass (FM) and fat-free mass (FFM) (1, 7–
10), a mechanism known as metabolic adaptation or adaptive
thermogenesis.

This conservation of energy (or “hibernation mode”), activated
in response to weight loss, has been one of the most controversial
issues in the obesity field, not only in terms of whether it exists but
also its clinical relevance if it exists. It has been suggested to be a
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potential explanatory mechanism for resistance to weight loss and
an important driver of long-term weight regain (relapse) (11–15).
Some have argued that the claims around metabolic adaptation
are exaggerated (16, 17) and others shown that when weight-
stable obesity-reduced individuals are compared with BMI-
matched controls (2, 4, 18, 19), or against a prediction equation
(20), no evidence of metabolic adaptation at the level of resting
metabolic rate (RMR) exists. Even though it has been argued that
discrepancies among studies derive from lack of accuracy and
precision in the measurement of EE and body composition (11,
12), we hypothesize here that differences among studies derive
from inconsistencies related to the status of energy balance (EB)
and/or weight stability of the participants when measurements
are taken. The requirement of EB status is likely to be important
not only for baseline measurements, when regression models
are derived from own data, but also subsequent post–weight-loss
data, when metabolic adaptation is investigated, as the difference
between measured and predicted values.

Obesity rates are higher in blacks than in whites (21),
and black women consistently lose less weight in response
to lifestyle interventions (22–24). Differences in metabolic
adaptation between races could contribute to this and at least 1
study has shown that the reduction in RMR observed with weight
loss is larger in blacks than in whites, after adjusting for body-
composition changes (25). However, the great majority of the
studies on metabolic adaptation have been performed in whites.

Therefore, the primary aim of this analysis was to determine
whether metabolic adaptation, at the level of RMR, exists
in a population of premenopausal overweight women, with
measurements taken in conditions of weight stability (4 wk)
at baseline, after weight loss, and also at 1- and 2-y follow-
up. Secondary aims were to look at race differences (whites
compared with blacks) in metabolic adaptation and to investigate
if metabolic adaptation was correlated with weight regain at 1- or
2-y follow up.

Methods

Participants

Participants in this analysis were premenopausal overweight
women. They were 20–41 y of age, sedentary (no more than
1 time/wk of regular exercise), had normal glucose tolerance
(2-h glucose ≤140 mg/dL following 75-g oral dose), family
history of overweight/obesity in ≥1 first-degree relative, and no
use of medications that affect body composition or metabolism.
All women were nonsmokers and reported a regular menstrual
cycle. Race (white or black) was self-reported (participants were
considered white if they answered that all 4 grandparents were
white, and black if they reported all 4 grandparents to be black).
The 2 studies included in this retrospective analysis were both
approved by the Institutional Review Board for Human Use at
the University of Alabama at Birmingham (UAB). All women
provided informed consent before participating in the study.

Study design

Participants included in this retrospective analysis were from
2 different studies [1: energy expenditure in postobese black and
white women (ROMEO); 2: exercise training in obesity-prone

black and white women (JULIET)], performed at the Department
of Nutritional Sciences at UAB, with exactly the same sequence
of events (see flowchart, Supplemental Figure 1) and the same
methodology and both aiming to identify metabolic predictors
of weight regain. In the ROMEO study, all participants achieved
weight loss with diet alone (single-arm longitudinal study with
repeated measurements). In the JULIET study, participants were
randomly assigned to 1 of 3 groups: 1) weight loss with aerobic
exercise training 3 times/wk, 2) weight loss with resistance
exercise training 3 times/wk, or 3) weight loss with diet alone
(same diet as in ROMEO). Of note, no significant differences in
metabolic adaptation were seen between groups. During weight
loss, all participants were provided an 800-kcal diet until reaching
a BMI (kg/m2) <25. Food was provided (20–22% fat, 20–
22% protein, and 56–58% carbohydrate) by the General Clinical
Research Center (GCRC) kitchen. During the first follow-up year,
participants were encouraged, but not mandated, to attend regular
support-group meetings (bimonthly dietary education classes
aimed at weight maintenance for the first 6 mo, followed by
monthly meetings for months 6–12) and to continue with their
exercise program, if applicable. For detailed information about
the ROMEO and JULIET studies, see Weinsier et al. (3) and
Hunter et al. (26).

Testing was done, after a 4-wk weight-stabilization period
(aiming to maintain body weight within a 2.5-kg range), at
baseline, after weight loss, and at 1- and 2-y follow up. Testing
was done 30 ± 2 d after the end of the weight-loss phase. During
the 4-wk weight-stabilization period, participants were weighed
3 times/wk the first 2 wk while consuming their own food and
weighed 5 times/wk with food provided by the GCRC the last
2 wk. Variation in body weight during the last 2 wk of the
stabilization period, after weight loss, was −1.0 ± 1.4 kg. All
testing was conducted in the follicular phase of the menstrual
cycle during a 4-d GCRC inpatient stay (to ensure that physical
activity and diet were standardized). Testing was done in a fasted
state in the morning after spending the night in the GCRC.

Data collection

The following measurements were conducted at baseline, after
weight loss, and at 1- and 2-y follow-up, after a 4-wk weight-
stabilization period (at all time points).

Body weight and composition.

Body composition was determined by using the 4-
compartment model (4CM) (27), which includes in the analysis
bone mineral content, total body water, and total body density
to take into consideration interindividual variations in body
density and the fact that black women generally have a greater
bone mineral content than do white women (28). The 4CM
includes the following density assumptions: 0.9 kg/L for fat,
0.99 kg/L for water, 3.042 kg/L for total mineral (osseous and
cellular), and 1.34 kg/L for the unmeasured fraction of the
body composed of protein and glycogen. The model is used
to calculate the percentage of FM from independent measures
of total body density, total body water, and bone mineral
content. Total body density was determined by whole-body air-
displacement plethysmography using the BOD POD version 1.69
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TABLE 1 Baseline characteristics of the study participants1

Characteristics All (n = 171) Whites (n = 88) Blacks (n = 83)

Age, y 35.2 (34.3, 36.2) 35.5 (34.2, 36.9) 35.0 (33.6, 36.3)
Anthropometrics

BMI, kg/m2 28.4 (28.2, 28.6 28.5 (28.2, 28.7) 28.4 (28.0, 28.7)
Weight, kg 77.6 (76.5, 78.7) 78.5 (76.9, 80.2) 76.6 (75.2, 78.1)
Height, cm 165.2 (164.2, 166.2) 166.0 (164.6, 167.4) 164.4 (162.9, 165.8)
Fat mass kg 32. 3 (31.5, 33.1) 33.3 (32.1, 34.5)∗∗ 31.2 (30.3, 32.2)∗∗
Fat mass % 41.5 (40.9, 42.1) 42.2 (41.2, 43.2)∗ 40.7 (39.8, 41.6)∗
Fat-free mass, kg 45.3 (44.7, 46.0) 45.2 (44.3, 46.2) 45.4 (44.5, 46.3)
Fat-free mass, % 58.5 (57.9, 59.2) 57.8 (56.8, 58.8) 59.3 (58.5, 60.2)

1Values are means (95% CIs). Differences between races were assessed with independent-samples t tests. ∗,∗∗Different between whites and blacks:
∗P = 0.022, ∗∗P = 0.01.

(Body Composition System; Life Measurement), as described
previously (29). Each participant was tested in a 1-piece swimsuit
and Lycra swim cap. Same-day repeat measures of body density
by the BOD POD in our laboratory had an intraclass correlation
of r = 0.98 and SEE of 0.00365 (g/cm3). The room that housed
the BOD POD was well ventilated between tests. Body weight
was measured with an electronic scale while the subjects were
in a fasting state and immediately after they had voided in the
morning. Total body water was determined by isotope dilution
with the use of deuterium and 18O-labeled water as previously
described (30). Bone mineral content was determined by DXA
(DPX-L; Lunar Corp) with the use of software version 1.5g
(Lunar Corp).

RMR.

Three consecutive mornings after an overnight stay in the
GCRC and 12-h fast, RMR was measured immediately after
awakening between 06:00 and 07:00 h. Subjects were not allowed
to sleep and measurements were made in a quiet, softly lit,
well-ventilated room. Temperature was maintained between 22◦

and 24◦C. Subjects were allowed to use a cover if desired.
Measurements were made supine on a comfortable bed, with
the head enclosed in a plexiglass canopy. After resting for 15
min, RMR was measured for 30 min with a computerized, open-
circuit, indirect calorimetry system with a ventilated canopy
(Delta Trac II; Sensor Medics). The last 20 min of measurement
was used for analysis. Oxygen uptake (VO2) and carbon dioxide
production (CO2) were measured continuously, and values were
averaged at 1-min intervals. The CV for the repeat RMR was
<4%.

Statistical analysis

Statistical analysis was performed with SPSS version 22
(SPSS, Inc.). Data are presented as means ± SDs, and
statistical significance was set at P < 0.05. Changes in body
weight/composition and RMR over time were assessed with
a repeated-measures ANOVA, using Bonferroni correction for
multiple comparisons. The presence of metabolic adaptation was
tested by paired t tests, comparing measured RMR (RMRm) and
predicted RMR (RMRp) at the same time points. Two equations
to predict RMR were derived from baseline data of all 171
participants (participants who at least finished the weight-loss

intervention and had body-composition data from 4CM available
at baseline) who were part of this analysis (88 whites), aged
35.2 ± 6.3 y and with a BMI of 28.3 ± 1.3. One equation used
body composition derived from the 4CM and the other from
DXA.

Model 1 (derived from 4CM): RMRp (kcal/d) = 542.279 –
[3.726 × age (y)] − {[114.519 × race (0 for whites, 1 for blacks]
+ [2.930 × FM (kg)] + [20.686 × FFM (kg)]}

R2 = 0.40 ; P < 0.001 (1)

Model 2 (derived from DXA): RMRp (kcal/d) = 520.571 –
[2.894 × age (y)] − {[110.519 × race (0 for whites, 1 for blacks)]
+ [2.704 × FM (kg)] + [22.825 × FFM (kg)]}

R2 = 0.40 ; P < 0.001 (2)

This small R2 is due to the study design of the parent studies
in which a very narrow range of BMIs and ages and only women
were included.

Given that no differences were found in study outcomes
between the 2 regression models, results are only given for
data derived from model 1. Duration of weight loss was not a
significant predictor in any of the models and only increased R2

by 2%. Moreover, its inclusion did not change the main outcomes
of the analysis. For those reasons, this variable was not included
in the prediction models.

Correlation analysis was performed between metabolic adap-
tation after weight loss, weight, FM, and FFM loss (baseline after
weight loss) and weight regain at 1 and 2 y (as a % of the initial
weight lost), using Pearson or Spearman correlation coefficients,
as appropriate. Differences in metabolic adaptation between races
were investigated by independent-samples t test.

Results
Baseline characteristics of the study participants can be seen

in Table 1. A total of 171 women (88 whites) with a mean BMI
of 28.3 ± 1.3 and a mean age of 35.2 ± 6.3 y were included in
the present analysis. No significant differences were seen in age,
weight, height or BMI between races; however, FM (both in %
and kilograms) was significantly higher in whites compared with
blacks (P = 0.01 and P = 0.022, respectively).
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TABLE 2 Correlation analysis between metabolic adaptation, weight loss,
and weight regain at 1 and 2 y1

r P n

Weight loss
All 0.096 0.235 156

Whites − 0.043 0.709 79
Blacks 0.314 0.005 77

FM loss
All 0.218 0.006 156

Whites 0.223 0.049 79
Blacks 0.210 0.067 80

FFM loss
All − 0.180 0.025 156

Whites − 0.336 0.002 79
Blacks − 0.033 0.778 77

Weight regain at 1 y
All 0.146 0.096 131

Whites 0.019 0.886 61
Blacks 0.258 0.031 70

Weight regain at 2 y
All 0.085 0.457 79

Whites − 0.146 0.402 35
Blacks 0.278 0.067 44

1r indicates correlation coefficients from Spearmen correlation.

Average weight loss was −12.2 ± 2.6 kg (−15.7% ± 2.9%),
achieved over an average of 153 ± 53 d. Whites lost significantly
more weight compared blacks in absolute terms (−12.7 ± 2.8
vs −11.8 ± 2.4 kg; P = 0.045), but not when weight loss
was expressed as a percentage of the initial body weight
(−16.1% ± 3.1% vs −15.3% ± 2.7%; P = 0.110). Weight
regain was, on average, 51.5% ± 37.6% at 1 y (n = 131),
with no statistically significant differences between whites and
blacks (47.2% ± 36.2% vs 55.2% ± 38.6%; P = 0.223)
and 88.8% ± 54.4% at 2-y follow-up (n = 79), with no
statistically significant differences between whites and blacks
(75.9% ± 49.1% vs 95.4% ± 56.8%; P = 0.115).

RMRm was significantly lower than RMRp after weight loss in
all participants (n = 156) [whites (n = 79) and blacks (n = 77):
1291 ± 136 vs 1345 ± 103, 1338 ± 135 vs 1389 ± 93, and
1243 ± 121 vs 1301 ± 93 kcal/d, respectively; P < 0.001 for
all], resulting in a metabolic adaptation of −54 ± 105 kcal/d
and −52 ± 115 and −57 ± 94 kcal/d, respectively, with no
significant differences between whites and blacks. Metabolic
adaptation after weight loss was not correlated with weight loss
or weight regain at 1 or 2 y of follow-up but was positively
correlated with FM loss and negatively correlated with FFM loss,
in all participants and whites. In blacks, metabolic adaptation was
positively correlated with weight loss and FM loss (only trend,
P = 0.067) and negatively correlated with weight regain at both
1 and 2 y (only trend, P = 0.067) (Table 2 and Figure 1).

Anthropometrics, RMRm, and RMRp, as well as metabolic
adaptation (RMRm – RMRp), over time in those women with
data at all points (n = 46) can be seen in Tables 3 and 4. On
average, women in this subsample had an average weight loss of
12 ± 3 kg and a weight regain of 52% ± 36% and 83% ± 52%
at 1- and 2-y follow-up, respectively. There was a significant
metabolic adaptation after weight loss in all participants and
blacks [−43 ± 119 kcal/d (P = 0.019) and −50 ± 113 kcal/d
(P = 0.047), respectively] but not in whites (−35 ± 126 kcal/d;

Weight loss (kg)

-24 -22 -20 -18 -16 -14 -12 -10 -8 -6

R
M

R
m

-R
M

R
p

 (
kc

al
/d

ay
)

-400

-300

-200

-100

0

100

200

300

400

FFM loss (kg)

-10 -8 -6 -4 -2 0 2 4 6 8 10

R
M

R
m

-R
M

R
p

 (
kc

al
/d

ay
)

-400

-300

-200

-100

0

100

200

300

400

FM loss (kg)
-25 -20 -15 -10 -5 0

R
M

R
m

-R
M

R
p

 (
kc

al
/d

ay
)

-400

-300

-200

-100

0

100

200

300

400

All, R
Whites, R2

Blacks, R2=0.098, P=0.005 

All, R2

Whites, R2

Blacks, R2=0.044, P=0.067

All, R2

Whites, R2

Blacks, R2=0.001, P=0.778 

A

B

C 

Weight Regain 1 y (%)

-50 0 50 100 150 200

R
M

R
m

-R
M

R
p

 (
kc

al
/d

ay
)

-300

-200

-100

0

100

200

300

Weight Regain 2 y (%)

-100 -50 0 50 100 150 200 250

R
M

R
m

-R
M

R
p

 (
kc

al
/d

ay
)

-300

-200

-100

0

100

200

300

All, R2

EA, R2

AA, R2=0.066, P=0.031

All, R2

EA, R2

AA, R2=0.078, P=0.067 

D 

E 

FIGURE 1 Correlation between metabolic adaptation at the level of
resting metabolic rate (RMRm – RMRp) and weight loss (A), FM loss (B),
and FFM loss (C), weight regain (%) at 1 y and 2 y (D, E) in all participants
(n = 156), whites (open circles; n = 79), and blacks (black filled circles;
n = 77). A negative value in the y axis is indicative of metabolic adaptation. A
greater metabolic adaptation was associated with more weight loss in blacks;
more FM loss in all women, whites, and blacks (only trend); less FFM loss
in all women and whites; and less weight regain in blacks (significant at 1 y,
trend at 2 y). A regression line is shown when correlations were significant in
white women. FFM, fat-free mass; FM, fat mass; RMRm, resting metabolic
rate measured; RMRp, resting metabolic rate predicted.
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TABLE 3 Anthropometrics and RMR data over time1

P value2

Baseline
(n = 46/23)

After WL
(n = 46/23)

1 y
(n = 46/23)

2 y
(n = 46/23)

Baseline vs
WL

Baseline vs
1 y

Baseline vs
2 y

Weight, kg
All 78.0 ± 7.0 65.7 ± 6.1 71.7 ± 8.2 75.1 ± 9.3 <0.001 <0.001 0.026

Whites 80.1 ± 7.9 66.7 ± 7.0 73.3 ± 8.9 75.4 ± 9.5 <0.001 <0.001 0.023
Blacks 76.0 ± 6.3 64.7 ± 5.6 70.3 ± 7.4 74.8 ± 9.2 <0.001 <0.001 1.000

FM, kg
All 31.9 ± 5.2 20.4 ± 4.1 25.8 ± 6.0 28.9 ± 7.2 <0.001 <0.001 0.009

Whites 33.7 ± 6.2 22.2 ± 4.3 27.7 ± 6.4 30.1 ± 7.5 <0.001 0.001 0.171
Blacks 30.2 ± 3.4 18.7 ± 3.2 24.0 ± 5.2 27.7 ± 6.8 <0.001 <0.001 0.128

FFM, kg
All 46.1 ± 4.1 45.3 ± 4.3 46.0 ± 4.2 46.3 ± 4.1 0.257 1.000 0.999

Whites 46.4 ± 4.3 44.5 ± 4.1 45.6 ± 4.1 45.3 ± 4.0 0.034 0.820 0.835
Blacks 45.8 ± 3.9 46.0 ± 4.4 46.3 ± 4.3 47.2 ± 4.1 0.999 0.968 0.005

RMRm, kcal/d
All 1392 ± 137 1307 ± 152 1358 ± 166 1369 ± 193 <0.001 0.465 0.999

Whites 1452 ± 133 1353 ± 145 1401 ± 164 1422 ± 200 0.024 0.520 0.999
Blacks 1334 ± 117 1261 ± 149 1316 ± 159 1316 ± 174 0.040 0.999 0.999

RMRp, kcal/d
All 1398 ± 109 1348 ± 104 1374 ± 109 1386 ± 106 <0.001 0.001 0.604

Whites 1461 ± 93 1388 ± 97 1424 ± 95 1422 ± 98 <0.001 0.002 0.029
Blacks 1338 ± 87 1309 ± 97 1326 ± 10 1351 ± 103 0.030 0.844 0.812

1Values are means ± SDs. n in all/whites. Changes over time were analyzed with a repeated measures ANOVA. FFM, fat-free mass; FM, fat mass;
RMR, resting metabolic rate; RMRm, RMR measured; RMRp, RMR predicted; WL, weight loss.

2P values for post hoc comparisons between time points after Bonferroni adjustment.

P = 0.187). No metabolic adaptation was seen at 1- and 2-y
follow-up in all participants, whites or blacks.

In a subset of women with data at all time points (n = 48),
metabolic adaptation was present after weight loss, but not at 1-
and 2-y follow-up [−64 ± 106 kcal/d (P < 0.001), −26 ± 132
(P = 0.076), and −20 ± 155 kcal/d (P = 0.358), respectively].

Discussion
The present findings represent the first longitudinal study

examining metabolic adaptation, with measurements taken under
conditions of weight stability. After a 12-kg (16%) weight loss,
an RMR metabolic adaptation of ∼50–60 kcal/d below predicted
levels was found regardless of race. However, metabolic adapta-
tion was not sustained at 1 or 2 y of follow-up (average weight
regain: 52% and 83%, respectively).

Even though we did not confirm our hypothesis that metabolic
adaptation would be absent under conditions of weight stability,

metabolic adaptation was minor (50 kcal/d; 3–4%) after weight
loss. Two reasons may explain this phenomenon. The first
is that 4 wk of weight stabilization may not be enough for
metabolic adaptation to disappear. The second, and likely more
plausible, explanation is that our participants, despite being
weight stable, were probably in negative EB when measurements
were performed after weight loss. Weight loss in the present
study was induced by an 800-kcal/d diet, which, due to its
highly restrictive nature (112–116 g carbohydrate/d), was most
likely a ketogenic diet. Even though measures of ketosis are not
available, studies using similar diets have reported participants
to be ketotic (31, 32). The physiological state of ketosis is
accompanied by partial glycogen depletion and, with it, water
loss, while refeeding is followed by glycogen replenishment
and, with it, increased water content. It has been estimated that
glycogen stores are, on average, 400–500 g (33, 34), with 3–4
g of water bound to each gram of glycogen (33). This means
that an increase in body weight of ∼1 kg, due to increased

TABLE 4 Metabolic adaptation (RMRm – RMRp) over time1

P value

Baseline
(n = 46/23)

After WL
(n = 46/23)

1 y
(n = 46/23)

2 y
(n = 46/23) Baseline

After
WL 1 y 2 y

RMRm–RMRp, kcal/d
All − 7 ± 102 − 43 ± 119 − 18 ± 134 − 19 ± 166 0.643 0.019 0.380 0.438

Whites − 9 ± 104 − 35 ± 126 − 23 ± 134 0.2 ± 198 0.689 0.187 0.416 0.997
Blacks − 5 ± 103 − 50 ± 113 − 12 ± 137 − 38 ± 127 0.583 0.04b 0.681 0.161

1Values are means ± SDs. n in all/whites. RMR, resting metabolic rate; RMRm, RMR measured; RMRp, RMR predicted; WL, weight loss.
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water content, should be expected when participants come out of
ketosis.

The aspects discussed previously are of paramount relevance
as they are likely to explain the discrepancy in the literature
regarding the existence or not of metabolic adaptation. All the
studies reporting no metabolic adaptation at the level of RMR are
studies where weight-stable, reduced-obesity individuals were
compared with never-obese BMI-matched controls (2, 4, 18,
35) or against a regression model (20). In contrast, longitudinal
studies tend to find metabolic adaptation (1, 9, 36), likely because
measurements are taken under negative EB. For example, in
the landmark paper by Leibel and colleagues (1), even though
participants were weight stable for 2 wk, they were, most likely,
in negative EB as a 800-kcal/d ketogenic diet was used to induce
weight loss (as in the present study). Results from the “Biggest
Loser” study suffer from the same problem, as participants were
clearly in negative EB at the end of the 30-wk competition and,
even at 6-y follow up, there was a very large interindividual
variation in weight stability, with some participants gaining up
to 3 kg and some losing up to 3 kg over the 2 wk preceding RMR
measurement (9, 36).

If metabolic adaptation was part of a compensatory response
that tries to bring body weight back to its original state and,
therefore, a driver of weight regain, then it would be expected that
a larger metabolic adaptation was associated with more weight
regain long term. That is not the case, either in the present
analysis or in the available literature (9). In fact, the evidence
suggests metabolic adaptation to be a reflection of the magnitude
of weight loss: the larger the weight loss, the larger the metabolic
adaptation (9, 10, 36). This pattern was observed in the present
analysis among blacks, where a larger metabolic adaptation was
associated with greater weight loss and less weight regain. The
reason for this race difference is not clear, but differences in
the composition of FFM between whites and blacks may be a
possible source of confounding. The fact that a greater metabolic
adaptation is, in fact, associated with less weight regain, as shown
in blacks in the present analysis and also in the Biggest Loser
study at 6-y follow up, is likely to reflect the fact that the larger
the initial weight loss, the less the weight regain long term (r =
−0.270, P = 0.001, n = 143, and r = −0.283, P = 0.008, n = 87
at 1- and 2-y follow-up, respectively, in the present analysis). This
adds to the previously proposed idea that metabolic adaptation is
a mere reflection of the magnitude of weight loss, both in the short
and long term.

In line with the evidence previously discussed for RMR,
the existence of metabolic adaptation at the level of nonresting
EE after weight loss (due supposedly to increased exercise
efficiency) is also likely to be modulated by the EB status of the
participants when measurements are taken. As such, no metabolic
adaptation was found in nonresting EE (3, 37–39) following a
10- to 12-kg weight loss in overweight premenopausal women
when measurements were done in controlled conditions of
weight stability. Moreover, to our knowledge, no study has
ever reported increased exercise efficiency with weight loss to
be associated with long-term weight regain. In fact, improved
locomotion economy/efficiency may actually reduce the risk
of weight regain, as several studies have shown that exercise
training–induced increases in exercise economy are associated
with increased ease of locomotion (40–43), which, in turn, is

associated with increased participation in free-living physical
activity and reduced weight regain (44–48).

Therefore, the concept of metabolic adaptation as a major
driver of weight regain should be put to rest. Despite relapse
continuing to be the norm in obesity management (49–51), it is
time for the scientific community to accept that weight regain in
not an inevitability driven by strong metabolic adaptation at the
level of EE and to move on. If obesity is treated as what it is—a
“chronic relapsing disease” (52)—with patients receiving long-
term support, aiming at keeping a healthy lifestyle, then relapse
can be minimized or even prevented (53).

Our study has both strengths and limitations. The main
strength is its design, with data collected under conditions of
weight stability at all time points. This is important for 2 reasons:
first, because it quality-assured that our prediction model is based
on baseline data; second, because it allowed the measurement
of metabolic adaptation under conditions of weight stability.
Moreover, gold-standard procedures were used both for the
measurements of RMR (after a 4-d GCRC inpatient stay and
an overnight sleep, under controlled condition of feeding and
physical activity) and body composition (4CM). However, this
study also suffers from some limitations. First, it included a very
homogenous sample of premenopausal (20–41 y) overweight
women. This prevents the generalizability of our results to men,
other BMI groups, and older subjects. Second, this also explains
why our regression model had an R2 of only 40% (i.e., a truncated
range for both BMI and age and only women). Third, there was a
relative high dropout rate at 1- and 2-y follow-up and it is possible
that those who dropped out were significantly different from
those who completed the intervention. It has been shown that
participants who drop out during weight-loss studies tend to have
a higher baseline BMI and a younger age (54) and experience less
weight loss during the active weight-loss phase of the program
(55). Finally, our participants were likely in negative EB after
weight loss, despite being maintained under conditions of weight
stability for 4 wk, meaning that our estimates of metabolic
adaptation are probably exaggerated.

In conclusion, metabolic adaptation at the level of RMR
is minor when measurements are taken under weight stability
and is not sustained in the long term with weight regain.
More importantly, metabolic adaptation does not predict relapse
in the long term. Further research should explore alternative
mechanistic pathways that can explain weight regain, which
includes both physiological and behavioral aspects.
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