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Abstract Brain–computer interfaces (BCIs) allow people

with severe neurological impairment and without ability to

control their muscles to regain some control over their

environment. The BCI user performs a mental task to

regulate brain activity, which is measured and translated

into commands controlling some external device. We here

show that healthy participants are capable of navigating a

robot by covertly shifting their visuospatial attention.

Covert Visuospatial Attention (COVISA) constitutes a very

intuitive brain function for spatial navigation and does not

depend on presented stimuli or on eye movements. Our

robot is equipped with motors and a camera that sends

visual feedback to the user who can navigate it from a

remote location. We used an ultrahigh field MRI scanner

(7 Tesla) to obtain fMRI signals that were decoded in real

time using a support vector machine. Four healthy subjects

with virtually no training succeeded in navigating the robot

to at least three of four target locations. Our results thus

show that with COVISA BCI, realtime robot navigation

can be achieved. Since the magnitude of the fMRI signal

has been shown to correlate well with the magnitude of

spectral power changes in the gamma frequency band in

signals measured by intracranial electrodes, the COVISA

concept may in future translate to intracranial application

in severely paralyzed people.

Keywords Brain–computer interface � Real-time fMRI �
Visuospatial attention � Multivariate analysis

Introduction

The concept of Brain–Computer Interfaces (BCI) concerns

technologies creating direct communication channels

between the brain and a computer or other type of device.

The goal is to accomplish real-time decoding of brain

activity with sufficient reliability for paralyzed people to use

it in their daily life. Two essential and defining components

in a BCI system are the modality used for acquiring brain

signals and the mental control tasks used for regulating this

activity. With regards to signal acquisition, the main focus

has so far been on electroencephalography (EEG). However,

the implicit disadvantages of EEG, such as a low spatial

resolution and high sensitivity to non-neural electrical

activity, have led to a growing interest in intracranial

acquisition techniques. By implanting intra-cranial elec-

trodes, the quality, bandwidth and spatial resolution of the

signal can be increased significantly.

The mental control tasks have mainly been based on brain

functions that involve strong signals, such as the motor

potential and the P300 oddball response (Wolpaw et al.

2002), because these can be detected well from the scalp

using EEG. The improved signal quality of intracranial

technologies allows testing brain functions not previously

used for BCI (Leuthardt et al. 2009; Vansteensel et al. 2010;

Gunduz et al. 2011). Some BCI users find currently

employed brain functions hard or even impossible to control

and some brain functions might be more intuitive for certain
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BCI applications. It is therefore necessary to evaluate new

BCI control paradigms. Recent studies indicate the potential

of a new approach using top–down regulation of the sensory

cortices via attention (Gunduz et al. 2011; Andersson et al.

2011). Attention can change brain activity even in the

absence of exogenous stimuli (Kastner et al. 1999; Heine-

mann et al. 2009). Attending to a region of the peripheral

visual field, while keeping the gaze fixed, generates neural

responses in the parts of the cortex processing visual infor-

mation from this region (Brefczynski-Lewis et al. 2009;

Datta and DeYoe 2009). We have previously shown that it is

possible to decode, with high fidelity, individual fMRI

images in real time during covert visuospatial attention

(COVISA) (Andersson et al. 2011). It is important that the

feasibility of a BCI control strategy is tested with a closed-

loop system. In real life, BCI control will coincide with the

processing of external stimuli. It is only when the test subject

is exposed to this potentially interfering coincidence that the

control strategy can truly be evaluated.

Covert visuospatial attention would constitute a very

intuitive brain function for spatial navigation. In the present

study we test the hypothesis that people can navigate a robot

in realtime by merely shifting the visuospatial attention,

without moving the eyes and without the need for exogenous

stimuli. The subjects were instructed to navigate the robot

through a course containing targets that were to be reached in

a particular order. Our robot is equipped with a camera and

the images are sent as feedback to the user. We used an

ultrahigh field MRI scanner (7 Tesla) to obtain an fMRI

BOLD (blood oxygen level dependent) signal that is strong

enough for real-time decoding. Since BOLD activity is well

correlated spatially with changes in the higher frequencies of

electrophysiological signals (Lachaux et al. 2007; Hermes

et al. 2012), the performance with fMRI is an indirect indi-

cation of the feasibility of a BCI with electrode implants.

Materials and Methods

Subjects

Four healthy volunteers (age 20–50, right-handed, 2 male) with

normal or corrected-to-normal vision participated in the study,

after giving their written informed consent. The study was

approved by the ethics committee of the University Medical

Center Utrecht in accordance with the declaration of Helsinki

(2008). Each subject was scanned three times (one practice

session and two performance sessions) separated by 1–28 days.

Robot

We used the Erector Spykee robot (Meccano Toys Ltd) that

is equipped with a wireless modem and a video camera.

The software was designed such that a forward movement

instruction moved the robot 50 cm forward, while a right or

left instruction turned it 30^. There was a small variation in

the size of the actual movements, given that the robot was

designed for recreational use. The robot had no mechanism

preventing it from hitting the wall. On a few occasions it

moved forward and locked itself in place with the front

against the wall. When that happened, it was moved back

manually to the previous position and orientation.

Data

The subjects were scanned at a 7T Philips Achieva system

with a 16-channel headcoil, which generates the signal

quality needed for our purpose (Andersson et al. 2011).

The functional data were recorded using an EPI sequence

(TR/TE = 1620/25 ms; FA = 90; SENSE factor = 2; 35

coronal slices, acquisition matrix 96 9 96, slice thickness

2 mm with no gap, 1.848 mm in-slice resolution). The field

of view (FOV) was selected such that it covered the

occipital lobe and the most posterior part of the parietal

lobe. A high-resolution image was acquired for the

anatomy using a T1 3D TFE sequence (TR/TE = 6/2 ms;

FA = 7; FOV = 220 9 180 9 200 mm; 0.55 9 0.55 9

0.5 mm reconstructed resolution).

Experimental Setup

Each session consisted of a single fMRI run of 995 image

volumes. The first 270 volumes, the localizer phase, were

used for locating relevant voxels and training the classifier.

The remaining 725 volumes, the control phase, were

classified as commands to control the robot. During the

localizer phase the subjects were instructed where to cov-

ertly direct their visuospatial attention. Trials of right, left

and up attention were randomized, and were always sep-

arated by a center attention trial. Each trial was 8.1s

(5 TRs) long. During the control phase no instructions were

given and the subject could move the attention at will.

Directing the attention upward now made the robot move

forward while directing the attention to the left and right

resulted in a turn to the respective direction. The subjects

were instructed to keep the gaze fixated at the center of the

screen during the complete experiment. A timeline of the

experiment, showing the different steps of the online

analysis, can be found in Fig. 1.

Task and Navigation Interface

During the experiment the subjects were presented with an

image as in Fig. 2, projected onto a small projection screen

in the bore of the scanner. Subjects were instructed to, at all

times, fixate their gaze on a circle displayed at the center of
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the screen. Three yellow triangles permanently positioned

to the two sides and to the top of the central area indicated

the attention target areas, used for sending commands.

During the localizer phase (Fig. 2a) the center circle

alternately changed into a cue (an arrow) pointing towards

one of the yellow target areas, and then back to a circle.

Subjects were instructed to covertly direct their attention to

the target area located in the direction of the instruction

arrow or, in the case of a circle, to focus their attention on

the center. During the control phase the live video images

were displayed in the area between the attention targets

(Fig. 2b) and there was no cue to indicate where to direct

the attention to. The BOLD signal exhibits a slow response

to neuronal activity, and it takes several seconds after an

instruction has been identified for the signal to return to

baseline (Andersson et al. 2011, 2012; Siero et al. 2011).

The attention therefore needed to return to the center

immediately after the execution of a robot movement to let

the hemodynamic effect wash out before the next com-

mand could be sent. To facilitate this, the video was turned

off during four volumes (6.48 s) after a volume had been

classified as either right, left or up attention and the cor-

responding movement had been executed. Pilot tests

revealed that, although the hemodynamic response takes

longer than that to completely disappear, the BOLD signal

has stabilized enough for a new command to be sent.

BCI Hardware

The BCI system consisted of two computers communi-

cating in real time with each other, with the MR scanner

and with the robot (see Fig. 3). One computer received the

images from the scanner directly after reconstruction via

the local network using a TCP/IP protocol and the Philips

Fig. 1 Illustration of the

experiment timeline

Fig. 2 The feedback screen. The screen projected to the user during

a the localizer phase, and b the control phase. The three yellow
triangles served as targets for left, right and up attention. The green
circle in the center indicates the point upon which the gaze had to be

focused at all times. During the localizer phase the subjects direct

their attention in response to a central cue (a shows the cue for right

attention). During the control phase the video from the robot’s camera

was displayed in the central area (Color figure online)

Fig. 3 The BCI system. The system consists of the MR scanner, two

computers and the robot
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DRIN (Direct Reconstruction INterface) module. This

computer performed the main analysis (motion correction,

detrending, SVM training, classification etc). The second

computer controlled the graphic display, projected to the

subject via a video projector. The display was updated

according to instructions from the first computer via a

serial cable. The second computer also contained the

wireless link to the robot for communicating the video

images and the movement commands. The graphic display

and robot communication were implemented using the

RoboRealm software (http://www.roborealm.com).

Motion Correction

All image volumes were corrected for head movements.

Motion during the localizer phase will result in a weaker

classifier, and during the control phase the wrong features

will be extracted from the image volume and sent as input

to the classifier. Every volume was rigidly registered to the

first localizer volume. Before the fitting, the images were

smoothed with a Gaussian filter (r = 1 voxel). As similarity

metric we used the sum of squared differences. The opti-

mization scheme consisted of 50 iterations of the stochastic

gradient descent method described in Klein et al. (2007).

The final image was generated using cubic B-spline inter-

polation. The code was implemented in C?? and was

compiled to a Matlab (Mathworks, Natick, MA) mex-file.

Feature Selection

Each sample of fMRI data, i.e. each volume, contains a

very large number of voxels of which the majority are

either located outside the brain or are not involved in

processing the attention task. In order to avoid overfitting

the classifier model, a feature selection step is necessary

before it is built. Overfitting occurs when the classifier is

trained on voxels that contribute with information that is

irrelevant for determining the attention state. Our voxel

selection is based on a GLM analysis that runs throughout

the localizing part. Four statistical t maps were incremen-

tally updated with every new image using the algorithm

described in Bagarinao et al. (2003). The GLM model

contained five regressors; right, left, up and center atten-

tion, plus a linear drift term. The t values were computed

using the contrasts ‘one minus the others’. That is, for right

attention the contrast was ‘right� 1
3

[left ? up ? center]’

etc. After the last iteration of updating the t maps, a voxel

selection was performed in two steps. A first selection was

made by merging the voxels with the 500 highest values

from each of the four t maps. Second, from this first

selection clusters smaller than 5 voxels were removed. The

remaining pool of voxels was subsequently available for

the SVM to train on.

It is possible that the use of a multivariate method such

as Recursive Feature Elimination (De Martino et al. 2008),

using the actual classification model, to select voxels could

result in a slightly better performance. However, the

computation would take much longer and we would not be

able to combine both the localizer and control part in a

single fMRI run.

SVM Classifier

We used the LIBSVM (Chang and Lin 2011) implemen-

tation of a C-SVM classifier with a linear kernel and the

regularization parameter C = 1. Theoretically, if C is too

large, we risk overfitting, and if it is too small, underfitting.

However, it has been shown that the classification result is

rather insensitive to the value of C (LaConte et al. 2005),

and the unit value is often used. LIBSVM uses the ‘‘one-

against-one’’ approach for multiclass problems. This means

that our classifier consisted of six binary SVMs, one for

each pair of classes (attention directions), and an image

was assigned to the class with the majority vote. In case of

a tie we classified it as center attention (thus no action was

taken by the robot).

Signal Detrending and Normalization

fMRI signals always contain low-frequency drift to various

degrees. To minimize the influence of these signal changes

on the classification we applied detrending to the data. For

this we used an implementation of the algorithm described

in Tarvainen et al. (2002) with regularization parameter

k = 200. As soon as the last image volume of the localizer

phase had been analyzed and the feature selection was

ready, the complete time series of the selected voxels were

detrended. From the detrended data we then estimated the

baseline and standard deviation for each voxel. Using these

estimates the amplitude of each voxel’s time series was

normalized to have zero mean and unit variance. The

detrended and normalized signals were then finally used for

training the SVM. The original non-detrended values were

kept in memory so that they could be used in the detrending

of later image volumes. During the control phase, as soon

as a new volume had been passed on from the MRI scanner

and had been registered to the template image, the signal

values were detrended and normalized in the same way as

during the training. The processed values were then clas-

sified by the SVM.

Practice Session

The purpose of the practice session was to acquaint the

subjects with the robot control environment and the slow

response inherent to fMRI based BCI. Each subject was
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asked to try different lengths of attention to find out what

produced the best results.

Evaluation Sessions

In the two evaluation sessions the robot was placed in the

same room as in the practice session. Four targets (25 9 50

cm) were distributed in the room as seen in Fig. 4, marked

out on the floor and labeled with the numbers 1–4. The

instructions were to move the robot to these targets in

sequence, and to continue until the time was up once target

four was reached. The time of each target reached was

recorded as one of the measures of performance.

Results

Feature Selection

In the feature selection we merged 500 voxels from each of

the four t maps. However, due to partial overlaps and the

removal of clusters with less than five voxels, the final

selection consisted of fewer than 2,000 voxels. Table 1 shows

the number of voxels selected and used in the SVM training in

each of the sessions. The average number of voxels included

was 1,236, which corresponds to a volume of 8.4 cm3.

Figure 5 shows group maps of the voxels selected from

each attention direction (before they were merged to a

single selection). The group maps were created by first

spatially normalizing each subject’s anatomical image to

the Montreal Neurological Institute (MNI) reference space

and then applying the computed transformation to the mask

defining the selected voxels. Finally, all subjects’ normal-

ized masks were added up to display how often a certain

voxel was selected.

Performance

Table 2 shows the performances of all subjects in both of

the evaluation sessions. The performance was measured by

the number of targets reached and the number of move-

ments and time required to reach them. All subjects man-

aged to reach at least three of the four targets, and the

maximum number of targets reached was six. With 725

images and a TR of 1.62 s, the complete control phase

lasted nearly 20 min (1,175 s). If we assume that the

minimum time between two commands is 10 TRs (16.2 s,

including five TRs for the BOLD signal to reach a

detectable level, one TR for the movement and four TRs

for the signal to return), the maximum number of com-

mands that can be sent during the experiment is 72. The

two best subjects, reaching five and six targets, did so using

71 and 67 movements respectively.

Figure 6 visualizes how the robot was maneuvered

during the two sessions. Note that only the forward

movements result in a new position. For example, a right

turn followed by a left turn cancel each other out and is not

visible in these maps. A video recording of one session (not

part of the study) can be found in Supplementary Materials.

In the video the robot moves five times the actual speed.

Discussion

We have for the first time demonstrated real-time BCI

control based on pure covert visuospatial attention, com-

pletely independent of eye movements and evoked

responses. In a telepresence application, where a robot was

navigated through a course containing four targets, the user

communicated the intended movement by covertly direct-

ing the attention between four different regions in the

visual field. Our four subjects were all able to control the

robot and they reached at least three of the four targets. All

subjects expressed the feeling of having control over the

robot, even during the initial practice session. This supports

the notion that COVISA based BCI control is intuitive and

requires virtually no training (van Gerven and Jensen 2009;

Andersson et al. 2011; Treder et al. 2011a). Although our

study is the first demonstration of an applied BCI based on

the visual system that is completely free from evoked

responses and does not require eye movements, the concept

of employing the visual system is not new. One example is

BCI based on the steady state visually evoked potential

(SSVEP). SSVEP is an evoked response present during a

Fig. 4 Map of the robot control environment with the positions of the

four targets. The robot started at target four and the instructions were

to reach the targets in sequence
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flickering stimulation of the retina, and is detected via an

increase of power in the EEG or MEG signal at the fre-

quency of the stimuli. The P300 is another event related

potential (ERP) that has been used for BCI. This response

occurs approximately 300 ms post-stimulus upon rare

events. The matrix speller first described by Farwell et al.

(Farwell and Donchin 1988), is a BCI based on the P300

visual response in EEG signals. Besides being intrinsically

dependent on external visual stimulation, there is growing

evidence that visual P300 and SSVEP BCI systems are

more or less dependent on gaze control, yielding better

results if subjects direct their gaze to the target as opposed

to fixating gaze elsewhere (Allison et al. 2008; Shishkin

et al. 2009; Bianchi et al. 2010; Brunner et al. 2010; Tre-

der and Blankertz 2010).

For safety reasons inherent to the high magnetic field, we

could not bring an eye tracker into the scanner environment

(Andersson et al. 2011). Thus, we could not get online

measures of eye movements. However, it has been shown

quite often that people have no trouble performing covert

spatial attention shifts without any eye movements (Bre-

fczynski and DeYoe 1999; Siman-Tov et al. 2007; Munneke

et al. 2008; Datta and DeYoe 2009; van Gerven et al. 2009;

Andersson et al. 2011). Moreover, the brain activity patterns

obtained during BCI strongly suggest (Andersson et al.

2011) that the subjects controlled the robot via covert shift-

ing of attention, and not with eye movements. It is well

known that covert shifting of attention to one side induces

elevated activity in the contralateral visual cortex (Bre-

fczynski and DeYoe 1999; Brefczynski-Lewis et al. 2009;

Perry and Zeki 2000). As can be seen in Fig. 5, the bulk of

activity is contralateral for left and right attentional shifts. If

eye movements were used to control the robot, we would

expect opposite results, since most of the visual information

would shift to the hemifield opposite to the direction of eye

movement, causing activity in the visual cortex ipsilateral to

that direction. Up and down shifting is associated with

inferior and superior visual cortex activation, respectively.

Again the activity patterns are in agreement. To classify each

image volume we trained a support vector machine on the

initial localizer data. The application of multivariate classi-

fication techniques on fMRI data has been shown effective in

multiple studies, e.g. (LaConte et al. 2005, 2007; Sitaram

et al. 2011). Since fMRI volumes usually include a very

large number of voxels, a feature selection step is most often

included to remove uninformative voxels and avoid over-

fitting. Our feature selection was based on an online uni-

variate GLM analysis. A multivariate feature selection

method could potentially create a map more optimized for

the SVM classifier, but our strategy is fast, and it allowed us

to finish the feature selection and training within a single TR.

The overlap of selected voxels across sessions shows that

some regions in expected parts of the cortex are consistently

selected (Fig. 5). Around these ‘‘hot-spots’’ there are voxels

selected in only a few sessions. There can be several reasons

for this distribution. First, visual field maps vary consider-

ably across individuals (Dougherty et al. 2003; Yamamoto

et al. 2012). Second, alignment of the functional data from

the two different sessions and during the spatial normaliza-

tion may not have been perfect, causing an apparent shift.

Third, there could be small variations in where in the visual

Table 1 The number of features selected by the GLM feature

selection during the practice session (P) and the two evaluation

sessions

Subjectnsession P 1 2

1 1,404 1,313 1,501

2 1,265 1,132 1,214

3 1,214 1,076 988

4 986 1,437 1,298

Fig. 5 Voxels selected in the online GLM analysis, displayed on the

Montreal Neurological Institute (MNI) reference brain. Four statis-

tical t maps, each corresponding to an attention direction, were

computed online during data acquisition. From each of these t maps a

mask was created by first locating the 500 highest t values and then

removing any cluster smaller than five voxels. In the online analysis

the masks were merged to create the voxel selection to train the SVM

on. In this figure, the masks from all subjects were spatially

normalized and added, separately for each attention direction. It

should be noted that the spatial normalization was applied only for

illustration purposes and was not a part of the online analysis. With

four subjects and two (performance) sessions each, the sum could take

values between 1 and 8. However, since no voxel was selected in

more than five sessions, the scale of the overlays is adjusted to this

value
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fields subjects directed their attention. They reported that

they tried different strategies in order to feel confident in

directing their attention. These strategies included imagining

a beam of light shining from the center onto the target of

interest, and pretending to expect a symbol to show up at the

target. A change of strategy could potentially result in vari-

ations of selected voxels. It is also possible that the brain

activation pattern changes in the course of learning to control

the BCI. The current study with only three sessions does not

allow an adequate assessment of this effect. We are planning

a study with multiple sessions aimed at elucidating this

particular topic.

Several BCI systems built on fMRI have been described

(Yoo et al. 2004; Sitaram et al. 2007; Moench et al. 2008;

Sitaram et al. 2008; Sorger et al. in press). These systems

can for instance, as in this study, be employed for evalu-

ating new BCI control paradigms or for determining the

best choice of brain function for a specific patient popu-

lation. However, the ultimate goal is to develop a BCI

system that can function in every-day life for patients.

Clearly MRI is then no longer an option, so implementa-

tion in a portable system is required to bring the technology

to paralyzed users. Given the detailed distribution of acti-

vated brain areas it is unlikely that our results could be

repeated using scalp electrodes. Instead, intracranial

recordings may prove to be effective (Andersson et al.

2011). For successful BCI control, the responses to each of

the attention directions need to be distinguished reliably,

not only from each other but also from visual input pro-

vided by the video feedback. As seen in the activation

maps, and as predicted by retinotopic studies, multiple

cortical regions corresponding to the multiple visual maps

become active during each direction of attention. The brain

response to the central input provided by the video camera

is strong and spatially close to the attention modulated

effects. Thus, the implicit limitations in terms of resolution

and signal strength will probably make EEG ineffective.

Both EEG and MEG have been used for investigating

covert visuospatial attention for BCI control (Kelly et al.

2005; van Gerven and Jensen 2009; Treder et al. 2011a).

However, none of these studies demonstrated real-time

online decoding or visual feedback of the performance. It

should also be noted that since MEG systems are not por-

table, BCI systems built on this technology can not be used in

the every-day life of patients (similar to fMRI based sys-

tems). In a recent study Treder et al. (2011b) used EEG to

implement a (ERP dependent) BCI speller based on both

spatial and feature (color) attention, not dependent on eye

movements. They evaluated two variants of speller inter-

faces that were sensitive to spatial attention and one that was

not. They found the best performance in the version that was

not sensitive to spatial attention. For the other two variants,

incorporating both spatial and feature attention, the perfor-

mance dropped substantially when only using the occipital

electrodes. This suggests that they did not succeed in

detecting the brain response to spatial attention.

Functional near-infrared spectroscopy (fNIRS) is an

optical technique that measures the localized oxygenation

level in the cortex via light emitters and sensors placed on

the scalp. fNIRS systems are portable and can therefore be

used for BCI (see review in Matthews et al. 2008) at home

in patients’ daily life. However, this technique measures at

a much lower spatial resolution than fMRI and is limited to

the cortical regions close to the scalp. Thus, for the same

reasons as for EEG it will be hard to separate attention

towards multiple directions using fNIRS.

Intracranial recordings would most likely be suitable for

COVISA BCI. These techniques can provide both high

spatial resolution and give access to the higher frequencies

that are too weak to be detected using scalp electrodes. The

power in the gamma band (65–95 Hz) has been shown to

correlate well with the BOLD signal (Lachaux et al. 2007;

Hermes et al. 2012). Real-time fMRI can therefore facili-

tate BCI training and the activation pattern is likely to

indicate the most reliable implant sites (Vansteensel et al.

2010) and make it possible to limit the cortical area that

needs to be covered with electrodes for decoding. In the

present study the attention was maintained directed at the

targets for several seconds, allowing for the BOLD effect

to build up. This would no longer be necessary when

Table 2 The cumulative time

(in seconds) from the start of the

control phase until the targets

were reached

The cumulative number of

movements used for reaching

the targets is shown within

brackets

Subject Session Target

1 2 3 4 5 6

1 1 81 (5) 407 (26) 899 (59) – – –

1 2 109 (7) 287 (19) 689 (49) – – –

2 1 109 (6) 298 (18) 748 (42) 1,042 (58) – –

2 2 70 (5) 196 (13) 483 (30) 833 (52) 1,123 (71) –

3 1 47 (3) 243 (16) 570 (36) 818 (53) 936 (61) 1,034 (67)

3 2 87 (7) 279 (21) 716 (50) – – –

4 1 32 (3) 120 (9) 927 (63) – – –

4 2 209 (15) 510 (37) 1,011 (61) – – –
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classifying electrophysiological signals. Hence, for an

intracranial BCI system short shifts of attention may well

be sufficient.

In a recent study (Gunduz et al. 2011) covert visual

attention was studied with electrocorticography (ECoG)

using a classical cueing task. Distinct foci of activity

were found indicating that the associated brain signals

were readily detectable. Moreover, in a previous paper

(Andersson et al. 2011) we obtained a performance of 70

% with post-hoc offline analysis of ECoG data recorded

during a two-direction visual attention task.

A benefit of COVISA based BCI control is that more

directions can be added to achieve a more detailed BCI

control, as long as the responses can be separated. More-

over, the concept allows for optimizing the brain signals

(and discrimination thereof) by adjusting the positions of

the attention target regions in the visual field. In conclu-

sion, we have shown that navigation of a robot in realtime

is feasible with COVISA BCI. Given that the center video

display did not interfere with the generation of movement

instructions for the robot, covert shifting of attention to the

periphery can be performed without interfering with pro-

cessing of information in the center of the field. Concep-

tually, more than the current three directions can be

decoded (diagonal directions or even more), but this

requires further investigation.
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