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Abstract

Background: HIV-1 vertically infected children in the USA are living into adolescence and beyond with the widespread use
of antiretroviral drugs. These patients exhibit striking differences in the rate of HIV-1 disease progression which could
provide insights into mechanisms of control. We hypothesized that differences in the pattern of immunodomination
including breadth, magnitude and polyfunctionality of HIV-1 specific CD8+ T cell response could partially explain differences
in progression rate.

Methodology/Principal Findings: In this study, we mapped, quantified, and assessed the functionality of these responses
against individual HIV-1 Gag peptides in 58 HIV-1 vertically infected adolescents. Subjects were divided into two groups
depending upon the rate of disease progression: adolescents with a sustained CD4%$25 were categorized as having no
immune suppression (NS), and those with CD4%#15 categorized as having severe immune suppression (SS). We observed
differences in the area of HIV-1-Gag to which the two groups made responses. In addition, subjects who expressed the HLA-
B*57 or B*42 alleles were highly likely to restrict their immunodominant response through these alleles. There was a
significantly higher frequency of naı̈ve CD8+ T cells in the NS subjects (p = 0.0066) compared to the SS subjects. In contrast,
there were no statistically significant differences in any other CD8+ T cell subsets. The differentiation profiles and
multifunctionality of Gag-specific CD8+ T cells, regardless of immunodominance, also failed to demonstrate meaningful
differences between the two groups.

Conclusions/Significance: Together, these data suggest that, at least in vertically infected adolescents, the region of HIV-1-
Gag targeted by CD8+ T cells and the magnitude of that response relative to other responses may have more importance
on the rate of disease progression than their qualitative effector functions.
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Introduction

Host factors have a strong influence on the HIV-1-specific

CD8+ T cell response and the consequent level of control exerted

upon viral replication. Of particular importance are the genes

contained within the MHC where diversity of class I driven

responses have shown an advantage with regards to disease

progression in HIV-1 disease. For example, individuals who are

homozygous at any of the three HLA class I loci have a more rapid

progression to AIDS, compared to those who are heterozygous at

these alleles [1] suggesting an advantage to having a diverse

repertoire of HIV-1-specific CD8+ T cell responses [2,3,4,5,6,7].

HLA class I further influences immune responses by restricting

the CD8+ T cell responses against a number of possible epitopes

dictated by peptide binding specificities of the HLA allele. The size

of each response generated by each epitope gives rise to a

hierarchical order of responses [8,9]. Within the hierarchy, the

greatest response is defined as immunodominant, while the weaker

responses are considered subdominant [10]. Development of

immunodominant responses is dependent on many factors,

including the kinetics of viral protein expression, the autologous

sequence of the infecting virus in addition to the HLA alleles

expressed by the individual [10]. The possession of certain

immunodominant responses may be an important factor in

establishing control over HIV-1 as has been observed in

individuals expressing the ‘‘protective’’ alleles HLA-B*27 and -

B*57 [8,11,12,13].

Viral control may also be linked to CD8+ T cell responses

against specific epitopes that afford a greater (or lesser) degree of

protection for the host. This concept is strengthened by the

consistent association of some HLA Class I alleles with HIV-1

disease progression rates; the association of HLA-B*27 and HLA-
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B*57 with long-term non-progression and HLA-B*35 with rapid

disease progression [14,15,16,17]. However, expression of an allele

and subsequent response to a protective epitope alone is not alone

sufficient to confer a disease progression pattern. In a study

comparing the HIV-1-specific immune response between HLA-

B*57 long term non-progressors (LTNPs) and HLA-B*57 typical

progressors, the LTNPs focused more of their responses to

peptides known to be HLA-B*57-restricted [18] suggesting the

dominance of the dominance of immune response is also

important.

The targeted viral gene product is an additional variable that

may impact disease course. The presence of an HIV-1-Gag-

specific response has been shown to be associated with a better

clinical outcome. Several studies in chronically infected adult

patients have shown that individuals whose immune response is

preferentially targeted against Gag progress more slowly and/or

have a lower viral load [3,19,20,21]. Studies have shown that

individuals who control their virus preferentially target Gag

derived epitopes during acute infection, and this is also seen in

individuals who express the protective alleles HLA-B*27 or HLA-

B*57 [12,22,23]. Importantly, one of the few studies performed in

perinatally infected infants showed that children with Gag-specific

CD8+ T cell responses exhibited significantly lower viral loads

than those that did not respond to Gag [24]. These data strongly

suggest that T cell responses directed against the Gag protein are

beneficial and may contribute to slower HIV-1 disease progression

in both adults and children.

This study was performed to investigate the importance of

immunodominant CD8+ responses in the clinical progression of

perinatally HIV-1-infected adolescents using responses to HIV-1

Gag to interrogate the key parameters. We hypothesized that

differences in the breadth, magnitude, polyfunctionality and

immuondomination patterns of the HIV-1 specific CD8+ T cell

response could explain differences in rate of progression.

Results

Subject Cohort Characteristics
Peripheral blood samples from 58 children and adolescents with

vertically acquired HIV-1 were analyzed. Subjects were divided into

two groups of immunologic progression based on CDC guidelines

(NS and SS). The characteristics of both groups as well as the total

cohort are displayed in table 1. The groups were overall well

distributed with regards to age, sex and race although the SS group

had a slightly higher percentage of females and the NS group a

slightly higher percentage of African Americans. The mean ages for

the NS and SS groups were 13.8 and 15.6 years respectively. An

example of how timepoints were selected is in figure 1.

Viral loads between the two groups were different consistent

with the difference in immune suppression status. None of the

patients exhibited consistently undetectable viral loads indicating

that all patients experienced some degree of viremia and

consequently HIV–1 antigenic exposure. The NS group included

more African-Americans than the SS group, but this was not

statistically significant. Fifty six of the 58 subjects were on or

previously on an antiretroviral treatment regimen with variable

adherence levels; no gross differences in antiretroviral drug

treatment regimen or adherence levels between the two clinical

groups were observed.

HLA Allele Distribution among Progression Groups and
Associations with Clinical Characteristics

All subjects were HLA typed and revealed a wide range of

HLA-A and HLA-B alleles among the two progression groups.

The allele frequency of the cohorts were consistent with published

data on a comparable population from the National Marrow

Donor Program [25], figure 2.

Among the alleles expressed in this cohort, distribution differed

amongst the NS and SS groups. The frequency of HLA-A*30,

B*42, and B*57 was greater in the NS group whereas HLA-B*53

and B*58 were more common in the SS group. These associations

did not reach statistical significance, but the observed trends

suggest influences of HLA alleles on disease progression rate.

HIV-1 viral load and CD4% were inversely correlated as

expected. Alleles which appeared with greater frequency in the NS

cohort had lower overall viral loads and higher CD4% values

(figure 2C–F). Certain HLA-B alleles such as B*57, B*35, B*39,

and B*42 were associated with lower viral loads and higher CD4%

levels as measured by the median overall viral load and CD4%

respectively.

Gag-specific CD8+ T cell Responses
The regions of Gag targeted by each group were examined by

ELISPOT in 2 stages, looking first at overall reactivity to p17, p24

and p15 followed by reactivity to peptides within those regions

where activity was observed. Five subjects (8.7% of the cohort), did

not display any Gag-specific response in the first screening

ELISPOT; 2 subjects displayed a Gag response, but there were

insufficient samples for further experiments, leaving 51 subjects in

the study.

Overall HIV-1-Gag-specific CD8+ T cell responses were

summarized in order to test for gross differences between the

groups. When pooling the total number of Gag responses, we did

not observe a meaningful quantitative difference (figure 3A). We

then looked for differences in the impact of the Gag-specific

responses on viral load. There was a statistically significant, but

modest negative correlation, between the overall magnitude of the

Table 1. Patient cohort characteristics.

Immunological Category N CD4% LVLa Age (y) Sex Raceb

No immune suppression
(NS; CD4%$25)

30 29.8% (27.1; 34.8) 3.65 (2.85; 4.14) 13.8 (10.9; 16.6) M = 15 F = 15 H = 9 AA = 20

Severe immune suppression
(SS; CD4%,15)

28 8.25% (5.5; 11.5) 4.79 (4.37; 5.11) 15.6 (12.5; 18.1) M = 11 F = 17 H = 13 AA = 13

TOTAL 58 24.5% (8.25; 31.0) 4.28 (3.61; 4.81) 14.3 (11.6; 17.52) M = 26 F = 32 H = 22 AA = 33

aLog viral load.
bH = Hispanic; AA = African American; M = Male; F = Female; Race was not available for 1 subject in the NS group and 2 subjects in the SS group.
The numbers in parentheses represent 95% confidence intervals.
doi:10.1371/journal.pone.0021135.t001

HIV-1 CTL Immunodominance in Infected Adolescents
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Gag-specific CD8+ T cell responses and log viral load (LVL)

(Spearman r = 20.396, p = 0.0369) in the NS group (figure 3B) but

not in the SS group (figure 3C).

Of the three subunits of Gag, the p24 region was the most

frequently targeted area, with 100% of the NS subjects and 80% of

the SS subjects recognizing this region. This was followed by p17,

recognized by 66% of NS and 67% of SS subjects. The least

recognized Gag subunit was p15, with only 24% of NS and 38%

of SS subjects displaying a response to this region (data not shown).

Overall, several areas were more frequently targeted than others

(figure 4A).

Specific Regions of Gag Targeted Unequally Between
Groups

Once the larger regions of response were identified for each

subject, the single peptides within the pool that an individual could

respond to were predicted from data in the Los Alamos National

Database CTL epitope maps. A second ELISPOT assay was

performed using the single peptides (table 2), to identify a more

precise estimate of the epitope targeted by the individual. Peptides

4988/4989, 5003/5004, 5020, 5025, 5029, 5038, 5061, and 5035

were the most frequently targeted. The peptide number, location,

amino acid sequences are shown in table 2.

Figure 1. Categorization of subjects into two distinct disease progression groups. Two examples of representative patients categorized
into either long-term survivors with No Immune Suppression (NS) (A) or Severe Immune Suppression (SS) (B). The dotted line is the boundary of the
CD4% value of that progression group. The shading shows the window from within which PBMC samples were chosen for study.
doi:10.1371/journal.pone.0021135.g001
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Several peptides were targeted more frequently by one group

than the other (figure 4B and C). Notably, peptide 5029 was

recognized by significantly more NS subjects with an HLA allele

able to present the peptide (44%), than SS subjects (13.6%)

(p = 0.029, Fisher’s exact test). Peptides 5003/4 and 5038 were

also more frequently targeted by the NS group than SS (30.8% vs.

8.7% and 42% vs. 16.7% respectively) although these differences

did not quite reach statistical significance (p = 0.07 for both). In

contrast, peptides 5020 and 5035 were more frequently targeted

by subjects in the SS group compared to the NS group (36% vs.

20% and 31% vs. 12.5%, respectively).

B*57 and B*42 Restricted Epitopes are Highly
Immunodominant

With the knowledge of each individual’s HLA alleles and the

regions of Gag they responded to, we could determine the HLA-

restriction of the vast majority of responses using data from the Los

Alamos National Database. Subjects who expressed the HLA-

B*57 or B*42 alleles were more likely to restrict their highest

magnitude (immunodominant) responses through peptides with

known B*57 and B*42 epitopes suggesting a strong contribution of

these alleles to immunodominance. In addition, such responses

made up the great majority of the total Gag-specific response in

these individuals (figure 5).

Eight subjects in this cohort expressed at least one HLA-B*42

allele and all eight restricted their immunodominant response

through this allele (figure 5). B*42 restricted responses

accounted for an average of 69% of the total observed Gag-

specific response in these individuals. Similarly, five subjects

expressed at least one HLA- B*57 allele and again, all 5 of these

subjects had an immunodominant response restricted through

B*57. In these subjects, B*57 restricted responses accounted

for, on average, 84% of their total observed Gag-specific

response.

Comparison of Differentiation Profiles of Bulk and
HIV-1-specific CD8+ T cells

Surface and intracellular cytokine staining on 17 NS subjects

and 15 SS subjects was performed following PBMC stimulation

with the previously identified single Gag peptides. We hypothe-

sized that a more fully differentiated TEMRA cells in the NS

subjects compared to SS subjects, both in the total CD8+ T cell

population and in Gag-specific CD8+ T cells would be observed

based on previous studies of HIV-1 infected adults [2,26]. Surface

staining of the total CD8+ T cell population revealed a

significantly higher frequency of naı̈ve T cells (CCR7+CD45RA+)

in NS subjects (p = 0.0066). We observed a trend towards higher

levels of TEM (CCR72CD45RA2) cells in the SS group although

this was not significant (p = 0.2). There was no observable

difference in the levels of TCM (CCR7+CD45RA2) or TEMRA

(CCR72CD45RA+) cells between the two groups (figure 6).

Intracellular cytokine staining allowed epitope-specific CD8+ T

cells to be characterized and for the maturation profiles between

the two groups to be compared. Initially, all epitope-specific

responses were analyzed, regardless of immunodominance. No

differences in the maturational profiles of epitope-specific CD8+ T

cells between the two groups were observed (figure 6B). Subse-

quently, only the immunodominant response from each person

was analyzed. Again, there were no statistically significant

differences in the maturational profiles, although there seemed

to be a trend towards higher levels of Gag-specific TEMRA cells and

lower levels of TEM cells in the NS groups (p = 0.2 for both) (data

not shown).

Levels of Cytokine and Degranulation Molecule Secretion
Secretion of the cytokines IFN-c, TNF-a, MIP-1b, and the

degranulation marker CD107a/b were analyzed in order to assess

the CD8+ T cell function. The secretion levels of these molecules

were analyzed both singly, and in different multifunctional

combinations. The frequencies of cells secreting any levels of the

molecules did not differ significantly between the two progression

groups (figure 7A). Overall, the frequency of cells secreting TNF-a
was quite low, never reaching above 0.25% of total CD8+ T cells.

The frequencies of cells secreting other cytokines varied widely,

with MIP-1b being secreted by the most cells; a median of 1%

total CD8+ T cells were found to secrete MIP-1b.

The vast majority of epitope-specific CD8+ T cells secreted only

1 or 2 cytokine(s) or degranulation marker, out of a possible 4

(figure 7B). A subset of Gag-specific CD8+ T cells did secrete IFN-

c, MIP-1b, and CD107a/b simultaneously (median of 0.6% of

total CD8+), although there was no difference in the frequency of

these cells between the two progression groups. There was a

significant difference between the groups in the frequency of cells

secreting IFN-c and MIP-1b simultaneously, with NS subjects

having a higher frequency of these cells (p = 0.04) than SS subjects.

There appeared to be trend toward SS subjects possessing a higher

frequency of cells secreting CD107+ and MIP-1b simultaneously

than NS subjects, but this was not statistically significant (p = 0.13).

Discussion

Several studies have suggested that qualitative characteristics of the

HIV-1-specific CD8+ T cell response are associated with viral control

and disease progression [2,26,27,28,29,30]. Other studies have

suggested that immunodominance patterns of HIV-1-specific CD8+
T cell responses are of great importance in establishing control of the

virus and HIV-1 disease [11,12,20,23,31,32,33,34,35,36,37,38,39,40].

We observed no difference in the magnitude or breadth of the Gag-

specific CD8+ T cell response between the two groups, as measured by

IFN-c production, consistent with other studies [2,3,4,5]. In contrast,

there were several differences in the epitope regions of Gag that were

targeted by CD8+ T cell responses. In bulk CD8+ T cell populations

we observed a significantly higher frequency of naı̈ve CD8+ T cells in

the NS subjects (p = 0.0066) compared to the SS subjects, but no

differences in any other CD8+ T cell subsets. The differentiation

profiles and multifunctional capacity of Gag-specific CD8+ T cells,

regardless of immunodominance, were similar between the progression

groups. Together, these data suggest that, at least in perinatally infected

adolescents, the region of Gag targeted by CD8+ T cells may have

more importance to the rate of disease progression than qualitative

features such as differentiation and multifunctionality.

There have been conflicting reports on the association between

the breadth of the Gag-specific response and disease progression.

Early studies showed a negative association between the breadth of

the HIV-1-specific response and disease progression [19,41,42],

while other studies have observed no relationship [2,3,4,5]. Other

investigations have found that individuals with putative protective

HLA alleles have CD8+ T cell responses that predominantly target

specific regions within the Gag protein during acute infection

[12,22,23]. These data suggest that the overall breadth of response

is not as important as which epitopes are targeted, specifically

those regions in Gag that are restricted by protective alleles.

The peptide (5029) which was significantly targeted more

frequently by NS relative to SS subjects (44% vs. 13.6%), contains

the TL9 (TPQDLNTML) epitope, which has previously been

identified as a peptide frequently targeted by HLA-B*42 restricted

CD8+ T cell responses [43]. The TL9 epitope shares significant

homology to the Mamu-A*01-restricted epitope CM9 (CTPY-

HIV-1 CTL Immunodominance in Infected Adolescents
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DINQM), which has been implicated in viral control in SIV-

infected macaques [44,45,46]. This suggests that recognition of

this area of Gag could be important in establishing immune

responses that might be contributing to the slow disease

progression in perinatally infected adolescents.

Of the various MHC Class I alleles in this study cohort, only HLA-

B*57 and B*42 overwhelmingly restricted immunodominant responses

in that 100% of subjects with at least one copy of these alleles restricted

their immunodominant response through that allele. Interestingly,

these two alleles occurred much more frequently within the NS group,

Figure 3. Association between Gag specific responses and disease progression. The magnitude of the total observed Gag specific
responses (the sum of all the epitope- specific responses) is compared between the two groups in panel A. Correlations between LVL and the
magnitude of the total observed Gag response are displayed for both progression groups in panels B and C.
doi:10.1371/journal.pone.0021135.g003

Figure 2. Distribution of HLA class I alleles in study Cohort. The frequency of expression of HLA class I A alleles (A) and B alleles (B) among the
two progression groups in the cohort was compared to the expected frequency in a Hispanic and African American cohort (see methods).
Associations between HLA Class I alleles and clinical characteristics are shown in panels C–F. Associations between log viral load (LCL) of all subjects
and class I HLA-A alleles (C) and B alleles (D), are ordered from lowest LVL to highest. Associations between CD4% values and HLA Alleles (E) and B
alleles (F) are ordered from highest CD4% to lowest. The solid line in each column is the median value for that HLA allele. The dotted line is the
median value of the total cohort.
doi:10.1371/journal.pone.0021135.g002
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Figure 4. Areas of Gag targeted by CD8+ T cell responses. The frequency of recognition of individual single peptides are shown for the total
cohort in panel A. The NIH AIDS Reagent peptides for HIV-1 Gag are represented by their peptide number. A comparison of the frequency of
recognition of single peptides between the two progression groups is shown in panel B. The percentage of each group responding to 6 of the
individual Gag peptides is shown in panel C.
doi:10.1371/journal.pone.0021135.g004
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suggesting that the immune response directed through these alleles

plays a role in mediating slower disease progression. This finding is

consistent with the effect of the HLA-B*57 allele on slow disease

progression in adults [12,18], but has not been demonstrated in a

perinatally infected population. HLA-B*42-restricted responses have

been noted for their immunodominance in a population with African

ancestry [43], but have not previously been associated with slower

disease progression.

Although this study suggests that immunodominance patterns are

a critical component in the disease progression of perinatally HIV-

1-infected adolescents, several caveats remain. The small number of

subjects precludes us from applying these findings to the general

HIV-1 infected pediatric population. These patients were not all

receiving the same treatment regimen, but this is an inherent

concern in studies where the subjects are drawn from heterogeneous

clinic populations. We attempted to minimize this concern, by

choosing subjects for the study who: 1) had not received HAART in

the first two years of life; 2) had some levels of ongoing viral

replication; and 3) were ARV-experienced (except for two patients).

Both groups had generally similar treatment adherence rates to

antiretroviral drugs, and variable adherence to ART is common in

HIV-1 infected adolescents. We used the HXB-2 peptide set from

the NIH as antigens, and this may both underestimate and

potentially miss autologous epitopic responses. As we were limited

with cell numbers, we focused on the HIV-1 Gag antigen, and

responses to other HIV-1 proteins are important to consider [32].

Our study was well balanced overall for age with a range from

10 to 18 years between the 2 groups studied. Age of the subject

could be contributing to the pattern of immunodominance.

However, the age range is relatively narrow with most subjects

developmentally considered adolescents. Therefore, age was

considered to be less unlikely to yield meaningful relationships to

immunodominance patterns and therefore no formal testing for

the effect of age was conducted.

This study is one of the first to study the patterns of

immunodominance and associations with disease progression in

a cohort of perinatally infected adolescents. Moreover, this work

focused on African American and Hispanic children, two

populations that are greatly underrepresented in studies on the

HIV-1-specific immune response. We find that in adolescents, as

in adults [12], the immunodominance patterns appear to influence

rates of disease progression. This influence seems to be mainly

focused on the exquisite targeting of certain Gag epitopes, and not

on the differentiation or cytokine secretion profiles of antigen-

specific CD8+ T cells. These findings may be of importance to the

field of pediatric HIV-1 immunology as well as the larger field of

HIV-1 vaccine design.

Materials and Methods

Ethics Statement
The research involving human participants reported in this

study was approved by the UCSF and AECOM institutional

review boards, with the approval number H11613–19149.

Informed consent was obtained for all subjects. All clinical

Table 2. Frequently Targeted Peptides.

Peptide Number
Location protein
(aa–aa) Amino Acid Sequence

4988/9 p17 (13–31) LDRWEKIRLRPGGKKKYKL

5003/4 p17 (73–91) EELRSLYNTVATLYCVHQR

5020 p24 (9–23) QMVHQAISPRTLNAW

5025 p24 (29–43) EKAFSPEVIPMFSAL

5029 p24 (45–59) EGATPQDLNTMLNTV

5035 p24 (69–83) LKETINEEAAEWDRV

5038 p24 (81–95) DRVHPVHAGPIAPGQ

5061 p24 (173–187) RAEQASQEVKNWMTE

doi:10.1371/journal.pone.0021135.t002

Figure 5. Immunodominance of CD8+ T cell responses restricted by HLA-B alleles. The frequency of several HLA-B alleles restricting the
immunodominant response of individuals expressing that allele, shown for each group.
doi:10.1371/journal.pone.0021135.g005
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investigation were conducted according to the principles expressed

in the Declaration of Helsinki.

Patient Sample Characteristics
Peripheral blood mononuclear cells (PBMC) from 58 subjects

attending the Pediatric HIV clinic at Jacobi Medical Center in the

Bronx, NY were selected based on availability of pre-existing

cryopreserved samples and clinical characteristics that allowed

them to be classified according to previously published CDC

guidelines [47]. All subjects contracted HIV-1 by vertical

transmission.

As a result of very limited cells in each sample (about 5–10

million cells per sample), and the need to perform three separate

assays on each patient for this study, we pooled PBMC samples at

three timepoints for each patient. We chose three consecutive

samples for each patient, coming from three consecutive clinic

Figure 6. Comparison of differentiation profiles of Gag specific effector CD8+ T cells between progression groups. All Gag specific
responses are shown in panel A. Only immuodominant responses (the response with the highest magnitude for each individual) are shown in panel
B. The line in each column represents the median value. The differentiation phenotype is referenced beneath each column.
doi:10.1371/journal.pone.0021135.g006
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visits. There was an average of 3.67 months between clinic visits.

An example of how timepoints were selected can be found in

figure 1.

Subject Categorization
Because the CD4% value is less variable than the CD4+ T cell

count in children, it is considered a more consistent marker of

immunologic disease progression, and is used by the CDC to

classify levels of progression [47]. Patients were categorized into

two groups based on CD4% values, using guidelines set forward

and published by the CDC [47]. Subjects with a sustained

CD4%$25 are considered long term survivors (LTS) with No

Evidence of Immune Suppression (NS). Those with a sustained

CD4%#15 are considered as having Severe Immune Suppression

(SS). We acknowledge that some of these subjects could be

classified as having ‘‘mild’’ or ‘‘moderate’’ suppression, but we

Figure 7. Comparison of cytokine secretion of HIV-1 Gag specific CD8+ T cells between progression groups. Secretion of single
cytokines is shown in panel A. Functional profile of HIV-1 Gag specific CD8+ T cells is shown in panel B. (+) denotes a positive response for that
particular cytokine. Gray bars represent NS subjects and black bars represent SS subjects. The solid bars represent the mean and the error bars
represent the standard error of the mean.
doi:10.1371/journal.pone.0021135.g007
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have given an overall classification of ‘‘severe’’ to help distinguish

the group from those with a higher sustained CD4%. None of the

subjects received HAART during the first two years of life. All of

the patients, with the exception of 2 children, were either taking

antiretrovirals (ARVs) or were ARV-experienced, but the vast

majority had variable adherence levels. There were no gross

differences in treatment regimen which included both protease

inhibitors and RT inhibitors, or adherence levels between the two

clinical groups.

HLA typing
DNA was extracted from PBMC using a QIAamp DNA Mini

kit (QIAGEN Inc., Valencia, Calif.). HLA typing used an

amplification refractory mutation system with sequence-specific

primers as described by the manufacturer (Invitrogen, Carlsbad,

CA).

Determining Epitope-specific Responses
Due to the limited cell numbers in samples, we determined the

repertoire of epitope-specific CD8+ T cell responses using a two-

stage ELISpot strategy. Antigenic stimulation was achieved

through the use of 122 peptides, comprising the entire HIV-1

HXB2 Gag protein: 15 to 19-mers overlapping by 10 amino acids.

Lyophilized peptides were obtained from the NIH AIDS Research

and Reference Reagent Program and resuspended in DMSO

and/or PBS. Initially, the individual peptides were combined to

form 12 sequential pools of 10–13 peptides. PBMC reactivity was

first screened with the 12 sequential pools at 2 mg/ml in an IFN-c
ELISpot in order to identify the broad regions of Gag that were

being targeted by each patient.

After the determination of which pools each subject responded

to, a targeted approach to identifying the individual peptides and

epitopes each individual responded to, was pursued. Potentially

reactive epitopes within a positive pool response were identified

using the patients HLA type and documented HLA-specific

epitope responses provided by the HIV-1 Molecular Immunology

Database (Los Alamos National Database). A database that allows

the rapid identification of epitope-containing peptides was also

used, which can be applied in a HLA specific manner [48]. We

then verified these predicted epitope-specific responses by

performing a further IFN-c ELISPOT, using single peptides, at

10 mg/ml, containing the predicted epitopes as antigenic stimu-

lation. Comparisons of results were only made with data generated

from similar peptide concentrations to minimize this as a

confounding variable. Due to a limited number of cells, optimal

epitope identification was not possible.

Detection of Gag-specific CD8+ T-cells by IFN-c ELISPOT
Quantification of HIV-1-specific T-cell responses using thawed

viable PBMC was performed using the IFN-c ELISPOT assay [49].

Briefly, each well of a 96-well plate (Millipore MAHAS4510,

Bedfort, MA) was coated with 50 ml of anti-IFN-c mAb (Mabtech,

Stockholm, Sweden) at 5 mg/ml. After incubation, each well was

washed and blocked with 10% FCS in RPMI (Cellgro). PBMC

(16105–26105) were added to duplicate wells and peptides

comprising the HXB2 sequence of Gag (AIDS Research and

Reference Reagent Program, NIH) were added at 2 or 10 mg/ml to

the cells. As a positive control, the mitogen phytohemagglutinin

(PHA) was used at 4 mg/ml, and wells with only media added were

used as a negative control. After overnight incubation (14–16 hours)

at 37uC, plates were washed with phosphate-buffered saline (PBS).

Biotinylated anti-IFN-c mAb 7-B6-1 (Mabtech) was added at 1 mg/

ml, and incubated at 37uC for 1 hr Plates were washed with

PBS+0.1% Tween 20 and treated with streptavidin-bound alkaline

phosphatase. After 1 h incubation, plates were washed with

PBS+0.1% Tween 20 and developed using Alkaline Phosphatase

Substrate Kit III (Vector Laboratories, Burlingame, CA). IFN-c
spot-forming units (SFUs) were visualized and counted using an

AID EliSpot reader (Autoimmun Diagnostika GMBH, Germany).

Spots were standardized to SFU/106 PBMC. Spots formed in the

presence of media alone were considered non-specific background

and subtracted from the SFU in stimulated wells. A reading of 30

SFU/106 PBMCs after the subtraction of non-specific background

spots was considered positive, as previously defined by pediatric

studies, using the same or a similar assay, performed by our lab

[50,51,52,53]. We defined the immunodominant response as the

strongest response detected in the ELISpot assay.

Multi-parameter flow cytometry
Single peptides identified as containing targeted epitopes were

used as the antigenic stimulus. The negative control was media

alone and the positive control was staphylococcal enterotoxin B

(SEB). A peptide pool consisting of CMV, EBV and Influenza

epitopes (CEF) was also used in the assay.

Briefly, cryopreserved PBMC were thawed and cells were

stimulated for one hour with either media alone, antigen, or

positive control. The antibody, CD107 a/b-PECy5 was added with

stimulation. Brefeldin A (Sigma-Aldrich, St. Louis, MI, USA) was

then added at a concentration of 5 mg/ml, and cells incubated

overnight. The next day, PBMC were washed and stained with

antibodies, in different combinations, against CD4-Alexa700, CD8-

Pacific Blue, CD45RA-biotin, CCR7-PECy7, CD57-PECy5,

CD279(PD-1)-PE, and a live/dead marker emitting in the aqua

wavelength, for 20 minutes at 4uC. Cells were washed twice and

stained with the secondary antibody streptavidin-Qdot655 for

20 minutes at 4uC. Cells were then washed and fixed in 2%

paraformaldehyde. The cells were permeabilized using FACS Perm

solution (BD Biosciences), washed and stained using antibodies, in

different combinations, against CD3-ECD, IFN-c-APC, TNF-a-

FITC, and MIP-1b-PE for 30 minutes at 25uC. Following staining,

the cells were washed, fixed in 1% paraformaldehyde, and collected

on a BD LSR-II using FACS DIVA software (BD Biosciences). Data

was analyzed using FlowJo software (TreeStar).

Gating Strategy
In all analyses, forward scatter (FSC)-height versus FSC-area

plot was used to exclude all cell conjugates. Dead cells were then

excluded by only gating on cells negative for the live/dead marker.

A FSC-area vs. side scatter (SSC)-area plot was used to define the

lymphocyte gate. T cells were selected by gating on CD3+
lymphocytes, followed by selection of CD8+ cells by gating on

CD3+CD8+ cells. CD4+ cells were defined as CD3+CD82 cells.

In panels with CD3, CD4, and CD8 antibodies, on average, 93%

of CD3+CD82 cells were CD4+. CD57+ cells were defined using

a FITC ‘‘fluorescence minus one’’ (FMO) sample. Quadrant gates

were set for expression of CCR7 and CD45RA by using a

QDot655 FMO and a PECy7 FMO. IFN-c+ cells were defined

using an APC FMO. IFN-c+ cells were further analyzed for

expression of T-cell memory markers in a CCR7 versus CD45RA.

Statistical Methods
A median (interquartile range) was used as a measure of central

tendency for continuous variables. The Mann-Whitney two-tailed

t-test was used for all simple comparisons between two groups.

The Spearman Rank correlation test and linear regression

analyses were used to explore associations between 2 continuous

variables. Differences between categorical data were calculated

using Fisher’s exact test. A p-value of ,0.05 was considered
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significant. All statistical analyses were performed using the

GraphPad Prism 4.03 software package (La Jolla, CA).
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