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Recurrent PTPRT/JAK2 mutations in lung
adenocarcinoma among African Americans
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Reducing or eliminating persistent disparities in lung cancer incidence and survival has been

challenging because our current understanding of lung cancer biology is derived primarily

from populations of European descent. Here we show results from a targeted sequencing

panel using NCI-MD Case Control Study patient samples and reveal a significantly higher

prevalence of PTPRT and JAK2 mutations in lung adenocarcinomas among African Americans

compared with European Americans. This increase in mutation frequency was validated with

independent WES data from the NCI-MD Case Control Study and TCGA. We find that

patients carrying these mutations have a concomitant increase in IL-6/STAT3 signaling and

miR-21 expression. Together, these findings suggest the identification of these potentially

actionable mutations could have clinical significance for targeted therapy and the enrollment

of minority populations in clinical trials.
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Lung cancer is the leading cause of cancer-related death in the
United States (U.S.) and the second most common form of
cancer diagnosed in both men and women1. Since public

health records began tracking differences in lung cancer incidence
and mortality by racial and ethnic groups in the U.S., disparities
between European Americans (EAs) and African Americans
(AAs) have been identified2,3. Specifically, lung cancer incidence
is higher in AAs, especially among men1. AAs also have the
highest mortality rate and the lowest 5-year survival rate com-
pared with other racial and ethnic groups1. The factors con-
tributing to this health disparity are multifactorial4. For example,
access to high quality health care is an important factor in lung
cancer outcomes. In terms of incidence, it is likely that tobacco
plays a role in the observed differences given that it is the leading
etiological exposure associated with the lung cancer develop-
ment4. However, AAs have a lower tobacco consumption overall
compared with EAs5 and data show that the difference in lung
cancer incidence persists at equal categories of cigarettes smoked
per day6. This suggests a divergence in the etiology of lung cancer
in the U.S. between racial and ethnic groups. As exposures are
tightly linked with tumor biology7, it is possible that such dif-
ferences in disease etiology could be reflected at the genomic level.

Our current understanding of lung cancer biology is primarily
derived from populations of European descent. Given the per-
sistent disparities that exist in lung cancer incidence and survival
between AAs and EAs, it is important to characterize tumor
biology across racial and ethnic groups. Large-scale genomic
studies have highlighted genetic heterogeneity in lung cancer8–10.
By identifying driver mutations, these studies have greatly con-
tributed to the development of targeted pharmacological drugs
for the treatment of cancer, and, through the ability to detect
circulating tumor DNA, are also being leveraged for early diag-
nostics11. To date, few studies have investigated the somatic
mutation landscape of lung cancer in AAs, and of those that have,
the studies often included a small panel of genes or focused on
hotspot mutations; others have focused on tumor tissue only12–15.
Here, we report two genes, PTPRT and JAK2, that are recurrently
mutated in lung adenocarcinoma (LUAD) among AAs.

Results
AAs have a complex lung cancer mutational landscape. We
conducted targeted exome sequencing of 129 tumor/adjacent
non-involved pairs of fresh-frozen tissue from self-reported AAs
(Supplementary Table 1) in the NCI-MD Case Control Study.
Admixture analysis was consistent with self-reported race for 98%
of the samples, comparable with The Cancer Genome Atlas
(TCGA16; Supplementary Data 1). Of the 564 genes examined
(Supplementary Data 2), 67 were not mutated in any of the
patients (Supplementary Data 3) and 13 patients did not have
mutations in the genes sequenced. We identified 4,136 somatic
single-nucleotide variants (SNVs) and indel events (Supplemen-
tary Data 4; median/patient= 24, range= 0–426; Fig. 1a; Sup-
plementary Data 4), reflecting the genetic heterogeneity of the
population. As expected, tumors from smokers had more muta-
tions than never smokers (average= 38, 37, and 5 for current,
former and never smokers, respectively). The median number of
mutations that passed the second filter, i.e., likely to alter protein
function, was 14 (range= 0–132; Supplementary Data 5). Roughly
a quarter (24%) of tumors did not harbor a mutation in the
Oncovar gene panel, which is consistent with the previous
observations8,10,17. It is possible that other somatic copy number-
based genomic events, rare driver mutations, or epigenomic
changes drive carcinogenesis in these tumors. Using a recent
definition for hypermutation (>10 somatic SNVs/megabase
(Mb))18, 59 samples were classified as hypermutated. The patient

with the highest mutation burden was a current smoker with 64
pack-years of tobacco smoke consumption, who presented with
adenocarcinoma. Known DNA repair genes—XRCC1, FANCA,
BRCA1, PARP1, and ERCC4—were mutated and a somatic
mutation signature consistent with defects in mismatch repair
(signature 20) were observed in hypermutated patients (Supple-
mentary Fig. 1). Mutations in mismatch repair genes have been
associated with a hypermutated phenotype. MSH2, MSH6, MLH1,
and PMS2 were included in the gene panel and only one of the
patients with a hypermutated tumor had a mutation, which was a
missense R638S mutation in MSH2.

As expected19, the most common nucleotide change was a C >
A transversion (Supplementary Fig. 2a). Each tumor somatic
profile was further contextualized in terms of known mutational
signatures20. Eleven dominant mutational signatures were
observed across AA lung cancers (Fig. 1b; Supplementary Data 6).
Consistent with previous work21, signature 4 was the main
signature observed in both LUAD and lung squamous cell
carcinoma (LUSC) tumors from AAs and associated with
smoking exposure (Fig. 1b). The APOBEC signatures 2 and 13
were also observed. Mutational signatures 3 (homologous
recombination deficiency), 18 (potentially due to reactive
oxygen-species-induced DNA damage)22, and 24 (which, like 4,
has a C > A bias, is associated with aflatoxin exposure; Fig. 1b;
Supplementary Data 6) were also observed in many of the AA
tumor samples. However, as this was a targeted gene panel, future
studies should conduct a more thorough study with whole-exome
sequencing (WES).

Consistent with published studies, we observed a complex
mutational landscape of lung cancer in AAs with considerable
heterogeneity in the somatic landscape between individuals and
little evidence for dominant driver genes (Supplementary Fig. 1c).
We confirmed genomic alterations previously identified in lung
cancer including TP53, which was the most mutated gene
(Fig. 1c).

AAs have high PTPRT and JAK2 mutation frequencies. As the
frequency of somatic mutations varies by histological subtype, we
report mutation frequencies for LUAD and LUSC separately.
Fifteen genes were significantly mutated in LUSC (Supplementary
Fig. 2b; FDR P < 0.1). For most of these genes, the mutation
frequency was comparable among AAs and EAs (Supplementary
Data 7). In LUAD, 18/54 samples (33%) did not have a sig-
nificantly recurrent mutation compared with 14/52 (27%) in
LUSC, suggesting that, as in EAs, a large proportion of genomic
drivers of lung cancer remain to be identified.

Eleven genes were significantly mutated in LUAD (Supple-
mentary Fig. 2c, d). A comparison of driver genes between AAs
and EAs (TCGA) shows that the global pattern of driver gene
mutation frequencies is generally similar between EAs and AAs
(Supplementary Data 7). However, STK11 and RB1 mutations
occurred in 19% and 11% of LUAD tumors among AAs,
respectively, which is higher than the frequency reported for EA
patients in TCGA9 (Supplementary Fig. 2c). TP53mutations were
slightly higher among AAs compared with EAs, consistent with
previous observations16.

We further found that the frequency of mutations in PTPRT
and JAK2 are higher in AAs compared with EAs (Fig. 2a). Our
data indicate that 13/54 (24%) of LUAD patients have mutations
in PTPRT and that 4/54 (7.4%) have mutations in JAK2,
compared with 8% and 2% in EAs, respectively (Fig. 2a). These
mutations do not tend to co-occur in the same patient.
Specifically, of the 15 patient samples (all histology combined)
that carried a mutation in PTPRT and the 11 that carried a
mutation in JAK2, only 1 sample had a mutation in both genes
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(two-sided Fisher’s exact test P < 0.001). In LUAD, no sample
carried a mutation in both genes suggesting that these mutations
are mutually exclusive (two-sided Fisher’s exact test P= 0.001).
PTPRT was not mutually exclusive of other known key oncogenes
and tumor suppressors (Supplementary Data 8).

Combined, PTPRT and JAK2 are mutated in >30% of tumors
from AAs and ~10% of tumors from EAs (Fig. 2b). To validate
these observations, we first used data from TCGA (Supplemen-
tary Data 1) and replicated the statistically higher frequency of
PTPRT (AA 20%, EA 8%, two sample test of proportions P=
0.0004) and JAK2 (AA 6%, EA 2%, P= 0.025) mutations in
LUAD from AAs (Fig. 2a; Supplementary Data 7). Secondly, we
conducted WES on an additional independent set of 50 tumor
and normal pairs from AAs and EAs in the NCI-MD Case
Control Study (Supplementary Data 1, 2 and 9). Again, we
observed a higher frequency of PTPRT (AAs 21%, EAs 9.6%, two
sample test of proportions P= 0.014) and JAK2 (AAs 10%, EAs
0%, two sample test of proportions P= 0.08) mutations in tumors
from AAs (Fig. 2a). Similar to data in lung cancer among EAs and
other cancer types23, there were no clear hotspot mutations and
the mutated codons were spread throughout PTPRT, including
the phosphatase and extracellular domains (Fig. 2c). To our

knowledge, this is the first time this observation has been
reported in AAs. Previous studies based on targeted sequencing
panels did not include PTPRT12–14, which likely explains why this
observation was not reported before. Also, our inclusion of
matched normal samples indicates that the events are somatic
and not germline, which is an important observation given to the
recent description that 10% of the pan-African genome is not
represented in the current reference genome24.

PTPRT and JAK2 function downstream of cytokine and
interferon signaling to regulate STAT323, which is an oncogenic
driver and hallmark of cancer25. Integrating total RNAseq data
for 23 samples for which we had both targeted exome sequencing
and RNAseq data (n= 6 mutant and 17 wild type), we observed
an enrichment of IL6/JAK2/STAT3 and interferon signaling
among lung tumors carrying either PTPRT or JAK2 mutations
(Fig. 2d). We also observed an enrichment of PI3K signaling,
consistent with the literature26. We then analyzed microRNA
(miRNA) transcriptional targets of STAT327, and observed
increased miR-21 (Fig. 2e) and miR-181b (Supplementary Fig. 2)
in tumor samples carrying mutations in PTPRT or JAK2, while
non STAT3 targets, such as miR-126, were similar (Supplemen-
tary Fig. 3). These data suggest that an increased frequency of loss
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of function PTPRT and JAK2 mutations may drive STAT3
activity in subsets of non-small cell lung cancer (NSCLC) that are
enriched among AAs.

Discussion
We report the somatic mutation profiles of 129 matched lung
cancers from AAs across the coding regions of 564 pan-cancer
genes (and six whole gene regions) and confirm key findings with
data from (1) TCGA and (2) WES of 50 EAs and AAs. Roughly, a
quarter (24%) of the tumors in our analysis did not harbor a
mutation in the Oncovar gene panel, which is consistent with the
previous observations8,10,17. It is possible that other somatic copy
number-based genomic events, rare driver mutations, or epige-
nomic changes drive carcinogenesis in these tumors. We did not
observe substantial differences in the mutation frequency of
known driver genes according to ancestry in either LUAD or
LUSC. However, we identified an increased prevalence of PTPRT
and JAK2 mutations in LUAD from AAs. We validated this
observation using whole-exome data from both TCGA and an
independent set of samples from NCI-MD. Combined, ~30% of
tumors from AAs carried mutations in PTPRT and/or JAK2 genes
compared with 10% of EAs. To our knowledge, this is the first

time this observation has been reported in AAs. Other protein
phosphatases mutated in cancer, e.g., PTPRD, also negatively
regulate STAT3 activation. A comprehensive study on the
mutation frequency of these phosphatases and other STAT3
pathway regulators in LUAD from AAs is also warranted28.

TCGA has reported a fusion partner of PTPRT in lung cancer,
EXD2. Therefore, although calling fusion genes from WES data
can be problematic and error prone29, if searching for a specific
gene the likelihood of false positive findings can be reduced. We
detected putative PTPRT fusion genes in nine samples, though
none had a similar partner gene or the same partner as previous
reported fusions in TCGA. Further, as the minor allele fraction
for either split reads or spanning pairs is very low in our study
(Supplementary Data 10), it suggests that these subclonal fusions
are not pathogenic or biologically relevant. Because fusion events
that result in a well-expressed transcript are more easily and more
reliably detectable from RNAseq data, future studies with RNA-
seq data should explore whether these putative fusion genes
manifest as transcribed variants.

Interestingly, our recent work demonstrated that while IL-6 is
associated with lung cancer diagnosis in both EAs30 and AAs31,
the effect size was considerably larger among AAs, which is
further evidence that this IL-6/JAK2/STAT3 pathway is
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important among AAs. We hypothesize that patients with PTPRT
and JAK2 mutations could be candidates for targeted therapy and
as such, our findings have implications for the recruitment of
patients into clinical trials. For example, the initial conception to
use JAKs as therapeutic targets was based on the identification of
an activating mutation in JAK2 linked to myeloproliferative
neoplasms32. The rationale for their use in these disorders has
also been linked with perturbed JAK/STAT signaling, either due
to somatic mutations or transcriptomic changes33. Recent work
by Pitroda and colleagues found that a selective JAK2 inhibitor is
cytotoxic to NSCLC cells in the context of constitutive IFN-
stimulated JAK/STAT gene expression and that tumor cell-
intrinsic expression of IFN-inducible PD-L1 was abrogated by the
selective inhibitor34. In fact, somatic JAK1/2 mutations were
shown to mediate primary resistance to PD-1 blockade because of
an inability to signal through the interferon gamma receptor
pathway, making it possible that patients harboring such muta-
tions would be unlikely to respond to PD-1 blockade therapy35.
Taken together, these findings suggest a potential role for JAK2
inhibitors in lung cancer in the context of a specific genomic
background that could also possibly work in tandem with
immune checkpoint inhibition.

Current JAK inhibitors are not always selective and most do
not target specific mutations, though newer generations of JAK
inhibitors demonstrate selective inhibition. JAK2 inhibitors might
not work in PTPRT mutant tumors because other JAKs can, in
theory, activate STAT3. As such, STAT3 inhibitors are good
candidates for the tumors, we describe in our study. Interestingly,
we conducted an agnostic analysis of differential drug sensitivity
among cell lines mutant for JAK2 or PTPRT using the depmap
database36 [https://depmap.org] and identified a STAT inhibitor
with selective growth inhibition in PTPRT mutant cells (Sup-
plementary Data 11). Our findings therefore raise the hypothesis
that patients carrying these mutations may be more likely to
respond to drugs that target this pathway than patients without
these mutations. However, detailed mechanistic experiments will
be needed to determine whether these are indeed actionable
mutations, especially given a recent report that up to half of JAK2
mutations in nonsmall cell lung cancer can be inactivating37.

Our study has several strengths. It uses fresh-frozen tissues and
matched tumor and non involved adjacent tissues. This study
design gives us the ability to call true somatic mutations and is
especially important in light of recent findings showing that up to
10% of the genome in individuals of African ancestry are not
captured, using the current reference genome24. Most of these
differences map to intergenic and noncoding regions, as such,
their impact on a targeted exome-sequencing panel would be
expected to be limited in nature. However, future work should
address these novel genomic sequences and assess them for
potential health-associated variants. Second, we used two addi-
tional datasets to confirm our results. As TCGA includes parti-
cipants from across the U.S. and our samples were from the
Baltimore region of Maryland, leveraging the TCGA database
allowed us to compare our results to AAs from across the U.S.
Whether or not population differences in PTPRT/JAK2 mutations
extend to populations of Asian descent, or indeed other minority
and under-represented populations, remains to be determined.
TCGA has eight LUAD patients classified as Asian, one (12.5%)
of which carries a PTPRT mutation, suggesting that the frequency
in Asian populations is more closely aligned with EAs.

In summary, we show that the global frequency of somatic
mutations is similar in tumors from EAs and AAs. However, we
present evidence that somatic mutations in PTPRT and JAK2 are
enriched in AAs and hypothesize that these mutations may be
actionable. As this is a putatively targetable pathway, preclinical
studies are needed to determine whether tumors carrying these

mutations affect outcome or response to therapy directed against
IL-6/JAK2/STAT3 signaling.

Methods
Patient samples and DNA extraction. Patients were selected from an ongoing
case control study conducted by the NCI and the University of Maryland (Sup-
plementary Data 1). This NCI-MD Case Control Study was conducted in accor-
dance with the Declaration of Helsinki. Institutional review board approval was
granted from NCI and participating hospitals and registered on clinicaltrials.gov
[https://clinicaltrials.gov/ct2/show/NCT00339859]. Written informed consent was
obtained from all patients. Patients for this study were recruited between 1984 and
2013. At the time of surgery, a portion of the tumor specimen and non involved
adjacent lung tissue was flash frozen and stored at −80 °C until needed. Clinical
and pathological information was obtained from medical records, tumor boards,
and pathology reports.

Total genomic DNA was extracted using DNeasy Blood and Tissue Kit
(QIAGEN, Valencia, CA). DNA quality and yield were determined using a
NanoDrop Spectrophotometer (Thermo Fisher Scientific, Wilmington, DE). The
initial study population included 141 tumor–normal pairs. One sample failed QC
and was not suitable for sequencing. Four samples had poor quality normal tissue
and were excluded due to the inability to match with tumor tissue. After
sequencing was complete, seven samples were excluded due to quality of
sequencing data. Thus, in total, 12 samples were excluded and the final study
cohort consisted of 129 tumor–normal pairs.

The validation study population included an independent sample set (n=
50 samples) from the same ongoing case-control study. DNA was extracted from
15 µm sections of FFPE tissue using the Qiagen DNA FFPE Tissue Kit. Input for
library prep was 500 ng.

Targeted exome sequencing and data processing. Simultaneous fragmentation
and adaptor ligation was performed on input gDNA (50 ng) by tagmentation, using
the Nextera DNA Library Preparation kit, according to the manufacturer’s protocol
(Illumina). Products with a mean size of 350 bp +/−20% were purified using the
Agencourt AmpureXP Purification System (Beckman Coulter). Amplification and
dual indexing of purified samples was performed using Illumina PCR primers
InPE1.0 and InPE2.0, and primer indices (8 bp). Hybridization capture of pooled
indexed libraries was performed according to the manufacturer’s protocol using
NCI Oncovar V4, an Agilent SureSelect Custom DNA kit (Agilent Technologies)
targeting 2.93Mb of exonic sequence in 564 genes found to be mutated in diverse
solid tumors (Supplementary Data 2) with full coverage of six genes (CDKN2A,
PTEN, SDHA, SDHC, TP53, and VHL)38. In addition, xGen Blocking Oligos
(Integrated DNA Technologies Inc., Coralville, IA) specific to Nextera library
adaptor sequences were used during hybridization according to manufacturer’s
recommendations. The libraries were sequenced on an Illumina NextSeq 500 or
HiSeq 2500 instrument by paired-end 2 × 75 bp to an average target region depth
of ~140×. Alignments to the hg19 human reference genome assembly were per-
formed with BWA-MEM (release 0.7.10, July 13 2014, r789)39, indel realignment
by GATK IndelRealigner (version 3.4-0- g7e26428)40, and duplicates were marked
with picard MarkDuplicates (version 1.129)41. Somatic SNVs and small insertions
and deletions were called with Strelka 2.0.1742. All variants are reported as filter 1,
while those mutations likely to alter protein function, i.e., nonsynonymous, frame
shift, splice site, start/stop site SNVs, and codon insertion or deletions, are reported
as filter 2. Sequencing statistics are reported in Supplementary Data 12. A two-
sample test of proportions was used to analyze statistical differences in the fre-
quency of somatic mutations between populations.

WES and data processing. WES was performed at Personal Genome Diagnostics
(Baltimore, MD)43. In brief, DNA was extracted from FFPE tissue and matched
blood or saliva samples, using the Qiagen DNA FFPE Tissue Kit or Qiagen DNA
Blood Mini Kit (Qiagen). Genomic DNA from tumor and normal samples was
fragmented and used for Illumina TruSeq library construction (Illumina),
according to the manufacturer’s instructions. Briefly, 500 ng of genomic DNA in
100 ml of TE (tris-EDTA) was fragmented and purified using Agencourt AMPure
XP beads (Beckman Coulter). Exonic regions were captured in solution using the
Agilent SureSelect kit (Agilent). PE sequencing, resulting in 100 bases from each
end of the fragments for exome libraries, was performed using Illumina instru-
mentation (Illumina). Sequence reads were aligned against the human reference
genome (version hg19). Somatic mutations were identified using VariantDx and
Cerebro custom software43,44. Fusion genes were called with the Manta program45.

Mutation calls in TCGA. Somatic mutations calls for LUAD and LUSC were
downloaded from Firehose for EAs and AAs separately (Supplementary Data 7).

Mutation significance analysis. Mutation significance was performed using the
MutSig2CV algorithm [https://software.broadinstitute.org/cancer/cga/mutsig_run].
The current version improves the background mutation rate estimation by pooling
data from neighbor genes in covariate space, and substantially reduces the number
of false–positive findings. Tables with mutation data, per-sample coverage, gene
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covariables, and mutation type were imported to the software. Genes with a
Bonferroni-corrected P < 0.05 are considered significant46.

Mutational signature analysis. Mutational signatures in the targeted sequencing
data were analyzed using R/Bioconductor package “MutationalPatterns”. The
package covers a wide range of tools including: mutational signatures, transcrip-
tional and replicative strand bias, genomic distribution, and association with
genomic features. References mutation signature were obtained from the COSMIC
website [https://cancer.sanger.ac.uk/cosmic/signatures] for 30 signatures. The
current signatures were then determined by the contribution of 30 known muta-
tional signatures on a single sample level by finding the optimal linear combination
of mutational signatures that most closely reconstructs the mutation matrix47.

Measurement of miR-21. miRNA expression for miR-21 in lung adenocarcinoma
tumor and normal tissues was extracted from our previous Nanostring analysis of
miR-21, and compared between PTPRT- and JAK2-mutated samples (n= 4) and
wild-type samples (n= 9). The miRNA microarray data discussed in this pub-
lication have been deposited in National Center for Biotechnology Information’s
GEO and are accessible through GEO Series accession number GSE63805. Tests for
statistical differences in miR-21 expression between mutated and nonmutated
samples were conducted using two-sided Student’s t-test.

Gene set enrichment analysis. We integrated total RNAseq data for 23 samples,
where we had both mutation and RNAseq data (n= 6 mutant and 17 wild type) in
the NCI-MD study using the Palantir Foundry platform. Genes with fewer than 1
read per million in at least three members of each group were removed. Following
quantile normalization and differential expression analysis using the R/Bio-
conductor package limma, gene set enrichment analysis (GSEA) was performed
using the fgsea package and the MSigDB Hallmark Pathways.

Genetic ancestry. For admixture analysis, we utilized the 1000 Genomes Project
phase III48 superpopulations as reference populations, where we removed rare
variants (i.e., <5% across all of the phase III 1000 genomes), all INDELs and any
SNPs that were not biallelic. We then used the tool Admixture v1.3.049 to estimate
ancestry proportions for each of the 1000 Genomes Project superpopulations.

Data availability
The datasets generated during the current study have been uploaded to the dbGaP
repository in compliance with the NIH Genomic Data Sharing Policy. Data can be
accessed at [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?
study_id=phs001895.v1.p1]. Raw data for Figs. 1 and 2, and Supplementary Figs. 1–3 are
provided in the Source Data File.
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