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Abstract
In this paper, we shall present the development of two explicit group schemes, namely,
fractional explicit group (FEG) and modified fractional explicit group (MFEG) methods for
solving the time fractionalmobile/immobile equation in two space dimensions. The presented
methods are formulated based on two Crank-Nicolson (C-N) finite difference schemes estab-
lished at two different grid spacings. The stability and convergence of order O(τ 2−α + h2)
are rigorously proven using Fourier analysis. Several numerical experiments are conducted
to verify the efficiency of the proposed methods. Meanwhile, numerical results show that the
FEG and MFEG algorithms are able to reduce the computational times and iterations effec-
tively while preserving good accuracy in comparison to the C-N finite difference method.

Keywords Fractional mobile/immobile equation · Grouping strategy · Crank-Nicolson
finite difference · Stability · Convergence · Numerical experiments

Mathematics Subject Classification 35R11, 65N06, 65N12

Introduction

The roots of fractional calculus are nearly as old as those of classical calculus. However, it was
only at the turn of the century that interest in fractional calculus exploded. In accordance with
this, the first book along with the first conference on fractional calculus and its applications
did not appear until 1974. For some researchers, this year is viewed as the beginning of
a new era for fractional calculus. Nowdays, a large number of research articles and books
are devoted to this topic, and its applications in various areas such as physics, biology,
chemistry, finance and economy are witnessing remarkable progress, see [1–11] and the
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references therein. The popularity of fractional calculus in all branches of science stems
from its successful application in modelling physical phenomena, specifically in the form
of fractional differential equations. For instance, Zhang et al. [12] introduced an image
enhancement approach for single-pixel imaging that is based on fractional order operators.
The authors argue that the new fractional approach strikes a good balance between edge
detection and noise suppression,making it useful in areas such as feature extraction and object
recognition, in addition to military and industrial applications. Aman et al. [13] considered
some fractional-order PDEs to study the memory properties pertaining to the behavior of
nanofluids, which cannot be addressed by integer-order PDEs. The authors mentioned that
their work has useful applications in diverse fields such as physics, engineering and many
others. Khan et al. [14] extended the classical Maxwell equation to its counterpart fractional-
order Maxwell model via the emerging definition of the Caputo-Fabrizio derivative. The
resulting fractional model was then applied to account for the heat transfer due to convection
occurring in a generalized Maxwell fluid. Almeida et al. [15] scrutinized two mathematical
models namely, the population growthmodel and the gross domestic product model, by using
fractional differential equations described in the frame of Caputo derivative with respect
to another function. Alshabanat et al. [16] generalized the concept of the Caputo-Fabrizio
fractional derivative and provided some applications to RC-electrical circuits on the basis
of fractional differential equations involving the new developed definition. With the help
of a fractional-order model, Ali et al. [17] discussed the flow of Jeffrey nanofluid under
the effects of thermal radiation and heat/mass transfer. The governing fractional differential
equation was described in the Atangana-Baleanu sense. In [18], two epidemic fractional
models for describing infection dynamics together with a macroeconomic fractional model
were investigated numerically. Uçar et al. [19] yielded approximate numerical solutions
for the giving up smoking model expressed in terms of the Atangana-Baleanu fractional
differential equation. In another study, Alrabaiah et al. [20] dealt with the phenomenon
of tobacco smoking with snuffing class via a system of Caputo-type fractional differential
equations. Ndaïrou et al. [21] reported on the mathematical and numerical analysis of a
fractional Caputo differential system that approximates the infectious individuals of COVID-
19. Some other valuable work on the application of fractional calculus can be found in
[22–25].

This article focuses on developing explicit group schemes for the two-dimensional time
fractional mobile/immobile equation of the following form:

∂u

∂t
+ C

0 D
α
t u = �u + f (x, y, t), (x, y, t) ∈ � × (0, T ], (1)

subject to the initial and boundary conditions

u(x, y, 0) = g(x, y), (x, y) ∈ � (2)

u(x, y, t) = φ(x, y, t), (x, y, t) ∈ ∂� × (0, T ], (3)

where � = ∂2

∂x2
+ ∂2

∂ y2
is the Laplacian operator, f (x, y, t), φ(x, y, t) and g(x, y) are given

smooth functions. � = {(x, y)|0 < x < L, 0 < y < L} and ∂� is its boundary. C0 D
α
t

(α ∈ (0, 1)) represents the Caputo fractional derivative defined by

C
0 D

α
t u(x, y, t) = 1

�(1 − α)

∫ t

0
(t − ξ)−α ∂u(x, y, ξ)

∂ξ
dξ.

The time fractional mobile/immobile Eq. (1) plays a central role in describing various phe-
nomena including heat diffusion and propagation of ocean sounds, among others. Moreover,
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it has been verified that the long term limit of continuous time randomwalks can be controlled
by the fractional mobile/immobile equation [26], which interprets the probabilistic nature
of the latter. In most cases, fractional partial differential equations (PDEs) are difficult to
deal with analytically, and therefore, numerical or approximate analytical solutions become
indispensable. In the following, we present some recent numerical developments in solving
fractional mobile/immobile equations. Liu and Li [27] presented a Crank-Nicolson (C-N)
difference scheme for the one-dimensional mobile/immobile equation with time derivative of
variable order. Pourbashash et al. [28] proposed a compact difference scheme for solving the
one-dimensional time fractional mobile/immobile equation. The stability and convergence
of the numerical scheme were proved using Fourier method. Qiu et al. [29] developed a
time two-grid method based on a finite difference approach for the nonlinear time fractional
mobile/immobile equation in two dimensions. Yang et al. [26] developed the C-N orthogonal
spline collocation method for the two-dimensional time fractional mobile/immobile equa-
tion. Jiang et al. [30] considered an alternating direction implict (ADI) compact scheme to
solve the semilinear time fractional mobile/immobile equation in two dimensions. Yin et al.
[31] employed the generalized BDF2-θ technique in time and finite element in space to deal
with the two-dimensional mobile/immobile equation with Riemann-Liouville time deriva-
tive. In addition, Chai et al. [32] constructed the high order compact difference schemes for
the one-dimensional and two-dimensional time fractional mobile/immobile equations.

Generally speaking, numerical methods for fractional PDEs are abundant, whereas effi-
cient numerical methods leading to rapid convergence, particularly for time fractional
mobile/immobile equations, are relatively sparse. This motivates us to develop fast numerical
schemes to solve them. This is useful for long time simulations, especially when attempting
to solve multi-dimensional fractional problems [33–36]. It is well known that explicit group
methods can diminish the computational complexity and reduce the computational time
of numerical algorithms effectively [37–44]. However, numerical approximations based on
explicit group methods for fractional mobile/immobile equations are still at an early stage
of development. The main goal of this paper is to construct two fractional explicit group
methods based on C-N difference schemes for solving Eq. (1). The stability in l2 norm and
the convergence order O(τ 2−α +h2), where τ and h are respectively the temporal and spatial
step sizes, will be proved. Numerical experiments to show that the proposed methods are
more efficient than the C-N difference method in terms of execution time are also provided.

The outline of this paper is as follows. Section 2 devotes to the derivation of the C-N
finite difference scheme. In Sect. 3, the fractional explicit group methods are constructed.
The stability and convergence are rigorously proved in Sects. 4 and 5, respectively. In Sect. 6,
some numerical simulations are carried out by using the C-N scheme and the two fractional
explicit group methods, and some comparisons between three methods are demonstrated.
Finally, a brief summary is given in Sect. 7.

The C-N Difference Scheme

In order to discretize the solution domain, we define ��x,�y = {(xi , y j )|xi = i�x, y j =
j�y, �x = L/Mx , �y = L/My, 0 ≤ i ≤ Mx , 0 ≤ j ≤ My} to be a uniform mesh of
domain �. Likewise, define �τ = {tk, tk = kτ, τ = T /N , 0 ≤ k ≤ N } to be a uniform
mesh of interval [0, T ]. Mx , My and N are positive integers. Let uki, j be the solution value
at the grid point (xi , y j , tk). Then, the C-N approximation to Eq. (1) can be expressed as
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follows:
∂u

∂t

∣∣∣∣
k+1/2

i, j
+ ∂αu

∂tα

∣∣∣∣
k+1/2

i, j
= ∂2u

∂x2

∣∣∣∣
k+1/2

i, j
+ ∂2u

∂ y2

∣∣∣∣
k+1/2

i, j
+ f k+1/2

i, j . (4)

A discrete approximation to the Caputo time fractional derivative C
0 D

α
t u(x, y, t) is given by

the formula [45, 46]

∂αu

∂tα

∣∣∣∣
k+1/2

i, j
=

[
W1u

k
i, j +

k−1∑
m=1

(Wk−m+1 − Wk−m) umi, j − Wku
0
i, j + σ

(uk+1
i, j − uki, j )

21−α

]

+ O(τ 2−α), (5)

where

σ = 1

�(2 − α)τα
, Wn = σ

(
(n + 1/2)1−α − (n − 1/2)1−α

)
.

In addition, utilizing Taylor expansion, we have

∂2u

∂x2

∣∣∣∣
k+1/2

i, j
= 1

2

[
uk+1
i+1, j − 2uk+1

i, j + uk+1
i−1, j

(�x)2
+ uki+1, j − 2uki, j + uki−1, j

(�x)2

]

+ O(τ 2 + (�x)2) + (�y)2), (6)

∂2u

∂ y2

∣∣∣∣
k+1/2

i, j
= 1

2

[
uk+1
i, j+1 − 2uk+1

i, j + uk+1
i, j−1

(�x)2
+ uki, j+1 − 2uki, j + uki, j−1

(�x)2

]

+ O(τ 2 + (�x)2) + (�y)2), (7)

and
∂u

∂t

∣∣∣∣
k+1/2

i, j
= uk+1

i, j − uki, j
2

+ O(τ 2). (8)

Substituting (5-8) into (4), we obtain the following difference equation

uk+1
i, j − uki, j

τ
+ W1u

k
i, j +

k−1∑
m=1

(Wk−m+1 − Wk−m) umi, j − Wku
0
i, j + σ

(
uk+1
i, j − uki, j
21−α

)

= 1

2

[
uk+1
i+1, j − 2uk+1

i, j + uk+1
i−1, j

h2
+ uki+1, j − 2uki, j + uki−1, j

h2

]

+ 1

2

[
uk+1
i, j+1 − 2uk+1

i, j + uk+1
i, j−1

h2
+ uki, j+1 − 2uki, j + uki, j−1

h2

]

+ f k+1/2
i, j + O(τ 2−α + h2),

(9)

in which h = �x = �y. By disregarding the higher order term in the above equation and
replacing uki, j with its numerical approximation Uk

i, j , the following C-N difference scheme
is obtained

(1 + 4H1 + H2)U
k+1
i, j = H1(U

k+1
i+1, j +Uk+1

i−1, j +Uk
i+1, j +Uk

i−1, j ) + H1(U
k+1
i, j+1 +Uk+1

i, j−1

+Uk
i, j+1 +Uk

i, j−1) + (1 − τW1 − 4H1 + H2)U
k
i, j
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Fig. 1 Grouping of mesh points for the FEG method with Mx = My = 10

+ τ

k−1∑
m=1

(Wk−m − Wk−m+1)U
m
i, j + τWkU

0
i, j + τ f k+1/2

i, j , (10)

where H1 = τ
2h2

and H2 = τσ
21−α .

Formulation of GroupMethods

The Fractional Explicit Group (FEG) Method

Consider the C-N difference scheme (10). Let the mesh points be grouped in blocks of four
points as shown in Fig. 1. Then, Eq. (10) is applied to any group of four points so that the
following (4× 4) system of equations is obtained

⎛
⎜⎜⎝

Q −H1 0 −H1

−H1 Q −H1 0
0 −H1 Q −H1

−H1 0 −H1 Q

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

Uk+1
i, j

Uk+1
i+1, j

Uk+1
i+1, j+1

Uk+1
i, j+1

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎝

rhsi, j
rhsi+1, j

rhsi+1, j+1

rhsi, j+1

⎞
⎟⎟⎠ , (11)

where Q = 1 + 4H1 + H2,

rhsi, j = H1(U
k+1
i−1, j +Uk

i+1, j +Uk
i−1, j ) + H1(U

k+1
i, j−1 +Uk

i, j+1 +Uk
i, j−1)

+ (1 − τW1 − 4H1 + H2)U
k
i, j + τ

k−1∑
m=1

(Wk−m − Wk−m+1)U
m
i, j

+ τWkU
0
i, j + τ f k+1/2

i, j ,
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rhsi+1, j = H1(U
k+1
i+2, j +Uk

i+2, j +Uk
i, j ) + H1(U

k+1
i+1, j−1 +Uk

i+1, j+1 +Uk
i+1, j−1)

+ (1 − τW1 − 4H1 + H2)U
k
i+1, j + τ

k−1∑
m=1

(Wk−m − Wk−m+1)U
m
i+1, j

+ τWkU
0
i+1, j + τ f k+1/2

i+1, j ,

rhsi+1, j+1 = H1(U
k+1
i+2, j+1 +Uk

i+2, j+1 +Uk
i, j+1) + H1(U

k+1
i+1, j+2 +Uk

i+1, j+2 +Uk
i+1, j )

+ (1 − τW1 − 4H1 + H2)U
k
i+1, j+1 + τ

k−1∑
m=1

(Wk−m − Wk−m+1)U
m
i+1, j+1

+ τWkU
0
i+1, j+1 + τ f k+1/2

i+1, j+1,

rhsi, j+1 = H1(U
k+1
i−1, j+1 +Uk

i+1, j+1 +Uk
i−1, j+1) + H1(U

k+1
i, j+2 +Uk

i, j+2 +Uk
i, j )

+ (1 − τW1 − 4H1 + H2)U
k
i, j+1 + τ

k−1∑
m=1

(Wk−m − Wk−m+1)U
m
i, j+1

+ τWkU
0
i, j+1 + τ f k+1/2

i, j+1 .

The coefficients matrix in 11 can be inverted to get the four-point FEG equation

⎛
⎜⎜⎜⎜⎜⎝

Uk+1
i, j

Uk+1
i+1, j

Uk+1
i+1, j+1

Uk+1
i, j+1

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎝

A1 A2 A3 A2

A2 A1 A2 A3

A3 A2 A1 A2

A2 A3 A2 A1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

rhsi, j
rhsi+1, j

rhsi+1, j+1

rhsi, j+1

⎞
⎟⎟⎠ , (12)

where

A1 = 14H2
1 + 8H1H2 + H2

2 + 8H1 + 8H2 + 1

(2H1 + H2 + 1)(6H1 + H2 + 1)(1 + 4H1 + H2)

A2 = H1

(2H1 + H2 + 1)(6H1 + H2 + 1)
,

A3 = 2H2
1

(2H1 + H2 + 1)(6H1 + H2 + 1)(4H1 + H2 + 1)
.

Figure 1 depicts the grouping of mesh points into blocks of four points with mesh size
Mx = My = 10. It is obvious that the execution of Eq. (12) is only applicable for the
grouped points. Therefore, the implementation of the FEGmethod is carried out by applying
Eq. (12) to each group in Fig. 1. Before moving to the next time level, we calculate the
remaining ungrouped points near the boundaries by utilizing Eq. (10). At each time level,
the computation process is carried out in an iterative manner until the final time level N is
reached. For convenience, the FEG method is defined in Algorithm 1.

123



Int. J. Appl. Comput. Math (2022) 8 :188 Page 7 of 28 188

Algorithm 1 Solution algorithm using the FEG iterative method
1. Divide the grid points of the discretized solution domain into groups of four points as shown in Fig. 1.
2. Use Eq. (12) to iterate the solutions at all grouped points � at time level k + 1.
3. Use Eq. (10) to iterate the solutions at the ungrouped points � near the right and top boundaries.
4. Test the convergence. If the iterative solutions converge, move to the next time level. Otherwise, repeat

the iteration process at the same time level in steps 2 and 3.
5. Once the targeted time level is reached, print the numerical results.

TheModified Fractional Explicit Group (MFEG) Method

Another approximation scheme for Eq. (1) is obtained by Taylor’s expansion and considering
points at mesh size of 2h. The C-N difference scheme with 2h spacing is as follows

uk+1
i, j − uki, j

τ
+ W1u

k
i, j +

k−1∑
m=1

(Wk−m+1 − Wk−m) umi, j − Wku
0
i, j + σ

(
uk+1
i, j − uki, j
21−α

)

= 1

2

[
uk+1
i+2, j − 2uk+1

i, j + uk+1
i−2, j

4h2
+ uki+2, j − 2uki, j + uki−2, j

4h2

]

+ 1

2

[
uk+1
i, j+2 − 2uk+1

i, j + uk+1
i, j−2

4h2
+ uki, j+2 − 2uki, j + uki, j−2

4h2

]

+ f k+1/2
i, j + O(τ 2−α + h2), (13)

On simplificationwithUk
i, j being the numerical approximation of uki, j , the following equation

is obtained

(1 + 4G1 + G2)U
k+1
i, j = G1(U

k+1
i+2, j +Uk+1

i−2, j +Uk
i+2, j +Uk

i−2, j ) + G1(U
k+1
i, j+2 +Uk+1

i, j−2

+Uk
i, j+2 +Uk

i, j−2) + (1 − τW1 − 4G1 + G2)U
k
i, j

+ τ

k−1∑
m=1

(Wk−m − Wk−m+1)U
m
i, j + τWkU

0
i, j + τ f k+1/2

i, j , (14)

where G1 = τ
8h2

and G2 = τσ
21−α .

Now applying the C-N difference formula with 2h spacing (14) to any group of four points
will lead to the following (4 × 4) system

⎛
⎜⎜⎝

S −G1 0 −G1

−G1 S −G1 0
0 −G1 S −G1

−G1 0 −G1 S

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

Uk+1
i, j

Uk+1
i+2, j

Uk+1
i+2, j+2

Uk+1
i, j+2

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎝

rhsi, j
rhsi+2, j

rhsi+2, j+2

rhsi, j+2

⎞
⎟⎟⎠ , (15)

where S = 1 + 4G1 + G2,

rhsi, j = G1(U
k+1
i−2, j +Uk

i+2, j +Uk
i−2, j ) + G1(U

k+1
i, j−2 +Uk

i, j+2 +Uk
i, j−2)

+ (1 − τW1 − 4G1 + G2)U
k
i, j + τ

k−1∑
m=1

(Wk−m − Wk−m+1)U
m
i, j

+ τWkU
0
i, j + τ f k+1/2

i, j ,

rhsi+2, j = G1(U
k+1
i+4, j +Uk

i+4, j +Uk
i, j ) + G1(U

k+1
i+2, j−2 +Uk

i+2, j+2 +Uk
i+2, j−2)
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+ (1 − τW1 − 4G1 + G2)U
k
i+2, j + τ

k−1∑
m=1

(Wk−m − Wk−m+1)U
m
i+2, j

+ τWkU
0
i+2, j + τ f k+1/2

i+2, j ,

rhsi+2, j+2 = G1(U
k+1
i+4, j+2 +Uk

i+4, j+2 +Uk
i, j+2) + G1(U

k+1
i+2, j+4 +Uk

i+2, j+4 +Uk
i+2, j )

+ (1 − τW1 − 4G1 + G2)U
k
i+2, j+2 + τ

k−1∑
m=1

(Wk−m − Wk−m+1)U
m
i+2, j+2

+ τWkU
0
i+2, j+2 + τ f k+1/2

i+2, j+2,

rhsi, j+2 = G1(U
k+1
i−2, j+2 +Uk

i+2, j+2 +Uk
i−2, j+2) + G1(U

k+1
i, j+4 +Uk

i, j+4 +Uk
i, j )

+ (1 − τW1 − 4G1 + G2)U
k
i, j+2 + τ

k−1∑
m=1

(Wk−m − Wk−m+1)U
m
i, j+2

+ τWkU
0
i, j+2 + τ f k+1/2

i, j+2 .

The above system can be rewritten in explicit form which results in the four-point MFEG
equation ⎛

⎜⎜⎜⎝

Uk+1
i, j

Uk+1
i+2, j

Uk+1
i+2, j+2

Uk+1
i, j+2

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

B1 B2 B3 B2

B2 B1 B2 B3

B3 B2 B1 B2

B2 B3 B2 B1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

rhsi, j
rhsi+2, j

rhsi+2, j+2

rhsi, j+2

⎞
⎟⎟⎠ , (16)

where

B1 = 14G2
1 + 8G1G2 + G2

2 + 8G1 + 8G2 + 1

(2G1 + G2 + 1)(6G1 + G2 + 1)(1 + 4G1 + G2)

B2 = G1

(2G1 + G2 + 1)(6G1 + G2 + 1)
,

B3 = 2G2
1

(2G1 + G2 + 1)(6G1 + G2 + 1)(4G1 + G2 + 1)
.

In the MFEG method, the mesh points of the discretized solution domain � are arranged
into several groups. Each group comprise four points of type� (shown in Fig. 2). TheMFEG
Eq. (16) is applied to generate iterations on each group in Fig. 2. Prior going to the next time
level, the remaining points of the mesh (� and �) can be obtained directly once utilizing the
following sequence:

1. The skewed C-N difference formula obtained by rotating the x − y axis 45◦ clockwise is
used for � points. With K1 = τ/4h2 and K2 = (τσ )/21−α , the skewed C-N difference
scheme for Eq. (1) is given by

(1 + 4K1 + K2)U
k+1
i, j

= K1(U
k+1
i+1, j−1 +Uk+1

i−1, j+1 +Uk
i+1, j−1 +Uk

i−1, j+1) + K1(U
k+1
i+1, j+1

+Uk+1
i−1, j−1 +Uk

i+1, j+1 +Uk
i−1, j−1) + (1 − τW1 − 4K1 + K2)U

k
i, j

+ τ

k−1∑
m=1

(Wk−m − Wk−m+1)U
m
i, j + τWkU

0
i, j + τ f k+1/2

i, j , (17)
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Fig. 2 Grouping of mesh points for the MFEG method with Mx = My = 10

2. The C-N difference formula (10) is utilized for � points.

The MFEG method is illustrated in Algorithm 2. From the described solution procedure,
it may be observed that the MFEG method involves only a quarter of the mesh points in
the iterative process at each time level. Due to this reduction of points that take part in the
iterative process, the MFEG method is expected to save more CPU time in solving Eq. (1).

Algorithm 2 Solution algorithm using the MFEG iterative method
1. Divide the grid points of the discretized solution domain into three types �, � and � as depicted in Fig.

2.
2. Arrange all the � points into group of four points.
3. Use Eq. (16) to iterate the solutions at the grouped points � at time level k + 1.
4. Test the convergence. If the iterative solutions converge, move to step 5. Otherwise, repeat the iteration

process at the same time level in step 3.
5. The solutions at the residual grid points � and � are computed directly once as follows:

(a) Use Eq. (17) to compute the solutions at the points of type �.
(b) For the residual points of type �, Eq. (10) is employed.

6. Once the targeted time level is reached, print the numerical results.

Stability Analysis

This section is devoted to the stability of the C-N difference schemes (10) and (14), which are
the basis of the FEG and MFEG methods, respectively. The following lemma is introduced
for the convenience of our analysis

Lemma 1 The coefficients Wn in Eq. (14) satisfy

1. Wk−m > Wk−m+1, m = 0, 1, 2, . . . , k − 1.
2.

∑k−1
m=1 (Wk−m − Wk−m+1) = W1 − Wk.
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Stability of the h-Spaced C-N Numerical Scheme

Let Û k
i, j be the approximate solution of (10), and define

ϑk
i, j = Uk

i, j − Û k
i, j , (18)

Then by setting (18) into (10), we get

(1 + 4H1 + H2)ϑ
k+1
i, j − H1(ϑ

k+1
i+1, j + ϑk+1

i−1, j ) − H1(ϑ
k+1
i, j+1 + ϑk+1

i, j−1)

= (1 − τW1 − 4H1 + H2)ϑ
k
i, j + H1(ϑ

k
i+1, j + ϑk

i−1, j ) + H1(ϑ
k
i, j+1 + ϑk

i, j−1)

+ τ

k−1∑
m=1

(Wk−m − Wk−m+1) ϑm
i, j + τWkϑ

0
i, j .

(19)

The Fourier series for ϑk(x, y) is

ϑk(x, y) =
∞∑

Z1=−∞

∞∑
Z2=−∞

λk(Z1, Z2)e
2π I (Z1x/L+Z2 y/L),

where I = √−1 and the Fourier coefficients λk(Z1, Z2) is given by

λk(Z1, Z2) = 1

L2

∫ L

0

∫ L

0
ϑk(x, y)e−2π I (Z1x/L+Z2 y/L)dxdy, (20)

Introducing the following norm

‖ϑk‖2 =
⎛
⎝

My−1∑
j=1

Mx−1∑
i=1

�y�x |ϑk
i, j |2

⎞
⎠

1/2

=
(∫ L

0

∫ L

0
|ϑk

i, j |2dxdy
)1/2

.

Applying the Parseval’s equality
∫ L

0

∫ L

0
|ϑk

i, j |2dxdy =
∞∑

Z2=−∞

∞∑
Z1=−∞

|λk(Z1, Z2)|2,

we get

‖ϑk‖2 =
⎛
⎝ ∞∑

Z2=−∞

∞∑
Z1=−∞

|λk(Z1, Z2)|2
⎞
⎠

1/2

, (21)

With γ1 = 2π Z1/L and γ2 = 2π Z2/L , and based on the above analysis, we assume that
the solutions of Eq. (19) is of the following form

ϑk
i, j = λkeI (γ1i�x+γ2 j�y). (22)

Lemma 2 Suppose λk is defined by (20). If 2 + 2H2 − 2τW1 ≥ 0, then we have

|λk+1| ≤ |λ0|, k = 0, 1, 2, . . . , N − 1.

Proof Setting ϑk
i, j = λkeI (γ1i�x+γ2 j�y) into Eq. (19), we obtain

(1 + 4H1 + H2)λ
k+1eI (γ1i�x+γ2 j�y) − H1λ

k+1(eI (γ1(i+1)�x+γ2 j�y)

+ eI (γ1(i−1)�x+γ2 j�y)) − H1λ
k+1(eI (γ1i�x+γ2( j+1)�y) + eI (γ1i�x+γ2( j−1)�y))
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= (1 − τW1 − 4H1 + H2)λ
keI (γ1i�x+γ2 j�y) + H1λ

k(eI (γ1(i+1)�x+γ2 j�y)

+ eI (γ1(i−1)�x+γ2 j�y)) + H1λ
k(eI (γ1i�x+γ2( j+1)�y) + eI (γ1i�x+γ2( j−1)�y))

+ τ

k−1∑
m=1

(Wk−m − Wk−m+1) λmeI (γ1i�x+γ2 j�y) + τWkλ
0eI (γ1i�x+γ2 j�y). (23)

Upon simplification, we can get

λk+1 =1 − ρ1 − ρ2 + H2

1 + ρ1 + ρ2 + H2
λk

+ τ

1 + ρ1 + ρ2 + H2

[
k−1∑
m=1

(Wk−m − Wk−m+1) λm − W1λ
k − Wkλ

0

]
,

(24)

where

ρ1 = 4H1 sin
2
(

γ1�x

2

)
, ρ2 = 4H1 sin

2
(

γ2�y

2

)
.

We start with k = 0 in Eq. (27). Since ρ1, ρ2 ≥ 0, then

|λ1| =
∣∣∣∣1 − ρ1 − ρ2 + H2

1 + ρ1 + ρ2 + H2

∣∣∣∣|λ0| ≤ |λ0|

Now, assume that |λs+1| ≤ |λ0|, s = 0, 1, . . . , k − 1. We need to prove this for m = k.
Utilizing Eq. (27), we get

|λk+1| ≤
∣∣∣∣1 − ρ1 − ρ2 + H2 − τW1

1 + ρ1 + ρ2 + H2

∣∣∣∣|λk |

+
∣∣∣∣ τ

1 + ρ1 + ρ2 + H2

∣∣∣∣
[ k−1∑
m=1

| (Wk−m − Wk−m+1) ||λk | + |Wk ||λ0|
]
.

Using induction hypothesis and lemma 1, we obtain

|λk+1| ≤ |1 − ρ1 − ρ2 + H2 − τW1|
1 + ρ1 + ρ2 + H2

|λ0| + τW1

1 + ρ1 + ρ2 + H2
|λ0|.

Consider the following two cases:
Case 1. If 1 − ρ1 − ρ2 + H2 − τW1 > 0, then we have

|λk+1| ≤ 1 − ρ1 − ρ2 + H2

1 + ρ1 + ρ2 + H2
|λ0| ≤ |λ0|.

Case 2. 1 − ρ1 − ρ2 + H2 − τW1 < 0, then we have

|λk+1| ≤ −1 + ρ1 + ρ2 − H2 + 2τW1

1 + ρ1 + ρ2 + H2
|λ0|.

Here,

|λk+1| ≤ |λ0|
⇔ −1 + ρ1 + ρ2 − H2 + 2τW1 ≤ 1 + ρ1 + ρ2 + H2

⇔ 2 + 2H2 − 2τW1 ≥ 0.

The proof is completed by mathematical induction. 
�
Theorem 1 The C-N difference scheme (10) is stable if 2 + 2H2 − 2τW1 ≥ 0.
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Proof Utilizing lemma 2 and Parseval’s equality, we obtain

‖ϑk‖2 =
My−1∑
j=1

Mx−1∑
i=1

�y�x |ϑk
i, j |2 = �y�x

My−1∑
j=1

Mx−1∑
i=1

∣∣λkeI (γ1i�x+γ2 j�y)
∣∣2

= �y�x

My−1∑
j=1

Mx−1∑
i=1

|λk |2 ≤ �y�x

My−1∑
j=1

Mx−1∑
i=1

|λ0|2

= �y�x

My−1∑
j=1

Mx−1∑
i=1

∣∣λ0eI (γ1i�x+γ2 j�y)
∣∣2 = ‖ϑ0‖2.

Thus, the difference scheme (10) is stable. 
�

Stability of the 2h-Spaced C-N Numerical Scheme

Let Ũ k
i, j be the approximate solution of (14), and define

ζ k
i, j = Uk

i, j − Ũ k
i, j . (25)

Substituting (25) into (14), we obtain

(1 + 4G1 + G2)ζ
k+1
i, j − G1(ζ

k+1
i+2, j + ζ k+1

i−2, j ) − G1(ζ
k+1
i, j+2 + ζ k+1

i, j−2)

= (1 − τW1 − 4G1 + G2)ζ
k
i, j + G1(ζ

k
i+2, j + ζ k

i−2, j ) + G1(ζ
k
i, j+2 + ζ k

i, j−2)

+ τ

k−1∑
m=1

(Wk−m − Wk−m+1) ζm
i, j + τWkζ

0
i, j .

(26)

The Fourier series for ζ k(x, y) is

ζ k(x, y) =
∞∑

Z1=−∞

∞∑
Z2=−∞

ψk(Z1, Z2)e
2π I (Z1x/L+Z2 y/L),

where I = √−1 and the Fourier coefficients ψk(Z1, Z2) are given by

ψk(Z1, Z2) = 1

L2

∫ L

0

∫ L

0
ζ k(x, y)e−2π I (Z1x/L+Z2 y/L)dxdy. (27)

Introducing the following norm

‖ζ k‖2 =
⎛
⎝

My−1∑
j=1

Mx−1∑
i=1

�y�x |ζ k
i, j |2

⎞
⎠

1/2

=
(∫ L

0

∫ L

0
|ζ k
i, j |2dxdy

)1/2

.

Applying the Parseval’s equality
∫ L

0

∫ L

0
|ζ k
i, j |2dxdy =

∞∑
Z2=−∞

∞∑
Z1=−∞

|ψk(Z1, Z2)|2,

we get

‖ζ k‖2 =
⎛
⎝ ∞∑

Z2=−∞

∞∑
Z1=−∞

|ψk(Z1, Z2)|2
⎞
⎠

1/2

. (28)
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Based on the above analysis, we assume that the solution of Eq. (26) is of the following form

ζ k
i, j = ψkeI (γ1i�x+γ2 j�y). (29)

Lemma 3 Suppose ψk is defined by (27). If 2 + 2G2 − 2τW1 ≥ 0, then we have

|ψk+1| ≤ |ψ0|, k = 0, 1, 2, . . . , N − 1.

Proof Substituting ζ k
i, j = ψkeI (γ1i�x+γ2 j�y) into Eq. (26), we get

(1 + 4G1 + G2)ψ
k+1eI (γ1i�x+γ2 j�y) − G1ψ

k+1(eI (γ1(i+2)�x+γ2 j�y)

+ eI (γ1(i−2)�x+γ2 j�y)) − G1ψ
k+1(eI (γ1i�x+γ2( j+2)�y) + eI (γ1i�x+γ2( j−2)�y))

= (1 − τW1 − 4G1 + G2)ψ
keI (γ1i�x+γ2 j�y) + G1ψ

k(eI (γ1(i+2)�x+γ2 j�y)

+ eI (γ1(i−2)�x+γ2 j�y)) + G1ψ
k(eI (γ1i�x+γ2( j+2)�y) + eI (γ1i�x+γ2( j−2)�y))

+ τ

k−1∑
m=1

(Wk−m − Wk−m+1) ψmeI (γ1i�x+γ2 j�y) + τWkψ
0eI (γ1i�x+γ2 j�y). (30)

After simplification, we can get

ψk+1 =1 − κ1 − κ2 + G2

1 + κ1 + κ2 + G2
ψk

+ τ

1 + κ1 + κ2 + G2

[
k−1∑
m=1

(Wk−m − Wk−m+1) ψm − W1ψ
k − Wkψ

0

]
,

(31)

where

κ1 = 4G1 sin
2(γ1�x), κ2 = 4G1 sin

2(γ2�y).

Letting k = 0 in Eq. (31) and using that κ1, κ2 ≥ 0, we obtain

|ψ1| =
∣∣∣∣1 − κ1 − κ2 + G2

1 + κ1 + κ2 + G2

∣∣∣∣|ψ0| ≤ |ψ0|

Now, suppose that |ψ s+1| ≤ |ψ0|, s = 0, 1, . . . , k − 1. We must prove it holds for m = k.
Using Eq. (31), we get

|ψk+1| ≤
∣∣∣∣1 − κ1 − κ2 + G2 − τW1

1 + κ1 + κ2 + G2

∣∣∣∣|ψk |

+
∣∣∣∣ τ

1 + κ1 + κ2 + G2

∣∣∣∣
[ k−1∑
m=1

| (Wk−m − Wk−m+1) ||ψk | + |Wk ||ψ0|
]
.

By the induction hypothesis and lemma 1, we get

|ψk+1| ≤ |1 − κ1 − κ2 + G2 − τW1| + τW1

1 + κ1 + κ2 + G2
|ψ0|.

Consider the following two cases:
Case 1. If 1 − κ1 − κ2 + G2 − τW1 > 0, then we have

|ψk+1| ≤ 1 − κ1 − κ2 + G2

1 + κ1 + κ2 + G2
|ψ0| ≤ |ψ0|.
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Case 2. 1 − κ1 − κ2 + G2 − τW1 < 0, then we have

|ψk+1| ≤ −1 + κ1 + κ2 − G2 + 2τW1

1 + κ1 + κ2 + G2
|ψ0|.

Here,

|ψk+1| ≤ |ψ0|
⇔ −1 + κ1 + κ2 − G2 + 2τW1 ≤ 1 + κ1 + κ2 + G2

⇔ 2 + 2G2 − 2τW1 ≥ 0.

This completes the proof. 
�
Theorem 2 The C-N difference scheme (14) is stable if 2 + 2G2 − 2τW1 ≥ 0.

Proof Utilizing lemma 3 and Parseval’s equality, we obtain

‖ζ k‖2 =
My−1∑
j=1

Mx−1∑
i=1

�y�x |ζ k
i, j |2 = �y�x

My−1∑
j=1

Mx−1∑
i=1

∣∣ψkeI (γ1i�x+γ2 j�y)
∣∣2

= �y�x

My−1∑
j=1

Mx−1∑
i=1

|ψk |2 ≤ �y�x

My−1∑
j=1

Mx−1∑
i=1

|ψ0|2

= �y�x

My−1∑
j=1

Mx−1∑
i=1

∣∣ψ0eI (γ1i�x+γ2 j�y)
∣∣2 = ‖ζ 0‖2,

which means that the difference scheme (14) is stable. 
�

Convergence Analysis

In this section, the convergence of the proposed methods is investigated. By subtracting Eq.
(10) from Eq. (9) and defining εki, j = u(xi , y j , tk) − Uk

i, j , the following error equation is
obtained

(1 + 4H1 + H2)ε
k+1
i, j − H1(ε

k+1
i+1, j + εk+1

i−1, j ) − H1(ε
k+1
i, j+1 + εk+1

i, j−1)

= (1 − τW1 − 4H1 + H2)ε
k
i, j + H1(ε

k
i+1, j + εki−1, j ) + H1(ε

k
i, j+1 + εki, j−1)

+ τ

k−1∑
m=1

(Wk−m − Wk−m+1) εmi, j + τWkε
0
i, j + τ Rk+1/2

i, j .

(32)

From Eq. (9), there is a positive constant C1 such that

|Rk+1/2
i, j | ≤ C1(τ

2−α + h2). (33)

Similar to the stability analysis, εk(x, y) and Rk+1/2(x, y) can be expanded in Fourier
series as

εk(x, y) =
∞∑

Z2=−∞

∞∑
Z1=−∞

ηk(Z1, Z2)e
2π I (Z1x/L+Z2 y/L),
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Rk+1/2(x, y) =
∞∑

Z2=−∞

∞∑
Z1=−∞

ϕk(Z1, Z2)e
2π I (Z1x/L+Z2 y/L),

where the Fourier coefficients ηk and ϕk are

ηk(Z1, Z2) = 1

L2

∫ L

0

∫ L

0
εk(x, y)e−2π I (Z1x/L+Z2 y/L)dxdy,

ϕk(Z1, Z2) = 1

L2

∫ L

0

∫ L

0
Rk+1/2(x, y)e−2π I (Z1x/L+Z2 y/L)dxdy.

By making use of the Parseval’s equality and L2 norm, we obtain

‖εk‖2 =
⎛
⎝

My−1∑
j=1

Mx−1∑
i=1

�y�x |εki, j |2
⎞
⎠

1/2

=
⎛
⎝ ∞∑

Z1=−∞

∞∑
Z2=−∞

|ηk(Z1, Z2)|2
⎞
⎠

1/2

, (34)

‖Rk+1/2‖2 =
⎛
⎝

My−1∑
j=1

Mx−1∑
i=1

�y�x |Rk+1/2
i, j |2

⎞
⎠

1/2

=
⎛
⎝ ∞∑

Z1=−∞

∞∑
Z2=−∞

|ϕk(Z1, Z2)|2
⎞
⎠

1/2

. (35)

Next, we suppose the solutions of Eq. (32) are as follows

εki, j = ηkeI (γ1i�x+γ2 j�y), Rk+1/2
i, j = ϕkeI (γ1i�x+γ2 j�y). (36)

Using the assumptions in (36) and considering (32), we obtain

(1 + 4H1 + H2)η
k+1eI (γ1i�x+γ2 j�y) − H1η

k+1(eI (γ1(i+1)�x+γ2 j�y)

+ eI (γ1(i−1)�x+γ2 j�y)) − H1η
k+1(eI (γ1i�x+γ2( j+1)�y) + eI (γ1i�x+γ2( j−1)�y))

= (1 − τW1 − 4H1 + H2)η
keI (γ1i�x+γ2 j�y) + H1η

k(eI (γ1(i+1)�x+γ2 j�y)

+ eI (γ1(i−1)�x+γ2 j�y)) + H1η
k(eI (γ1i�x+γ2( j+1)�y) + eI (γ1i�x+γ2( j−1)�y))

+ τ

k−1∑
m=1

(Wk−m − Wk−m+1) ηmeI (γ1i�x+γ2 j�y) + τWkη
0eI (γ1i�x+γ2 j�y)

+ τϕk+1/2eI (γ1i�x+γ2 j�y). (37)

After simplification, we have

ηk+1 = 1 − ρ1 − ρ2 + H2

1 + ρ1 + ρ2 + H2
ηk

+ τ

1 + ρ1 + ρ2 + H2

[
k−1∑
m=1

(Wk−m − Wk−m+1) ηm − W1η
k + ϕk+1/2

]
,

(38)

where ρ1 and ρ2 are as defined in the previous section.
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Due to the convergence of the series in the right hand side of Eq. (35), there is a positive
constant C2 such that

|ϕk+1/2| = |ϕk+1/2(Z1, Z2)| ≤ C2|ϕ1/2(Z1, Z2)| = C2|ϕ1/2|. (39)

Lemma 4 Suppose ηk+1 and ϕk+1/2 satisfy Eq. (38). If 2 + 2H2 − τ(2W1 − Wk) ≥ 0, then
we have

|ηk+1| ≤ C2(k + 1)τ |ϕ1/2|, k = 0, 1, . . . , N − 1.

Proof Noticing that η0 = η0(Z1, Z2) = 0. Then, for k = 0, we have

|η1| =
∣∣∣∣ 1

1 + ρ1 + ρ2 + H2

∣∣∣∣|τϕ1/2| ≤ τ |ϕ1/2| ≤ C2τ |ϕ1/2|.

Now, assume that |ηs+1| ≤ C2(s + 1)τ |ϕ1/2|, s = 0, 1, . . . , k − 1. We need to prove this for
s = k. From Eq. (38), we have

|ηk+1| ≤
∣∣∣∣1 − ρ1 − ρ2 + H2 − τW1

1 + ρ1 + ρ2 + H2

∣∣∣∣|ηk |

+
∣∣∣∣ τ

1 + ρ1 + ρ2 + H2

∣∣∣∣
[ k−1∑
m=1

| (Wk−m − Wk−m+1) ||ηk | + |ϕk+1/2|
]
.

Utilizing induction hypothesis, lemma 1 and Eq. (39), we get

|ηk+1| ≤
[ |1 − ρ1 − ρ2 + H2 − τW1| + τ(W1 − Wk)

1 + ρ1 + ρ2 + H2
k + 1

1 + ρ1 + ρ2 + H2

]
C2τ |ϕ1/2|.

If 1 − ρ1 − ρ2 + H2 − τW1 > 0, then we have

|ηk+1| ≤
[
1 − ρ1 − ρ2 + H2 − τWk

1 + ρ1 + ρ2 + H2
k + 1

1 + ρ1 + ρ2 + H2

]
C2τ |ϕ1/2|

≤ C2(k + 1)τ |ϕ1/2|.
If 1 − ρ1 − ρ2 + H2 − τW1 < 0, then we have

|ηk+1| ≤
[−1 + ρ1 + ρ2 − H2 + τ(2W1 − Wk)

1 + ρ1 + ρ2 + H2
k + 1

1 + ρ1 + ρ2 + H2

]
C2τ |ϕ1/2|.

Here,

|ηk+1| ≤ C2(k + 1)τ |ϕ1/2|
⇔ −1 + ρ1 + ρ2 − H2 + τ(2W1 − Wk) ≤ 1 + ρ1 + ρ2 + H2

⇔ 2 + 2H2 − τ(2W1 − Wk) ≥ 0.

This completes the proof. 
�
Theorem 3 The C-N difference scheme (10) is convergent and the order of convergence is
O(τ 2−α + h2).
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Proof Using lemma 4 and Parseval’s equality, we obtain

‖εk‖22 =
My−1∑
j=1

Mx−1∑
i=1

�y�x |εki, j |2 = �y�x

My−1∑
j=1

Mx−1∑
i=1

∣∣∣∣ηkeI (γ1i�x+γ2 j�y)
∣∣∣∣
2

= �y�x

My−1∑
j=1

Mx−1∑
i=1

|ηk |2 ≤ C2
2 (k + 1)2τ 2�y�x

My−1∑
j=1

Mx−1∑
i=1

|ϕ1/2|2

= C2
2 (k + 1)2τ 2�y�x

My−1∑
j=1

Mx−1∑
i=1

∣∣∣∣ϕ1/2eI (γ1i�x+γ2 j�y)
∣∣∣∣
2

= C2
2 (k + 1)2τ 2‖R1/2‖22.

Noticing that (k + 1)τ ≤ T and letting C = C1C2T . From Eq. (33), we have

‖εk‖2 ≤ C(τ 2−α + h2),

which completes the proof. 
�
Theorem 4 The C-N difference scheme (14) is convergent and the order of convergence is
O(τ 2−α + h2).

Proof The proof is similar to Theorem 3. 
�

Numerical Experiments

In this part, three test problems with known exact solutions are simulated onWindows 10 (64
bit) Intel (R)Core (TM) i7-8550UCPU2.00GHz, 8GBofRAMutilizingMATLABsoftware.
The numerical results are obtained at three different final times, namely, T = 4, T = 8 and
T = 12 with the spatial domain being restricted to � = (0, 1)2. The proposed methods
are combined with the Gauss-Seidel iterative scheme with error tolerance of 10−5 to solve
the test problems of the form in Eq. (1). Throughout the discussion, we let u, UC−N , UFEG

and UMFEG denote the exact, C-N, FEG and MFEG solutions, respectively. In addition, the
computational orders of the presented methods are calculated using the formula [47]

C-Order = log(E∞(τ, h1)/E∞(τ, h2))

log(h1/h2)

Test Problem 6.1 In the first problem, consider the source term as follows

f (x, y, t) =
(
2t + 2

�(3 − α)
t2−α + 2t2π2

)
cos(πx) cos(π y),

where the exact solution is given by

u(x, y, t) = t2 cos(πx) cos(π y).

Tables 1, 2 and 3 show the numerical results of the elapsed time (in seconds), number of
iterations (Ite) andmaximumabsolute error (E∞(τ, h)) for theC-N, FEGandMFEGschemes
with T = 4, N = 100, α=0.1, 0.3, 0.7 for different sizes of space steps, respectively. Figure
3 presents a comparison of the exact solution and other numerical solutions obtained at
α = 0.3, N = 100, h−1 = 42 and y = 0.119. In addition, the graphical error representation
of the C-N scheme for T = 4, α = 0.3, N = 100 and h−1 = 42 is depicted in Fig. 4 while
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Table 1 Comparison between C-N, FEG and MFEG methods for Test Problem 6.1 with α = 0.1, T = 4 and
N = 100

h−1 C-N FEG MFEG

Time Ite E∞(τ, h) Time Ite E∞(τ, h) Time Ite E∞(τ, h)

10 0.4175 23 2.2757E-02 0.3356 15 2.2754E-02 0.0945 6 8.6466E-02

18 2.3110 52 6.9678E-03 1.0515 31 6.9591E-03 0.2451 12 2.7489E-02

26 5.8888 92 3.3755E-03 4.1425 53 3.3677E-03 0.4943 19 1.3548E-02

34 18.2440 140 1.9430E-03 10.1393 80 1.9427E-03 1.1403 28 7.9289E-03

42 39.2082 196 1.2113E-03 20.9560 111 1.2394E-03 2.6987 37 5.1846E-03

Table 2 Comparison between C-N, FEG and MFEG methods for Test Problem 6.1 with α = 0.3, T = 4 and
N = 100

h−1 C-N FEG MFEG

Time Ite E∞(τ, h) Time Ite E∞(τ, h) Time Ite E∞(τ, h)

10 0.3476 22 2.2785E-02 0.2483 15 2.2778E-02 0.0920 6 8.6576E-02

18 1.6289 51 6.9747E-03 1.0755 31 6.9638E-03 0.2450 12 2.7522E-02

26 6.5401 90 3.3776E-03 3.8171 52 3.3693E-03 0.6294 19 1.3561E-02

34 18.1564 138 1.9419E-03 9.9377 79 1.9423E-03 1.2881 27 7.9373E-03

42 39.9924 194 1.2115E-03 21.2502 110 1.2385E-03 2.1786 37 5.1877E-03

Table 3 Comparison between C-N, FEG and MFEG methods for Test Problem 6.1 with α = 0.7, T = 4 and
N = 100

h−1 C-N FEG MFEG

Time Ite E∞(τ, h) Time Ite E∞(τ, h) Time Ite E∞(τ, h)

10 0.4374 20 2.2831E-02 0.3357 18 2.2823E-02 0.1252 6 8.6801E-02

18 1.5666 47 6.9786E-03 0.924 28 6.9697E-03 0.2853 11 2.7583E-02

26 4.4705 83 3.3703E-03 2.9016 48 3.3642E-03 0.5462 17 1.3582E-02

34 11.6037 126 1.9280E-03 6.6387 72 1.9324E-03 1.1091 25 7.9436E-03

42 28.1122 177 1.1913E-03 13.7709 101 1.2262E-03 1.7506 34 5.1873E-03

its second order convergence can be observed from the results in Table 4. From the data in
these tables and figures, the convergence of the presented methods is confirmed. Comparing
the resolution of the tested methods, it may be observed that the C-N and FEG schemes have
almost the same degree of accuracy while the magnitude of absolute errors for the MFEG
method is slightly larger than the said schemes. This is because the iterative process for the
C-N and FEG schemes is implemented on a mesh size of h while the iterative process of
the MFEG method is carried out on a mesh size of 2h; hence, increasing the error term by
4. Figure 5 compares the computing times and iteration numbers of the tested methods and
shows that the FEG and MFEG methods are more efficient than the C-N difference scheme
in terms of execution time and number of iterations.
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Fig. 3 Comparison of exact and numerical solutions for Test Problem 6.1 with α = 0.3, T = 4, h−1 = 42,
N = 100 and y = 0.119

Fig. 4 Surface error plot of the C-N method for Test Problem 6.1 with α = 0.3, T = 4, h−1 = 42 and
N = 100
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Table 4 Maximum errors and computational orders of the C-N method for Test problem 6.1 with T = 1 and
τ = 0.001

α = 0.1 α = 0.5 α = 0.9

h−1 E∞(τ, h) C-Order h−1 E∞(τ, h) C-Order h−1 E∞(τ, h) C-Order

6 3.6027E-03 − 6 3.5845E-03 − 6 3.5656E-03 −
10 1.3960E-03 1.8560 10 1.3888E-03 1.8562 10 1.3818E-03 1.8557

14 7.1168E-04 2.0024 14 7.0804E-04 2.0022 14 7.0537E-04 1.9984

18 4.2523E-04 2.0492 18 4.2318E-04 2.0480 18 4.1537E-04 2.1071

Fig. 5 The graphs of (a) elapsed time and (b) number of iterations of the proposed methods for Test Problem
6.1 with α = 0.3

Test Problem 6.2 In the second problem, we consider the source term given by

f (x, y, t) = (
(1 + α)tα + �(2 + α)t − 4t1+α(x − 0.5)2 − 4t1+α(y − 0.5)2

+ 4t1+α
)
e−(x−0.5)2−(y−0.5)2 ,

and the corresponding exact solution

u(x, y, t) = e−(x−0.5)2−(y−0.5)2 t1+α.

The initial and boundary conditions are extracted from the exact solution. The exact, C-N,
FEG andMFEG solutions at α = 0.5, N = 100, h−1 = 42 and y = 0.5 are portrayed in Fig.
6, while Fig. 7 demonstrates the surface of absolute errors of the FEG method for T = 8 and
α = 0.5, N = 100 and h−1 = 42. From the figures, it can be observed that the numerical
solutions match well with the exact solution. Tables 5, 6 and 7 display the numerical results
of the proposed methods with T = 8, N = 100 and α=0.3, 0.5, 0.7 for various space steps,
respectively. Furthermore, Fig. 8 illustrates the computational times and number of iterations
pertained to the three tested methods. The elapsed time and iterations number in Tables 5, 6
and 7 and Fig. 8 indicate that the computational cost of the fractional group methods (FEG
andMFEG) is lower than the C-N scheme, which show the effectiveness of the former. Table
8 show the numerical errors and computational orders computed using the FEGmethod. Just
as we expect, the second order convergence can be seen from the data recorded in this table.
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Fig. 6 Comparison of exact and numerical solutions for Test Problem 6.2 with α = 0.5, T = 8, h−1 = 42,
N = 100 and y = 0.5

Fig. 7 Surface error plot of the FEG method for Test Problem 6.2 with α = 0.5, T = 8, h−1 = 42 and
N = 100
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Table 5 Comparison between C-N, FEG and MFEG methods for Test Problem 6.2 with α = 0.3, T = 8 and
N = 100

h−1 C-N FEG MFEG

Time Ite E∞(τ, h) Time Ite E∞(τ, h) Time Ite E∞(τ, h)

10 0.8609 40 1.6822E-02 0.3782 24 1.6841E-02 0.1286 9 6.4272E-02

18 3.7968 107 5.0513E-03 2.6769 60 5.1250E-03 0.3748 19 2.0512E-02

26 14.3701 199 2.1594E-03 8.6991 111 2.3224E-03 1.2356 35 9.8791E-03

34 42.6815 312 8.8053E-04 22.9559 175 1.1698E-03 2.0979 54 5.7423E-03

42 57.6235 444 1.2502E-04 43.8745 249 5.0909E-04 4.3400 77 3.7024E-03

Table 6 Comparison between C-N, FEG and MFEG methods for Test Problem 6.2 with α = 0.5, T = 8 and
N = 100

h−1 C-N FEG MFEG

Time Ite E∞(τ, h) Time Ite E∞(τ, h) Time Ite E∞(τ, h)

10 0.6385 40 2.5633E-02 0.3369 24 2.5655E-02 0.1324 9 9.8056E-02

18 3.9289 109 7.7312E-03 2.6144 61 7.8090E-03 0.3197 20 3.1264E-02

26 15.1236 205 3.4143E-03 8.4977 114 3.5836E-03 1.1475 35 1.5038E-02

34 43.1109 324 1.5899E-03 22.6807 180 1.8797E-03 2.6300 55 8.7478E-03

42 57.5005 463 5.2261E-04 45.1226 258 9.5837E-04 4.0916 79 5.6592E-03

Table 7 Comparison between C-N, FEG and MFEG methods for Test Problem 6.2 with α = 0.7, T = 8 and
N = 100

h−1 C-N FEG MFEG

Time Ite E∞(τ, h) Time Ite E∞(τ, h) Time Ite E∞(τ, h)

10 0.7414 39 3.8935E-02 0.4136 24 3.8961E-02 0.1449 9 1.4920E-01

18 2.8969 107 1.1739E-02 1.9721 60 1.1820E-02 0.3785 19 4.7492E-02

26 10.8329 202 5.2526E-03 6.222 112 5.4286E-03 0.8366 35 2.2808E-02

34 35.868 322 2.6066E-03 16.4327 177 2.8908E-03 1.6588 54 1.3244E-02

42 69.2403 462 1.1268E-03 39.3033 255 1.5682E-03 3.3176 77 8.5538E-03

Fig. 8 The graphs of (a) elapsed time and (b) number of iterations of the proposed methods for Test Problem
6.2 with α = 0.5
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Table 8 Maximum errors and computational orders of the FEG method for Test problem 6.2 with T = 1 and
τ = 0.001

α = 0.1 α = 0.5 α = 0.9

h−1 E∞(τ, h) C-Order h−1 E∞(τ, h) C-Order h−1 E∞(τ, h) C-Order

6 2.9156E-03 − 6 2.8109E-03 − 6 2.6749E-03 −
10 1.0516E-03 1.9963 10 1.0135E-03 1.997 10 9.6529E-04 1.9953

14 5.3744E-04 1.995 14 5.1799E-04 1.9948 14 4.9175E-04 2.0045

18 3.1750E-04 2.0943 18 3.0390E-04 2.1219 18 2.9426E-04 2.0433
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Fig. 9 Comparison of exact and numerical solutions for Test Problem 6.3 with α = 0.7, T = 12, h−1 = 42,
N = 100 and y = 0.881

Test Problem 6.3 In this problem, the following source term is considered

f (x, y, t) = (
(1 + α)tα + �(2 + α)t − 2t1+α

)
ex+y,

along with the exact solution

u(x, y, t) = t1+αex+y .

Again, the initial and boundary conditions can be drawn from the exact solution. In Fig.
9, we sketch the exact solution together with the numerical solutions obtained at α = 0.7,
N = 100, h−1 = 42 and y = 0.881, while in Fig. 10 we draw the surface figure of maximum
absolute errors of the MFEG method for T = 12, α = 0.7, N = 100 and h−1 = 42. The
figures illustrate the accuracy of the proposed methods. In Tables 9, 10 and 11, experimental
results of the C-N, FEG and MFEG methods with T = 12, N = 100 and α= 0.3, 0.5, 0.7 for
various mesh sizes are recorded, respectively. Both of the elapsed time and the number of
iterations versus different mesh sizes are depicted in Fig. 11. Similar to the previous tests, it
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Fig. 10 Surface error plot of the FEG method for Test Problem 6.3 with α = 0.7, T = 12, h−1 = 42 and
N = 100

Table 9 Comparison between C-N, FEG and MFEGmethods for Test Problem 6.3 with α = 0.3, T = 12 and
N = 100

h−1 C-N FEG MFEG

Time Ite E∞(τ, h) Time Ite E∞(τ, h) Time Ite E∞(τ, h)

10 0.9338 56 8.6771E-03 0.4457 33 8.6925E-03 0.1402 11 3.3764E-02

18 3.9919 155 2.5894E-03 2.5803 86 2.6599E-03 0.3867 26 1.0715E-02

26 16.5821 295 1.0450E-03 9.1018 162 1.1852E-03 1.1168 49 5.1784E-03

34 32.0802 471 3.6668E-04 25.2729 258 5.5033E-04 2.4359 77 3.0052E-03

42 64.4505 678 3.8897E-04 55.5592 373 2.1681E-04 4.7049 111 1.9285E-03

Table 10 Comparison between C-N, FEG and MFEG methods for Test Problem 6.3 with α = 0.5, T = 12
and N = 100

h−1 C-N FEG MFEG

Time Ite E∞(τ, h) Time Ite E∞(τ, h) Time Ite E∞(τ, h)

10 0.7929 57 1.4381E-02 0.4910 33 1.4393E-02 0.1278 11 5.5926E-02

18 4.2983 159 4.3691E-03 2.5652 88 4.4432E-03 0.3977 27 1.7753E-02

26 16.7838 304 1.8992E-03 9.7074 166 2.0478E-03 1.1253 49 8.5798E-03

34 34.1840 487 8.2457E-04 25.7286 265 1.0484E-03 2.4011 78 4.9996E-03

42 78.4912 704 2.7888E-04 56.3769 384 5.0444E-04 4.4506 113 3.2386E-03
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Table 11 Comparison between C-N, FEG and MFEG methods for Test Problem 6.3 with α = 0.7, T = 12
and N = 100

h−1 C-N FEG MFEG

Time Ite E∞(τ, h) Time Ite E∞(τ, h) Time Ite E∞(τ, h)

10 0.7322 56 2.3677E-02 0.4408 33 2.3693E-02 0.1277 11 9.2293E-02

18 4.1288 157 7.2080E-03 2.5156 87 7.2878E-03 0.3377 26 2.9239E-02

26 16.0169 302 3.2214E-03 8.8714 164 3.3752E-03 1.1323 49 1.4102E-02

34 35.1462 487 1.5531E-03 25.0797 264 1.7958E-03 2.3041 77 8.2001E-03

42 77.8330 707 6.4924E-04 55.6289 383 9.5072E-04 4.4194 112 5.3181E-03

Fig. 11 The graphs of (a) elapsed time and (b) number of iterations of the proposed methods for Test Problem
6.3 with α = 0.7

Table 12 Maximum errors and computational orders of the MFEG method for Test problem 6.3 with T = 1
and τ = 0.001

α = 0.1 α = 0.5 α = 0.9

h−1 E∞(τ, h) C-Order h−1 E∞(τ, h) C-Order h−1 E∞(τ, h) C-Order

6 3.1728E-03 − 6 3.0484E-03 − 6 2.8848E-03 −
10 1.2360E-03 1.8455 10 1.1921E-03 1.8380 10 1.1312E-03 1.8327

14 6.4392E-04 1.9379 14 6.2047E-04 1.9407 14 5.8594E-04 1.9550

18 3.9126E-04 1.9824 18 3.7721E-04 1.9803 18 3.5494E-04 1.9946

can be seen that the FEG and MFEG methods result in simulations with rapid convergence
and fewer iterations in comparison to the C-N difference scheme. Among the presented
schemes, the MFEG method is clearly the fastest one since it uses the least amount of time
consumption for simulating the test problems. The numerical errors and convergence orders
of the MFEG method are reported in Table 12. The results are in good agreement with the
theoretical analysis.
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Conclusion

In the current work, we presented the FEGmethod and theMFEGmethod, which are derived
based on the combination of two C-N difference schemes with grouping strategies on the
standard grid to solve the two-dimensional time fractional mobile/immobile equation. The
Fourier analysis method is utilized to prove the stability and convergence in l2 norm. A
comparison of the FEG andMFEGmethods with the C-N difference scheme is given in terms
of computational time, iterations’ number and maximum error. The computational orders of
the proposed methods are calculated and found to be in good agreement with the theoretical
analysis. Numerical experiments showed that the exact solutions are well matched using
all the tested methods. Furthermore, experimental results verified that the FEG and MFEG
methods outperform the C-N difference scheme in terms of iterations’ number and execution
time, showing their efficiency. Overall, the proposed methods have the advantages of being
accurate, computationally efficient and applicable to other types of linear and nonlinear
multi-dimensional fractional problems. As an outlook for future, the parallel implementation
technique is fairly meaningful to enhance the computational efficiency of the developed
methods.
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1. Milici, C., Drăgănescu, G., Machado, J.T.: Introduction to Fractional Differential Equations, vol. 25.
Springer, Switzerland (2018)

2. Owolabi, K.M., Atangana, A.: Numerical Methods for Fractional Differentiation. Springer, Singapore
(2019)

3. Atangana, A.: Fractional Operators with Constant and Variable Order with Application to Geo-hydrology.
Academic Press, New York (2017)

4. Tarasov, V.E.: Handbook of Fractional Calculus with Applications vol. 3-8. de Gruyter, Boston (2019)
5. Dutta, H., Akdemir, A.O., Atangana, A.: Fractional Order Analysis: Theory. Methods and Applications.

John Wiley & Sons, Hoboken (2020)
6. Viera-Martin, E., Gómez-Aguilar, J., Solís-Pérez, J., Hernández-Pérez, J., Escobar-Jiménez, R.: Artificial

neural networks: a practical review of applications involving fractional calculus. The European Physical
Journal Special Topics, 1–37 (2022)

7. Hassouna, M., Ouhadan, A., et al.: Fractional calculus: applications in rheology. In: Fractional Order
Systems, 513–549. Elsevier, ??? (2022)

8. Barros, LCd., Lopes, M.M., Pedro, F.S., Esmi, E., Santos, J.PCd., Sánchez, D.E.: The memory effect on
fractional calculus: an application in the spread of covid-19. Comput. Appl. Math. 40(3), 1–21 (2021)

9. Atangana, A., Baleanu, D.: Caputo-fabrizio derivative applied to groundwater flow within confined
aquifer. J. Eng. Mech. 143(5), 4016005 (2017)

10. Atangana, A., Gómez-Aguilar, J.: Fractional derivatives with no-index law property: application to chaos
and statistics. Chaos, Solitons & Fractals 114, 516–535 (2018)

123



Int. J. Appl. Comput. Math (2022) 8 :188 Page 27 of 28 188

11. Sun, H., Zhang, Y., Baleanu, D., Chen, W., Chen, Y.: A new collection of real world applications of
fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 64, 213–231
(2018)

12. Zhang,X., Li,R.,Hong, J., Zhou,X.,Xin,N., Li,Q.: Image-enhanced single-pixel imagingusing fractional
calculus. Opt. Express 30(1), 81–91 (2022)

13. Aman, S., Khan, I., Ismail, Z., Salleh, M.Z.: Applications of fractional derivatives to nanofluids: exact
and numerical solutions. Mathematical Modelling of Natural Phenomena 13(1), 2 (2018)

14. Khan, I., Shah, N.A., Mahsud, Y., Vieru, D.: Heat transfer analysis in a maxwell fluid over an oscillating
vertical plate using fractional caputo-fabrizio derivatives. The European Physical Journal Plus 132(4),
1–12 (2017)

15. Almeida, R., Malinowska, A.B., Monteiro, M.T.T.: Fractional differential equations with a caputo deriva-
tivewith respect to a kernel function and their applications.MathematicalMethods in theApplied Sciences
41(1), 336–352 (2018)

16. Alshabanat, A., Jleli, M., Kumar, S., Samet, B.: Generalization of caputo-fabrizio fractional derivative
and applications to electrical circuits. Frontiers in Physics 8, 64 (2020)

17. Ali, F., Murtaza, S., Khan, I., Sheikh, N.A., Nisar, K.S.: Atangana-baleanu fractional model for the flow of
jeffrey nanofluid with diffusion-thermo effects: Applications in engine oil. Adv. Difference Equ. 2019(1),
1–21 (2019)

18. Gao, W., Ghanbari, B., Baskonus, H.M.: New numerical simulations for some real world problems with
atangana-baleanu fractional derivative. Chaos, Solitons & Fractals 128, 34–43 (2019)

19. Uçar, S., Uçar, E., Özdemir, N., Hammouch, Z.: Mathematical analysis and numerical simulation for a
smoking model with atangana-baleanu derivative. Chaos, Solitons & Fractals 118, 300–306 (2019)

20. Alrabaiah, H., Zeb, A., Alzahrani, E., Shah, K.: Dynamical analysis of fractional-order tobacco smoking
model containing snuffing class. Alex. Eng. J. 60(4), 3669–3678 (2021)

21. Ndaïrou, F., Area, I., Nieto, J.J., Silva, C.J., Torres, D.F.: Fractional model of covid-19 applied to galicia,
spain and portugal. Chaos, Solitons & Fractals 144, 110652 (2021)

22. Chávez-Vázquez, S., Gómez-Aguilar, J.F., Lavín-Delgado, J., Escobar-Jiménez, R.F., Olivares-Peregrino,
V.H.: Applications of fractional operators in robotics: a review. Journal of Intelligent & Robotic Systems
104(4), 1–40 (2022)

23. Zhang, Y., Sun, H., Stowell, H.H., Zayernouri, M., Hansen, S.E.: A review of applications of fractional
calculus in earth system dynamics. Chaos, Solitons & Fractals 102, 29–46 (2017)

24. Chu, Y.-M., Bekiros, S., Zambrano-Serrano, E., Orozco-López, O., Lahmiri, S., Jahanshahi, H., Aly, A.A.:
Artificial macro-economics: A chaotic discrete-time fractional-order laboratory model. Chaos, Solitons
& Fractals 145, 110776 (2021)

25. Tarasova, V.V., Tarasov, V.E.: Economic interpretation of fractional derivatives. Prog. Fractional Differ.
Appl. 3, 1–17 (2017)

26. Yang, X., Zhang, H., Tang, Q.: A spline collocation method for a fractional mobile-immobile equation
with variable coefficients. Comput. Appl. Math. 39(1), 1–20 (2020)

27. Liu, Z., Li, X.: A crank-nicolson difference scheme for the time variable fractional mobile-immobile
advection-dispersion equation. J. Appl. Math. Comput. 56(1), 391–410 (2018)

28. Pourbashash, H., Baleanu, D., Al Qurashi, M.M.: On solving fractional mobile/immobile equation. Adv.
Mech. Eng. 9(1), 1687814016688616 (2017)

29. Qiu, W., Xu, D., Guo, J., Zhou, J.: A time two-grid algorithm based on finite difference method for
the two-dimensional nonlinear time-fractional mobile/immobile transport model. Numerical Algorithms
85(1), 39–58 (2020)

30. Jiang, H., Xu, D., Qiu,W., Zhou, J.: An adi compact difference scheme for the two-dimensional semilinear
time-fractional mobile-immobile equation. Comput. Appl. Math. 39(4), 1–17 (2020)

31. Yin, B., Liu, Y., Li, H.: A class of shifted high-order numericalmethods for the fractionalmobile/immobile
transport equations. Appl. Math. Comput. 368, 124799 (2020)

32. Chai, L., Liu, Y., Li, H.: Fourth-order compact difference schemes for the two-dimensional nonlinear
fractional mobile/immobile transport models. Computers & Mathematics with Applications 100, 1–10
(2021)

33. Sunarto,A.,Agarwal, P., Sulaiman, J., Chew, J.V.L.,Momani, S.:Quarter-sweeppreconditioned relaxation
method, algorithm and efficiency analysis for fractional mathematical equation. Fractal and Fractional
5(3), 98 (2021)

34. Salama, F.M.,AbdHamid,N.N.,Ali,N.H.M.: FastO(N) hybrid laplace transform-finite differencemethod
in solving 2d time fractional diffusion equation. Journal of Mathematics and Computer Science 23(2),
110–123 (2021)

35. Saeed, A.M., AL-harbi, N.M.: Group splitting with sor/aor methods for solving boundary value problems:
A computational comparison. European Journal of Pure and AppliedMathematics 14(3), 905–914 (2021)

123



188 Page 28 of 28 Int. J. Appl. Comput. Math (2022) 8 :188

36. Salama, F.M., Ali, N.H.M.: Computationally efficient hybrid method for the numerical solution of the
2D time fractional advection-diffusion equation. International Journal of Mathematical, Engineering and
Management Sciences 5(3), 432–446 (2020)

37. Salama, F.M., Abd Hamid, N.N., Ali, N.H.M.: Efficient hybrid group iterative methods in the solution of
two-dimensional time fractional cable equation. Adv. Difference Equ. 2020(1), 1–20 (2020)

38. Abdi, N., Aminikhah, H., Sheikhani, A., Alavi, J., Taghipour, M.: An efficient explicit decoupled group
method for solving two–dimensional fractional burgers’ equation and its convergence analysis. Advances
in Mathematical Physics 2021, (2021)

39. Abdi, N., Aminikhah, H., Sheikhani, A.R.: High-order rotated grid point iterative method for solving 2d
time fractional telegraph equation and its convergence analysis. Comput. Appl. Math. 40(2), 1–26 (2021)

40. Khan, M.A., Ali, N.H.M., Abd Hamid, N.N.: A new fourth-order explicit group method in the solution
of two-dimensional fractional rayleigh-stokes problem for a heated generalized second-grade fluid. Adv.
Difference Equ. 2020(1), 1–22 (2020)

41. Khan, M.A., Ali, N.H.M., Abd Hamid, N.N.: The design of new high-order group iterative method in the
solution of two-dimensional fractional cable equation. Alex. Eng. J. 60(4), 3553–3563 (2021)

42. Ali, A., Abdeljawad, T., Iqbal, A., Akram, T., Abbas, M.: On unconditionally stable new modified frac-
tional group iterative scheme for the solution of 2d time-fractional telegraph model. Symmetry 13(11),
2078 (2021)

43. Salama, F.M., AbdHamid, N.N., Ali, N.H.M., Ali, U.: An efficientmodified hybrid explicit group iterative
method for the time-fractional diffusion equation in two space dimensions. AIMS Mathematics 7(2),
2370–2392 (2022)

44. Salama, F.M., Abd Hamid, N.N., Ali, U., Ali, N.H.M.: Fast hybrid explicit group methods for solving 2d
fractional advection-diffusion equation. AIMS Mathematics 7(9), 15854–15880 (2022)

45. Modanlı, M.: Two numerical methods for fractional partial differential equation with nonlocal boundary
value problem. Adv. Difference Equ. 2018(1), 1–19 (2018)

46. Karatay, I., Kale, N., Bayramoglu, S.: A new difference scheme for time fractional heat equations based
on the crank-nicholson method. Fractional Calculus and Applied Analysis 16(4), 892–910 (2013)

47. Abbaszadeh, M., Amjadian, H.: Second-order finite difference/spectral element formulation for solving
the fractional advection-diffusion equation. Communications on Applied Mathematics and Computation,
1–17 (2020)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Numerical Solution of Two-Dimensional Time Fractional Mobile/Immobile Equation Using Explicit Group Methods
	Abstract
	Introduction
	The C-N Difference Scheme
	Formulation of Group Methods
	The Fractional Explicit Group (FEG) Method
	The Modified Fractional Explicit Group (MFEG) Method

	Stability Analysis
	Stability of the h-Spaced C-N Numerical Scheme
	Stability of the 2h-Spaced C-N Numerical Scheme

	Convergence Analysis
	Numerical Experiments
	Conclusion
	References




