
INTRODUCTION

Inherited peripheral neuropathy (IPN) is caused by genetic mu-
tations which damage the integrity of either the axon or myelin of 
peripheral nerves. The prominent clinical phenotypes of IPN in-
clude progressive and symmetrical distal weakness resulting in loss 
of sensation, muscle wasting and gait disturbances. The symptom 
appears in a length dependent manner that muscle weakness and 
atrophy was observed from distal to proximal parts of all limbs 
[1]. The defects in the peripheral nerves are more severe in the 

distal part than in the proximal part because smaller diameter of 
the nerves renders more vulnerable to the degeneration. Clinically, 
IPN can be subdivided into hereditary motor and sensory neu-
ropathy or Charcot-Marie-Tooth disease, distal hereditary motor 
neuropathy, and hereditary sensory and autonomic neuropathy 
[2]. The total number of IPN patients is estimated to be more than 
three million globally.

Currently, the treatment options for IPN are very limited. Al-
though several attempts have been made to lessen or ameliorate 
the disease phenotype after validating the efficacy of animal stud-
ies, clinical benefits remain uncertain. For example, vitamin C was 
proven to be successful in rodent models, however, its efficacy 
could not be duplicated in clinical trials [3-5]. Recently, PXT3003, 
a novel combination of baclofen, naltrexone hydrochloride and D-
sorbitol is under clinical evaluation, yet the clinical benefits need 
further elucidation [6-8]. Indeed, unsatisfactory outcomes in clini-
cal practice could be attributed to inappropriate treatments. Up to 
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now, treatment approaches have focused on modulating the dis-
ease phenotype by indirectly reducing the expression of toxic pro-
tein and/or enhancing myelination and axonal integrity. Therefore, 
the possibility of direct manipulation of mutant gene expression 
should be considered as an acceptable and effective therapeutic 
option.

Although IPN was first described in the 19th century, the first 
causative gene was isolated in 1991 [9-12]. By the advent of next-
generation sequencing technology, however, more than 100 dis-
tinct genes have been identified as causative genes for IPN [13, 14]. 
Among the numerous causative genes, peripheral myelin protein 
22 (PMP22), myelin protein zero (MPZ), gap junction protein 
beta 1 (GJB1) and mitofusin2 (MFN2) are prevalent in over 80% 
of genetically isolated IPN patients [15-18]. As such, the majority 
of research has been focused on these genes, revealing the patho-
physiological mechanism, and developing therapeutic options.

Gene therapy is a fundamental and straightforward strategy 
to overcome the genetic defects in inherited disorders. Indeed, 
replacing a mutant gene with a functional copy through gene de-
livery might be the ultimate treatment strategy for IPN. Everyday 
gene therapy treatment options are expanding, by virtue of novel 
technical advances in gene manipulation. Current strategies for 
gene therapy can be categorized into four types: gene replacement, 
gene addition, gene knockdown or modulation of gene expression, 
and gene editing or correction [19-22]. Besides the simple delivery 
of functional genes, the ability to manipulate the expression of mu-
tant genes with toxic gain-of-function, or to correct mutant genes 
into functional genes, is now possible. Although gene therapy has 
not been clinically investigated in IPN patients, a breakthrough in 
gene therapy with benefits for IPN is anticipated.

MAJOR TARGETS FOR GENE THERAPY IN IPN

Phenotypically, IPN can be divided into three types according to 

the origin of degeneration: axonal, demyelinating, and intermedi-
ate type. Axonal type is primarily caused by degeneration of axon 
and demyelinating type is caused by malfunction of myelinating 
Schwann cell. Intermediate type shows both axonal and demy-
elinating features (Table 1). Thus major targets for IPN treatment 
has focused on either enhancing myelination of Schwann cell for 
demyelinating type or increasing the mitochondrial activity and 
axonal transport for axonal type. To enhance the myelination of 
Schwann cell, ascorbic acid, curcumin, a HSP90 inhibitor, and 
a progesterone antagonist have been evaluated in preclinical or 
clinical studies [3, 23-25]. Recently, a combination of preexisting 
drugs, PXT3003, was developed by the application of systems 
biology and its efficacy is currently under clinical evaluation after 
demonstration of the myelination enhancement in animal model 
[6-8]. In contrast, improvement of mitochondrial metabolism or 
axonal transport have been paid attention to manage the axonal 
type of IPN. Coenzyme Q10 and a mitofusin agonist, which might 
be associated the mitochondrial activity, ameliorated the axono-
pathic phenotype in MFN2-mutated IPN [26, 27]. In addition, 
inhibition of histone deacetylase 6 (HDAC6) increased acetylated 
alpha-tubulin and improved axonal transport in HSPB1 or GARS 
animal models [28-31].  

As more than 100 genes have been isolated as causative of IPN, 
clinical interest has not been able to investigate every gene. In-
stead, mutations in several genes (PMP22, MPZ, and MFN2) have 
received major attention for therapeutic applications [4, 24, 32-
34]. Interestingly, the mutations in those genes are all dominantly 
inherited. Indeed, more than 95% of CMT cases are dominantly 
inherited, with the remaining 5% of cases inherited via the auto-
somal recessive or X-linked recessive manner. As such, classical 
gene therapy, a gene replacement, cannot be applied to most IPN 
patients.

Recent advances in gene manipulation technology shed light on 
the development of novel gene therapy strategies for dominantly 

Table 1. IPN causative genes and the inheritance pattern

Type Dominant Recessive

Demyelinating type PMP22, PMP2, MPZ*, LITAF, FBLN5, EGR2*, NEFL* MPZ*, NEFL*, EGR2*, GDAP1*, MTMR2, 
SH3TC2, NDRG1, PRX, FGD4, SBF1, SBF2, 
FIG4, CTDP1, SURF1, ADCY6, CNTNAP1, HK1

Axonal type MFN2, GDAP1*, LRSAM1*, MPZ*, NEFH, KIF5A, ATP1A1, 
VCP, TFG, DHTKD1, TUBB3, NAGLU, DCAF8, DGAT2, 
MORC2, HSPB1, HSPB3, HSPB8, GARS, AARS, HARS, 
MARS, DYNC1H1, BICD2, REEP1, BSCL2, SETX, SLC5A7, 
MYH14, TRPV4, RAB7

LMNA, PNKP, TRIM2, SPG11, MME, MCM3AP, 
SLC25A46, SCO2, MPV17, LRSAM1*, C12orf65, 
IGHMBP2, SIGMAR1, VRK1, ATP7A, UBA1, 
GLE1, LAS1L

Intermediate type (mixed type) NEFL*, MPZ*, GJB1, YARS, INF2, DRP2, DNM2, GNB4, 
PDK3

GDAP1*, COX6A1, PLEKHG5, KARS, AIFM1, 
PRPS1

Incidence > 95% < 5%

*Mutations in the gene cause dominant or recessive inheritance.
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inherited IPN. For example, mutant alleles can be selectively sup-
pressed while normal alleles can regenerate the damaged periph-
eral nerve. Duplication of PMP22, is the major cause of demyelin-
ating type IPN, and comprises over 40% of all IPN cases. In this 
subtype, the duplication of PMP22 in one haploid causes the total 
expression of PMP22 protein to be 1.5 times higher than normal, 
which in turn causes cellular stress and the demyelination of 
Schwann cells [35]. Thus, reducing the expression level of PMP22 
protein in patients has been the major target of IPN treatment. 
Reduction of gene expression can be achieved by impairing the 
transcription and degrading the mRNA transcript, or by blocking 
the protein translation. Recently, gene editing technology has also 
proposed the conversion of a mutated gene into a normal copy 
might be the ultimate therapeutic option for genetic diseases (Fig. 
1).

GENE REPLACEMENT THERAPY

As most genetic diseases are caused by a single gene defect, re-
placement of the defective gene is a straightforward approach, and 
the majority of gene therapy research focuses on gene replacement 
for recessive genetic disorders. Recently, several gene replacement 
methods for autosomal recessive and X-linked cases of IPN have 
been investigated by a European research group.

For autosomal recessive cases of IPN, Schiza et al. [36] evalu-
ated the efficacy of gene replacement therapy for the SH3TC2 
(SH3 domain and tetratricopeptide repeats 2) mutation in IPN. 
SH3TC2 protein is predominantly expressed in myelinating 
Schwann cells, and the loss-of-function mutations in the SH3TC2 
gene contribute to onset of CMT type 4C, a recessively inherited 
demyelinating neuropathy [37]. Schiza et al. [36] generated a len-
tiviral vector expressing the SH3TC2 gene under the control of an 
MPZ promoter, a Schwann cell specific promoter. The engineered 
lentivirus expressing the target gene was effectively delivered to 
Schwann cells via intrathecal injection in a Sh3tc2-/- mouse model 
and rescued the neuropathic phenotype. After 8 weeks, the mutant 
mice, exhibited improved myelination in the lumbar spinal roots 
and sciatic nerves and the motor behavior was also enhanced.

Intriguingly, the same group also tried gene replacement therapy 
in X-linked dominant type IPN. There, GJB1 gene mutations cause 
loss of Connexin 32 (Cx32) in gap junctions and lead to a severe 
form of inherited demyelinating CMTX1 neuropathy [38]. The 
mutations in GJB1 cause dysfunction in the Cx32 protein localized 
in the paranodal loops of non-compact myelin and the Schmidt–
Lanterman incisures of Schwann cells [39]. Although the GJB1 
mutation caused phenotype is considered to be dominantly inher-
ited, the clinical phenotypes are dramatically different according 
to gender. An affected female with a heterozygous GJB1 mutation 

Fig. 1. Types of gene therapy and therapeutic strategies for inherited peripheral neuropathy. Based on the mode of inheritance IPN treatment can be 
categorized into three groups. For recessively inherited cases, gene replacement, the delivery of a functional gene, was applied to compensate for the lack 
of functional protein. For dominantly inherited IPN, NT-3, a neuroprotective gene, was used to ameliorate the disease phenotype. The feasibility of mu-
tant allele-specific was also validated for suppressing the gain-of-toxicity mutant protein in dominantly inherited IPN. For CMT1A caused by the du-
plication of PMP22, various approaches have been developed to normalize the expression level of PMP22. Antisense oligonucleotide (ASO) or miRNA 
targeting the 3'-untranslated region (3'-UTR) of PMP22, and disruption of the TATA-box could effectively reduce the protein level in vivo.
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exhibits later onset and milder phenotype than an affected male 
with hemizygosity due to X-inactivation [40]. To validate the 
therapeutic effect of gene replacement, they utilized GJB1-null/
Cx32 knockout (KO) mice, which exhibit severe demyelination, as 
well as inflammation in the peripheral nerve [41-43]. Intraneural 
injection of lentivirus expressing GJB1 by MPZ promoter (LV. 
Mpz-GJB1) before the phenotype onset in GJB1-null mice signifi-
cantly reduced the inflammation and ameliorated the peripheral 
neuropathic phenotype [41]. In a follow-up study, Kagiava et al. 
[42] also validated the efficacy of intrathecal delivery. Intrathecal 
administration is less invasive than intraneural delivery, and as a 
result the clinical feasibility of gene therapy is improved. Recently, 
Kagiava et al. [43] also demonstrated a therapeutic benefit even if 
gene therapy is performed after the onset of peripheral neuropath-
ic symptoms. Collectively, these results increase the possibility of 
success in future clinical trials and positive outcomes for CMT1X 
patients.

GENE ADDITION THERAPY

Although demyelinating neuropathy occurs mainly due to domi-
nant inheritance, one research group has consistently developed a 
phenotype modulating strategy using a neurotrophic factor. Neu-
rotrophic factors such as nerve growth factor, brain-derived neu-
rotrophic factor (BDNF), neurotrophin-3 (NT-3) and neurotroph-
in-4/5 are well-known to bind to protein tyrosine kinase receptor 
and activate the downstream signaling pathways in neuronal cells 
[44]. In addition, these neurotrophic factors also influence the 
survival and differentiation of Schwann cell [45]. The formation of 
peripheral nerve is a complex and dynamic process between neu-
ronal axon and Schwann cell. The interaction between these cells 
leads to the proliferation, migration, and myelination of Schwann 
cell as well as axon development. During the process neurotrophic 
factors such as BDNF and NT-3 play an important role in the my-
elination and axonal growth [46, 47].

When NT-3 was subcutaneously administered into a Tr-J mouse 
model, a mouse model of demyelinating neuropathy with natu-
rally occurring Leu16Pro mutation in the PMP22 gene, elevated 
numbers of myelinated fiber forming regeneration units were ob-
served along with axonal regeneration [48]. In the same report, the 
clinical efficacy of NT-3 in CMT1A patients was evaluated. The 
patients treated with NT-3 exhibited enhanced nerve regenera-
tion of the sural nerve. In a follow-up study, the administration of 
agonistic antibodies to NT-3 receptors TrkB and TrkC improved 
the neuropathic phenotype of Tr-J mice [49]. In addition, because 
long-term treatment with NT-3 is not clinically achievable due to 
its short half-life, gene delivery of NT-3 by recombinant adeno-

associated virus (rAAV) was investigated [50]. Indeed, intramus-
cular delivery of rAAV-NT-3 sustained the release of NT-3, as well 
as promoted active myelination and nerve regeneration in Tr-J 
mice. The clinical benefit of neurotrophic factors in modulating 
the disease pathogenesis of demyelinating neuropathy was also 
observed by other researchers. For example, the administration of 
neuregulin-1 enhanced myelination by stimulating myelination 
pathways in rodent models [51, 52].

SUPPRESSION OF MUTANT GENE EXPRESSION

As a mutated gene is translated into mutant proteins via an 
mRNA intermediate, inhibiting the translation of mutant mRNA 
into mutant protein can also be a potential therapeutic target for 
IPN. For this strategy, utilization of RNA interference (RNAi) 
has been well studied. Small interfering RNA (siRNA) is a short 
double-stranded RNA approximately 19~22 nucleotides long [53] 
which can nullify gene expression by breaking down the mRNA 
transcripts in a sequence-specific manner. Recently, siRNA-based 
technique has been a powerful research tool for gene silencing in 
both basic and therapeutic research [54, 55]. By introducing siR-
NA or short hairpin RNA (shRNA), gene expression level can be 
successfully modulated. In addition, because of sequence-specific 
mRNA breakdown, discrimination between mutant alleles and 
wild-type sequence is simply achieved. Since dominantly inherited 
genetic disorders are caused by toxic gain-of-function mutations 
rather than loss-of-function mutations in recessively inherited 
genetic disorders, mutant allele-specific targeting ought to be the 
primary strategy, rather than the addition of normal genes. Indeed, 
siRNAs have been proven to be successful at the specific targeting 
and silencing of the mutant allele in dominantly inherited disor-
ders including neurodegenerative diseases such as Alzheimer’s 
disease, Parkinson’s disease, Huntington’s disease, Machado-Joseph 
disease, and amyotrophic lateral sclerosis [56-60].

For IPN treatment, Lee et al. [61] evaluated the efficacy of mu-
tant allele-specific siRNA using Tr-J mice. Lee et al. [61] designed 
and isolated the mutant allele (c.47T>C, p.Leu16Pro in mouse 
Pmp22)-specific siRNA for Tr-J mice and evaluated the potency 
of allele specificity, both in vitro  and in vivo. The administration 
of allele-specific siRNA was revealed to alleviate the neuropathic 
phenotype of Tr-J mice by improving myelination and restoring 
muscle volume. Moreover, in the sciatic nerve of treated mice, the 
expression level of mutant mRNA was reduced, whereas that of 
wild-type allele was increased. In this experiment, Lee et al. [61] 
validated the efficiency of a non-viral delivery method for IPN 
gene therapy for the first time; an important success for potential 
clinical applications. In addition, Lee et al. [61] also provided a 
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couple of potent allele-specific siRNAs for human patients with 
same mutation in PMP22 (CMT type 1E). These results implicate 
targeting mutant alleles with specific siRNA might be a potential 
therapeutic option for dominantly inherited IPN.

TARGETING THE GENETIC DOSAGE BY POSTTRANSCRIPTIO-
NAL MODULATION

CMT1A is the most common type of IPN resulting in the de-
myelination of Schwann cells due to a 1.5-fold overexpression of 
PMP22 myelinating protein. Because over 40% of all IPN cases 
have CMT1A, most research has focused on exploring the novel 
agents capable of decreasing the expression level of PMP22. By 
developing a high-throughput screening method and with the aid 
of systems biology, some research groups were able to isolate or re-
purpose several drugs or drug combinations useful for downregu-
lating PMP22 expression [6-8, 62]. However, the mode-of-action 
as well as the potency for these drugs in downregulating PMP22 
expression remains unclear. Alternatively, two independent groups 
have developed novel gene therapies which directly manipulate 
the gene dosage of PMP22. One group isolated novel microRNAs 
(miRNAs) which specifically target the 3'-UTR of PMP22 mRNA 
and the other screened antisense oligonucleotides (ASO) which 
successfully downregulate PMP22 levels.

MicroRNAs (miRNA) are endogenous small noncoding RNAs, 
approximately 22 nucleotides in length [63], which readily bind to 
the 3'-UTR of target mRNAs and induce degradation. Thus miR-
NAs can regulate gene expression by acting as modifiers to silence 
overexpressed genes. The significance of regulatory function of 
miRNAs in the development of the peripheral nervous system has 
been investigated. Ablation or reduction of Dicer from Schwann 
cells can impair normal myelination and axonal integrity [64-67]. 

Regarding PMP22 gene expression, several miRNAs such as 
miR-9 and miR-29b are known to post-transcriptionally target 
the 3'-UTR of PMP22 [68]. Since miRNAs have great potential in 
regulating the expression level of target mRNAs, targeting PMP22 
with its specific miRNA might be an excellent therapeutic option 
for controlling CMT1A caused by PMP22 overexpression. In this 
context, Lee et al. [69] reported that the administration of miR-
NAs downregulated the PMP22 expression levels in a CMT1A 
mouse model. Indeed, the expression level of several miRNAs 
were changed and miR-381 and miR-9 can modulate the expres-
sion level of PMP22. Using the lentiviral system, LV-miR-381 as 
well as LV-miR-9 were administered into the sciatic nerve of a C22 
mouse, which harbors 7 copies of the human PMP22 gene and an 
expression level of hPMP22 1.7 fold higher than mouse Pmp22 
[70-72]. Expression of both miR-381 and miR-9 enhance the loco-

motor function, electrophysiological integrity (motor nerve con-
duction velocity and compound action potential), and myelination 
through the reduction of PMP22 levels in the sciatic nerve of C22 
mice. This report revealed a new way for developing potential IPN 
therapeutic strategies by using miRNA-mediated regulation of 
gene expression.

RNA transcripts can also be modulated by ASOs; which are syn-
thetic nucleic acids in a single strand capable of binding to the tar-
get mRNA resulting in degradation, interference with pre-mRNA 
processing or protein binding, and alteration of RNA structure 
[73]. Recently, the application of ASOs has become an emerging 
tool to manage various degenerative neuromuscular diseases. The 
clinical application of ASOs has exhibited successful outcomes in 
spinal muscular atrophy (SMA) and Duchenne’s muscular dys-
trophy (DMD) by modulating the splicing of the mRNA [74-78]. 
Developments of ASO therapy for these diseases have shifted the 
strategic paradigms of gene therapy. SMA is caused by mutations 
in survival motor neuron 1 (SMN1) gene with autosomal recessive 
inheritance pattern. In humans, an evolutionarily duplicated gene, 
SMN2, possesses almost identical nucleotide sequence to SMN1. 
However, a critical substitution at position 6 (C to T) of exon 7 in 
SMN2 causes aberrant splicing and degradation of mRNA [79]. 
Instead of correcting the mutated SMN1 in the patients, ASO 
therapy targets to recuperate SMN2 function by intervening the 
aberrant splicing. After identification of intron splicing silencer 
N1 (ISS-N1) sequence in intron 7 that is critical in the skipping 
of exon 7 in SMN2, ISS-N1 sequence-inhibiting ASO has been 
developed and successfully demonstrated the therapeutic efficacy 
through clinical studies [75, 76]. On the other hand, DMD gene is 
one of the largest human genes with 79 exons and 14kb transcripts. 
Generally, out-of-frame mutations in DMD gene result in DMD, 
and in-frame mutations lead to Becker muscular dystrophy (BMD) 
exhibiting a milder phenotype compared to DMD. Although 
DMD is an X-linked recessive disease, the huge length of the caus-
ative gene renders it difficult to treat with simple gene replacement 
therapy. Instead, exon skipping strategy using ASO targets and 
induces the deletion of exon 51 of DMD mRNA during splicing, 
which then results in the production of shortened but functional 
dystrophin protein and conversion of out-of-frame mutation into 
in-frame mutation. Accordingly, the DMD phenotype can be ame-
liorated as BND phenotype by treatment of ASO [77, 78].

The suppression of PMP22 expression can be achieved by hy-
bridizing the ASO to result in the specific inhibition and degrada-
tion of PMP22 through endogenous RNase H activity. Zhao et al. 
[80] investigated the potency of PMP22 targeting ASOs using two 
rodent models for CMT1A. After ASO treatment, both mouse 
and rat models of CMT1A showed a 35% reduction in PMP22 
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mRNA, which reduced disease progression and improved CMT1 
phenotypes. Zhao et al. [80] also proposes that skin biopsy samples 
are ideal for detecting the mRNA level of PMP22 as a useful bio-
marker for future clinical trials on CMT1A. 

MODULATION OF TRANSCRIPTIONAL ACTIVITY

Reducing the protein expression of PMP22 can also be achieved 
by modulating the transcriptional activity of a gene. Recently, 
two independent research groups demonstrated the feasibility of 
PMP22 reduction by disrupting either the promoter or enhancer 
of PMP22 with gene editing technology [81, 82]. The clustered 
regularly interspaced short palindromic repeats (CRISPR) and 
related Cas genes are now emerging as essential tools for gene 
editing [83, 84]. Briefly, DNA from viruses or plasmids are cut into 
small fragments and integrated into a CRISPR locus with a series 
of short repeats, around 20 bps. The loci are transcribed, and later 
the transcripts are processed to generate small RNAs to target 
foreign DNA based on the sequence complementarity principle. 
Using this groundbreaking new technology, numerous clinical ap-
plications have been attempted to treat various types of diseases. 

Intriguingly, gene editing technology was applied to disrupt 
normal genes rather than to correct the mutant gene for CMT1A 
treatment. Pantera et al. [81] investigated the feasibility of gene 
editing for reducing the transcription of PMP22 in vitro . They 
deleted the potential super-enhancer or promoter located approxi-
mately 90~130 kb upstream of the Pmp22 transcription sites using 
CRISPR/Cas9 in S16, a rat Schwann cell line, which effectively 
reduced the mRNA level of PMP22.

The in vivo  efficacy of gene editing was evaluated by another 
group. Lee et al. [82] targeted the TATA-box promoter of PMP22 
to reduce the transcription. After intraneural delivery of CRISPR/
Cas9 protein targeting the TATA-box promoter of PMP22, the 

expression level of PMP22 in the sciatic nerve was effectively re-
duced in C22 mice. The CRISPR/Cas9 delivery also ameliorated 
demyelination, muscle atrophy, and defects in the locomotor func-
tion. By duplicating the experiment in accordance with the admin-
istration time-points (before onset and after onset), Lee et al. [82] 
also validated the efficacy of CRISPR/Cas9-mediated gene editing 
on reversing the neuropathic phenotype even after the onset; a 
crucial clinical benefit of treatment in regards to human patients. 
Additionally, the safety of gene editing in vivo  was analyzed for 
future clinical application. Together, these two reports encourage 
the clinical application of gene editing technology to treat diseases 
with copy number variation, such as CMT1A.

OPTIMIZATION OF THERAPEUTIC STRATEGY FOR IPN TREAT-
MENT 

In accordance with the recent advances in gene manipulation 
technology, novel gene therapy was developed and evaluated for 
IPN using animal models (Table 2). To effectively translate the 
plausible preclinical results from gene therapy into clinical benefits 
for IPN patients, several aspects, such as securing the efficacy and 
safety, should be considered.

Securing safety is a first-line consideration for gene therapy. 
Although viral delivery provides the feasibility of tissue-specific 
targeting, long-term effects, and a large capacity for the cargo gene, 
they still possess the risk of virulence-mediated immunotoxicity 
and genotoxicity which may impede therapeutic outcomes. In-
nate and adaptive immune responses to the delivered vectors or 
the transgene are substantial challenges to the safety of the gene 
therapy. Although AAV is known to cause relatively weak inflam-
matory responses compared to other viral vectors, the possibility 
of activation of T cell or antigen presenting cell by AAV adminis-
tration still needs to be improved for clinical trials. Genotoxicity 

Table 2. Gene therapies validated in animal models of IPN

Type Target
Therapeutic 

gene
Mode of action Vector Route

Refer-
ence

Gene addition CMT1A Neurotrophin-3 Stimulation of neurite outgrowth and myelination AAV Intramuscular 50
Gene  

replacement
CMT4C SH3TC2 Replacement of the autosomal recessive gene Lentivirus Intrathecal 36
CMTX1 GJB1 Delivery of a wild-type gene Lentivirus Intraneural 

(sciatic nerve)
41

Delivery of a wild-type gene Lentivirus Intrathecal 42, 43
Gene silencing CMT1E siRNA Targeting and suppressing the mutant allele of 

PMP22
Naked (synthetic 

siRNA)
Intraperitoneal 61

CMT1A miRNA (miR-381) Downregulating PMP22 overexpression Lentivirus Intraneural 
(sciatic nerve)

69

Antisense  
oligonucleotide

Downregulating PMP22 overexpression by  
exon skipping

Naked (synthetic  
oligonucleotide)

Subcutaneous 80

Gene editing CMT1A CRISPR/Cas9 Downregulating PMP22 overexpression by  
disrupting TATA-box

Naked (protein/
gRNA)

Intraneural 
(sciatic nerve)

82

https://www.mayoclinic.org/tests-procedures/skin-biopsy/about/pac-20384634
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from gene delivery includes insertional mutagenesis, disruption of 
untargeted gene, and activation of proto-oncogenes depending on 
the virus type, target cells, and target sequences. Recently, several 
strategies have been devised to prevent the viral vector-mediated 
genotoxicity [85]. Activation of proto-oncogenes can be reduced 
by self-inactivation vector and chromatin insulator. Disruption of 
U3 in 3'-LTR (long terminal repeat) of the lentivirus reduced the 
promoter and enhancer activity on the neighboring gene [86]. In-
sertion of insulator after enhancer sequence in the viral vector can 
also block the activation of transcriptionally silent proto-oncogene 
[87]. The long-term effect of the delivered gene sometime causes 
deleterious outcomes due to uncontrolled expression. Thus regu-
lation of the transgene expression using a molecular switch such as 
tetracycline-controlled transcriptional activation in animal study 
might be helpful to increase the safety of gene therapy in clini-
cal application. Recently, introduction of a type III hammerhead 
ribozyme (HHR) at the 3'-UTR of the transgene exhibited the 
potency in regulating the protein expression. Since HHR possesses 
cis-cleaving activity, the cleavage of the 3'-UTR by HHR resulted 
in the degradation of transgene mRNA. Co-application of a ASO 
targeting HHR sequence inhibited HHR activity thereby allowing 
the protein expression [88]. Compared to the viral gene therapy, 
non-viral delivery has safety advantage. However, the cytotoxicity 
of their vehicle composition should be thoroughly evaluated. In 
addition, risk assessments for horizontal or vertical transmission 
should also be followed for clearing the genotoxicity concern in 
gene therapy.

To improve the efficacy of gene therapy, design of delivery vec-
tors and administration route should be carefully deliberated. 
Especially, tropism of viral vectors is important in the effective 
delivery of the transgene into the target cells. Since the main target 
of peripheral neuropathy are Schwann cells or neuronal axon, 
selection of viral serotype is properly considered. Recently, the 
transduction efficiency of AAV and Lentivirus on the Schwann 
cells was compared [89]. Lentivirus showed the highest transduc-

tion efficiency on both rat and human Schwann cells, while AAV 
showed entirely different efficiency according to serotypes. AAV1 
showed the highest transduction efficiency in rat Schwann cells, 
whereas AAV2 and AAV6 showed better potency on human 
Schwann cells. According to another previous study using mice, 
AAV1 transduced both Schwann cells and neurons while AAV2 
and AAV8 showed selective preference on sensory neuron and 
Schwann cells, respectively [90]. In this regard, all the viral vector-
mediated gene therapy in IPN utilized either lentivirus or AAV1. 
Thus further optimization of the vector system might increase the 
possibility of successful translation of gene therapy from preclini-
cal studies to future clinical trials.

Increasing the target specificity is also significant issue for non-
viral gene delivery. To improve transfection efficiency, increasing 
DNA condensation and stability, incorporating cell penetrating 
peptide, facilitating endosome escape, and increasing nuclear up-
take and translocation by manipulating chemical composition can 
be considered during the design of non-viral gene delivery system 
[91]. Recently, application of enzymes (e.g. MMP), cell specific 
antibodies (e.g. anti-HER2 and anti-CD,3 antibody), and aptam-
ers have been developed to increase the target specificity [92-94]. 
Thus development of novel specific targets for Schwann cell or 
peripheral neuron is needed to increase the transfection efficiency 
of non-viral vectors for IPN gene therapy.

Determining the delivery route is also an important part in the 
efficacy and feasibility of gene therapy. Because IPN affects the pe-
ripheral nerves, the highest efficacy could be achieved via an intra-
neural delivery. However, the direct administration of therapeutics 
into a peripheral nerve can cause tissue damage and may worsen 
the disease phenotype. As such, intrathecal or subcutaneous deliv-
ery provide an alternative option for IPN treatment delivery.

CONCLUSION AND PERSPECTIVES

As the incidence of CMT1A is highest in IPN with therapeutic 

Table 3. Strategies to improve therapeutic efficacy for IPN treatment

Type Category Strategy

Viral delivery Toxicity Reduction of genotoxicity using specific target sequence to avoid activation of proto-oncogene or using regulatory 
machinery for transgene expression 

Efficiency Enhancement of viral tropism specific to peripheral nervous system
Non-viral delivery Stability Development of enhanced vehicle to increase the stability of oligonucleotides

Chemical modification of oligonucleotide to increase the stability 
Efficiency Development of novel chemical composition or peptide to enhance cell uptake and to facilitate endolysosomal 

escape or nuclear translocation 
Specificity Isolation of novel receptors or membrane compositions in Schwann cell or axon

Development of novel ligands specific to peripheral nervous system
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benefits over millions of patients, therapeutic strategies for sup-
pressing PMP22 expression urgently need to be proven safe for 
patients. Gene suppression mediated therapeutic strategies require 
relatively short nucleotides compared to the delivery of a whole 
gene, which enables in vitro  synthesis of therapeutics and non-
viral delivery. Indeed, most suppression strategies in IPN treatment 
utilized non-viral system. Although most gene suppression strate-
gies have shown sequence-specificity in vitro and in vivo, risks of 
unexpected outcomes, due to off-target effects, still exist in human 
clinical trials. Thus, further investigation to validate safety and to 
enhance the specificity, stability, and efficiency of delivery system 
is required (Table 3).

Novel therapeutic options for IPN have been developed by virtue 
of the breakthroughs in RNA interference, oligonucleotide-based 
therapy, and genome editing technology. The development of a 
novel therapeutic option for CMT1A could be beneficial to the 
many patients affected by PMP22. Although it may be a long way 
until this seemingly straightforward concept comes into reality, 
these meaningful innovations are expected to greatly broaden the 
scope of gene therapy in the near future.
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