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Introduction
Centrioles have dual roles in mammalian cells: as the core of the 

centrosome, they participate in forming the mitotic spindle, and, 

in quiescent cells, they migrate to the cell cortex to function as 

basal bodies for primary cilia formation. Like centrioles, basal 

bodies consist of a core structure (with peripheral components) of 

nine triplet microtubules organized into a cylinder. The cylinder 

can be further divided into distinct regions for which few of the 

molecular components or functions are known. Each domain ful-

fi lls a role for basal bodies and their attached cilia. These poorly 

defi ned functions include basal body assembly, basal body corti-

cal attachment, protein recruitment for ciliary assembly, microtu-

bule nucleation, and cellular polarity. Basal body defects lead to a 

range of diseases, including  Bardet-Biedl syndrome and Polycys-

tic Kidney Disease. An understanding of the basal body function 

and dysfunction in disease requires a comprehensive inventory of 

the proteins that comprise the  basal body as well as the structural 

contribution of each. This is the fi rst study to combine a basal 

body proteome with an ultrastructural analysis of newly identifi ed 

basal body components. We reveal 24 new basal body proteins 

and describe the specifi c domains of localization for 19. Proteins 

were identifi ed from various domains within the basal body, al-

lowing us to predict their roles in basal body function.

Results and discussion
Basal body protein isolation and 
identifi cation
To describe a comprehensive inventory of the molecular compo-

nents that comprise the Tetrahymena thermophila basal body, 

two separate isolation techniques were used in combination 

with the high throughput shotgun proteomic technique, multi-

dimensional protein identifi cation technology (MudPIT; Washburn 

et al., 2001). In one preparation, cell cortices (pellicles) with 

and without associated basal bodies were isolated to identify 

proteins dependent on γ-tubulin for basal body localization 

(Fig. 1 A; see Pellicle preparation section in Materials and 

methods). γ-Tubulin functions in microtubule nucleation and is 

involved in the early steps of basal body assembly (Shang et al., 

2002). In T. thermophila, γ-tubulin is required for both the as-

sembly and maintenance of basal bodies; transcriptional repres-

sion leads to the loss of basal bodies after 20 h (Shang et al., 

2002). Pellicles were prepared from cells in the presence and 
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absence of γ-tubulin (Fig. 1, A and B). In the second prepara-

tion, the oral apparatuses were isolated from cells (Wolfe, 1970). 

The T. thermophila oral apparatus is composed of >100 ciliated 

and nonciliated basal bodies interconnected by a framework of 

microtubules and fi laments to generate a feeding structure (Fig. 

1 C; Wolfe, 1970). The associated basal bodies were extracted 

from the oral apparatus substructure (see Basal body lysate 

preparation section in Materials and methods). Basal body pro-

teins extracted from the oral apparatus are reported to reassem-

ble intermediate basal body assembly structures in vitro (Gavin, 

1984). Using these two isolation techniques, we identifi ed pro-

teins necessary for intermediate structures in the basal body 

 assembly pathway. Pellicle preparations allowed for the isolation 

of basal body components that are dependent on γ-tubulin for 

basal body localization, giving us insight into proteins involved 

in the maturation and maintenance of basal bodies. Proteins iso-

lated from the oral apparatus allowed for the identifi cation of 

components involved in the formation of the cartwheel, an early 

structure in basal body assembly (Dippell, 1968; Allen, 1969; 

Cavalier-Smith, 1974).

Proteins from all samples (pellicles with basal bodies, pelli-

cles without basal bodies, and oral apparatuses) were identifi ed 

using MudPIT (see Mass spectrometry section in Materials and 

methods). To identify proteins specifi cally found in the pellicle 

sample with basal bodies, components unique to each pellicle 

sample were tabulated (Fig. 1 A; Eng, 1994). Proteins identifi ed 

Figure 1. Basal body protein preparations. (A) Pellicles were made from cells expressing γ-tubulin (with basal bodies) and cells depleted of γ-tubulin (with-
out basal bodies) for 24 h. An enrichment of basal bodies in the γ-tubulin–expressing cells was found by several methods. The loss of basal bodies was ob-
served by decreased and mislocalized centrin staining in pellicles prepared from cells depleted of γ-tubulin compared with wild-type cells (top). At least a 
ninefold decrease in the number of basal bodies in γ-tubulin–depleted pellicles compared with pellicles expressing γ-tubulin was observed by electron 
 microscopy (not depicted). Both samples were analyzed by mass spectrometry, and the proteins were tabulated. The Venn diagram describes the total 
number of proteins found by MudPIT analysis. All proteins identifi ed in the sample lacking γ-tubulin were removed from the study. (B) Western blots of pelli-
cles from cells with (+GTU) or without γ-tubulin (−GTU) show a decrease in three basal body proteins: γ-tubulin, α-tubulin, and centrin. Equal numbers of 
pellicles were loaded for each lane. (C) Basal body proteins were also prepared using isolated oral apparatuses. Oral apparatuses in whole cells and after 
biochemical isolation were visualized using GFP–α-tubulin. Basal bodies were prepared using modifi ed methods (see Basal body lysate preparation section 
in Materials and methods; Wolfe, 1970). Isolated oral apparatuses are shown by fl uorescence (left; inset of a single isolated oral apparatus) and electron 
microscopy (several rows of basal bodies are shown in cross section). Basal body proteins were extracted from the oral apparatus network producing the 
oral apparatus lysate. The electron micrograph of the extracted oral apparatuses (pellet) shows that basal bodies are no longer present; however, the 
underlying substructure of the oral apparatus remains. The fi nal oral apparatus lysate was analyzed by MudPIT. 
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from the sample lacking γ-tubulin and basal bodies were  subtracted 

from the study. Of the 398 proteins that were removed, only one 

known basal body component (α-tubulin) was identifi ed. α-Tubulin 

is a ubiquitous protein that is found throughout the T. thermophila 

cell cortex (Frankel, 2000), although it is greatly reduced from 

pellicles lacking γ-tubulin by Western blotting (Fig. 1 B).

Basal body proteome
Combining the data from the two approaches yielded a basal 

body proteome of 355 proteins (Table S1, available at http://www

.jcb.org/cgi/content/full/jcb.200703109/DC1); 175 proteins were 

dependent on γ-tubulin for association with the basal body, and 

220 proteins were extracted from the isolated oral apparatuses. 

40 proteins were present in both samples. All 355 proteins were 

annotated for (1) homologous proteins by BLAST searches in 

the Homo sapiens, Drosophila melanogaster, Caenorhabditis 
elegans, and Paramecium tetraurelia databases; (2) gene ontology 

codes; and (3) presence in proteomics studies of related structures 

(Table S2; Ostrowski et al., 2002; Andersen et al., 2003; Avidor-

Reiss et al., 2004; Li et al., 2004; Liska et al., 2004; Keller et al., 

2005; Pazour et al., 2005; Smith et al., 2005; Stolc et al., 2005; 

Broadhead et al., 2006). Based on these analyses, the proteins 

were classifi ed into eight broad categories: basal body, candidate, 

cilia, other, metabolism, mitochondria, transcription/translation, 

and not conserved (Fig. 2 A). 22 of the 355 proteins (6%) were 

identifi ed as known basal body/centriole components from previ-

ous studies (Table S1; Ostrowski et al., 2002; Andersen et al., 

2003; Avidor-Reiss et al., 2004; Li et al., 2004; Keller et al., 2005; 

Pazour et al., 2005; Smith et al., 2005; Stolc et al., 2005). Approx-

imately one third of the total proteins was classifi ed as known or 

candidate basal body proteins, several of which were verifi ed 

through this study. One third were likely contaminating proteins; 

another quarter were proteins that had no obvious homology to 

vertebrate cells (see Mass spectrometry section in Materials and 

methods). Because the centriole is a highly conserved organelle, 

the nonconserved proteins were not studied further. However, it is 

worth noting that these proteins may be important for future stud-

ies in understanding T. thermophila basal body duplication and 

assembly. By analogy, Bld10p, which is found in Chlamydomonas 
reinhardtii, is involved in the early assembly steps of the  basal 

body; however, an obvious Bld10 candidate has not been found 

in other species (Matsuura et al., 2004).

Figure 2. 24 new basal body proteins were 
identifi ed by mass spectrometry. (A) Based on 
BLAST analysis and gene ontology codes, pro-
teins were classifi ed into eight broad categories: 
(1) basal body, proteins known to asso ciate 
with basal bodies/centrioles; (2) candidate, 
conserved proteins chosen as likely basal body 
candidates (BLAST e value <10−6); (3) cilia, 
proteins known to associate with cilia; (4) other, 
a broad category of proteins involved in a vari-
ety of biological processes other than centriole 
function; (5) metabolism, proteins involved 
in metabolic processes; (6) mitochondria, pro-
teins involved in mitochondrial function; (7) trans-
cription/translation (TX/TN), proteins involved 
in RNA and protein production; and (8) not 
conserved, proteins with no vertebrate homo-
logues (BLAST e value >10−6). Detailed in  for-
mation for each protein is provided in Tables 
S1 and S2 (available at http://www.jcb.org/
cgi/content/full/jcb.200703109/DC1). (B) Basal 
body components found and verifi ed by live 
cell fl uorescence imaging and immunoelectron 
microscopy. Protein name, domains, fl uorescence 
localization, and ultrastructural localization are 
described. The percentages refer to the per-
centages of total gold particles  localized to a 
specifi c domain by immunoelectron microscopy. 
The ultrastructural domains are illustrated in Fig. 
3 D. BB, basal body; NA, no immunoelectron 
microscopy was performed; MT, microtubule.



JCB • VOLUME 178 • NUMBER 6 • 2007 908

We classifi ed 79 proteins as centriole/basal body candidates 

because they fell into at least one or more of the following three 

categories. First, proteins were chosen that contained domains or 

structural motifs that were previously found to associate with 

basal bodies, centrioles, or microtubules. These included domains 

that interact with microtubule structures (e.g., assemblin, glycer-

aldehyde-3-phosphate dehydrogenase, Lis2, and EF hand) or do-

mains found in many known centriole/centrosome proteins (e.g., 

WD40 repeats, HEAT repeats, DM10, 14-3-3 domains, or coiled-

coil domains). Second, proteins were classifi ed as candidates if 

homologues were identifi ed by previous studies using proteomic, 

bioinformatic, or comparative genomic approaches in a variety of 

organisms, including T. thermophila, C. reinhardtii, Trypanosoma 
brucei, Drosophila, and human cells, to identify molecular 

components of centrioles (Keller et al., 2005), centrosomes 

(Andersen et al., 2003), or cilia (Ostrowski et al., 2002; Avidor-

Reiss et al., 2004; Li et al., 2004; Pazour et al., 2005; Smith et al., 

2005; Stolc et al., 2005). Many proteins were identifi ed in multi-

ple studies, confi rming that not only is the structure and function 

of microtubule-organizing centers conserved across phylogeny 

but the molecular components are conserved as well (Table S2). 

This comparative proteomics approach enabled cross validation 

of proteins to make them stronger candidate basal body compo-

nents. Proteins identifi ed through this approach include 17 of the 

POC (proteome of centriole) and BUG (basal body proteins with 

upregulated genes) proteins found in the fi rst reported proteomic 

analysis of centrioles (Keller et al., 2005). Although each of the 

aforementioned studies identifi ed new potential protein compo-

nents of the studied structure, localization studies are necessary to 

confi rm the identity as a basal body/centriole component. Finally, 

we focused on proteins in which mutations in the human ortho-

logues are known to cause ciliary dysfunction and disease. For 

example, mutations in LIS-1 cause mental retardation, neuro-

degeneration, and male sterility (Faulkner et al., 2000; Smith et al., 

2000), mutations in Spag-6 cause hydrocephalus (Sapiro et al., 

2002), and mutations in Parkin coregulated gene (PACRG) result 

in sterility (Lorenzetti et al., 2004). T. thermophila orthologues 

for each of these proteins were identifi ed.

Fluorescence localization of basal body 
proteins
Proteins classifi ed as candidates through the aforementioned 

secondary screen were then selected for biological validation 

by GFP fl uorescence localization in live T. thermophila cells. 

Figure 3. Localization of selected basal body components. (A) Live cell images of GFP-tagged Cen1, Bbc23, Bbc78, Bbc82, Sas6a, Bbc31, Bbc14, and 
Bbc20. Cen1, a known basal body component and a proteomics hit, is shown as a control. (B) Schematic of the organization of basal bodies in a 
T. thermo phila cell. Basal bodies are found in cortical rows and at the oral apparatus. (C) Immunoelectron microscopy of longitudinal basal body sections 
from cells expressing GFP fusion proteins: Cen1, Bbc23, Bbc78, Bbc82, Sas-6a, Bbc31, Bbc14, and Bbc20. Cells were indirectly labeled with anti-GFP 
antibodies and gold-conjugated secondary antibodies. Locations of the gold particles are highlighted with arrowheads. (D) Schematic of the organization of 
a basal body. The structural domains shown are the (1) site of nascent basal body assembly, (2) cartwheel, (3) microtubule scaffold, (4) collar, (5) midpoint, 
(6) transition zone, (7) lumen, and (8) postciliary microtubules. The posterior and the anterior sides of the basal body in reference to the cell geometry are 
indicated. Bars (A), 10 μm; (C) 200 nm.
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We generated GFP fusions to 40 genes, all of which were ex-

pressed (not depicted), and 24 of the proteins localized to basal 

bodies (summarized in Fig. 2 B; also see Figs. S1–3; available 

at http://www.jcb.org/cgi/content/full/jcb.200703109/DC1). 

This is in contrast to the diffuse localization of GFP alone 

(Fig. S1). We used T. thermophila centrin (Cen1), a known basal 

body component and proteomic hit found in our study, as a 

positive control for proper basal body localization (Stemm-Wolf 

et al., 2005). Each new basal body component localized in the 

canonical basal body pattern for both cortical rows and the 

oral apparatus (Fig. 3, A and B; and Fig. S1–3). In addition, 

T. thermophila have 17 microtubule-containing structures in the 

cell (Gaertig, 2000) and several proteins localized to multiple 

microtubular structures. For example, we identifi ed proteins that 

localize to the micronuclear spindle (e.g., Bbc23) and cilia (e.g., 

Spag-6) in addition to basal bodies. Of the 24 newly confi rmed 

basal body components, all but one (BBC14) are conserved in 

most of the eukaryotes examined.

High resolution localization of basal 
body proteins
To begin to understand the function of each newly identifi ed basal 

body component, we determined the ultrastructural localization 

using immunoelectron microscopy (see Immunoelectron micro-

scopy section in Materials and methods). Detailed localization 

data provide critical clues for function, and this is the fi rst study 

describing protein localization to basal body domains in combi-

nation with a basal body proteome. Basal bodies consist of a 

highly conserved structure built on a core of nine symmetrically 

arrayed triplet microtubules with peripheral components neces-

sary for microtubule nucleation, basal body anchoring to the 

plasma membrane, polarity establishment, and protein docking. 

Distinct regions exist for which few functions are known (Fig. 3 D). 

Assembly of the nascent organelle in ciliates reveals several inter-

mediate structures in basal body formation (Dippell, 1968; Allen, 

1969; Cavalier-Smith, 1974). Localization of a component to an 

intermediate structure implies not only a role at a given stage in 

assembly but also information about the role the protein plays in 

basal body function. In this study, we defi ne the localization of 19 

newly identifi ed basal body components to intermediate struc-

tures found in the assembly pathway and to mature basal bodies.

Basal body assembly begins with the appearance of an 

amorphous disk structure near the base or proximal end of the 

existing mother basal body. Bbc14, Bbc31, and Poc1 localized to 

this site of assembly, as does centrin (Fig. 3 C; Salisbury et al., 

1984; Guerra et al., 2003; Stemm-Wolf et al., 2005). The cart-

wheel, which consists of a central hub and nine radial spokes, 

 assembles on top of the amorphous disk. Three proteins (Poc1, 

Bbc82, and Sas6a) localize to the cartwheel of mature basal 

 bodies, a domain also observed early in assembly (Figs. 3 C, 

S2, and S3). The C. reinhardtii Bld10 protein also localizes to 

cartwheels and is essential for basal body assembly (Matsuura 

et al., 2004). In addition, Bbc29 localized to the proximal end of 

the cartwheel (Fig. S1). Thus, Bbc29, Poc1, Bbc82, and Sas6a may 

all be crucial for early basal body assembly and/or maintenance.

At the tip of each spoke of the cartwheel, the A and sub-

sequently the B and C microtubules are nucleated perpendicular 

to the mother basal body. These microtubules form the triplet 

blades for the cylindrical structure of the probasal body. During 

probasal body maturation, the cylinder elongates and separates 

from the mother as it inserts into the membrane, forming a struc-

ture that will nucleate a cilium. The mature and functional basal 

body exhibits several distinct morphological domains for which 

we identifi ed new proteins localizing to each (Figs. 2 B and 3 D).

Bbc23, Bbc30, Bbc52, Bbc57, Bbc73, and Bbc78 localized 

to the microtubule scaffold or walls of the core cylinder (Figs. 

3 C, S1, and S2). These proteins appeared as a sheath surrounding 

the core structure. Similarly, ε-tubulin (Dupuis-Williams et al., 

2002; Dutcher et al., 2002) and T. thermophila actin (Hoey and 

Gavin, 1992) are found surrounding the basal body cylinder. 

Although ε-tubulin appears to have a conserved role in assem-

bling or maintaining the triplet microtubule structure, actin contrib-

utes to normal ciliary structure and motility (Williams et al., 2006).

In addition to the general localization of proteins along the 

length of the basal body cylinder, regions of discrete localization 

were also observed. The proximal one third of the microtubule 

scaffold is surrounded by an electron-dense collar structure. Six 

proteins (Bbc30, Bbc53, Eno1, Ftt18, Ftt49, and PACRG) local-

ized to the collar (Fig. 3 C and Figs. S1–3). The collar is used as 

a site of attachment for cortical structures that contribute to the 

highly organized cytoskeleton of the T. thermophila cell (Frankel, 

2000). Finally, Cen1 and Ftt49 localized to a common site ap-

proximately equidistant from the ends of the basal body. This 

domain was defi ned as the midpoint and may be analogous to 

satellite structures found in centrioles.

The distal-most region of the mature basal body is the tran-

sition zone, which appears as two sheets in longitudinal sections 

(Marshall and Nonaka, 2006). Proteins localizing to the transi-

tion zone play roles in creating a foundation for the nucleation of 

ciliary microtubules and/or as a docking site for protein trans-

port. Bbc20, Bbc23, Bbc52, Bbc53, Bbc73, PACRG, and Spag6 

localized to the transition zone (Fig. 3 C and Figs. S1–3). Spe-

cifi cally, Bbc53 and Spag6 localized to the center of the transi-

tion zone at the site of central pair assembly. This localization is 

consistent with the role of Spag6 in the assembly and/or mainte-

nance of ciliary central pair microtubules (Sapiro et al., 2002), 

whereas Bbc20 (a Lisencephaly-1 domain–containing protein) 

localized to the side of the transition zone similar to intrafl agel-

lar transport protein localization at basal bodies (Cole et al., 

1998). It should be noted that this localization is distinct from 

the transition fi ber localization observed for IFT52 (Deane et al., 

2001), although both regions seem to function in intrafl agellar 

transport motility. Mutations in Lis-1 domain proteins cause 

several pathologies in humans, including mental retardation and 

neurodegeneration.

The mature basal body lumen is fi lled with an opaque ma-

terial extending from the cartwheel nearly to the terminal plate. 

To our knowledge, only centrin and γ-tubulin have been local-

ized to this region and are thought to form a continuous fi lament 

scaffold throughout the lumen (Fuller et al., 1995; Geimer and 

Melkonian, 2005). We have identifi ed one additional luminal 

basal body component, Bbc57.

The ultrastructural localization of new basal body proteins 

is illustrated in a compilation model describing the molecular 
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architecture of the organelle (Fig. 4). By localizing basal body 

components into specifi c domains, we can begin to consider dis-

tinct functional roles for these proteins as well as possible inter-

acting proteins. We have identifi ed 24 new basal body protein 

components and have defi ned a high resolution map for 19. 

These data provide a detailed, albeit preliminary, molecular view 

of the basal body structure. Similar structural, biochemical, and 

genetic studies have contributed to the comprehensive picture of 

the yeast spindle pole body (for review see Jaspersen and Winey, 

2004), nuclear pore complexes (Rout et al., 2000), and kineto-

chores (Westermann et al., 2007). A comprehensive understand-

ing of basal body and centriole function throughout the cell cycle 

requires an inventory of the components and how each contrib-

utes to the overall structure. Our proteomic and molecular ap-

proach combined with future genetic and biochemical studies 

will provide a comprehensive molecular map for understanding 

the assembly and functions of basal bodies and centrioles.

Materials and methods
Strains and culture conditions
T. thermophila strains CU428, SB1969, B2086 (Tetrahymena Stock Center, 
Cornell University), and TTMGII (a gift from M. Gorovsky, University of 
Rochester, Rochester, NY) were used in this study. Unless specifi ed, cells 
were grown in super proteose peptone (SPP) media (2% proteose peptone, 
0.1% yeast extract, 0.2% glucose, and 0.003% Fe-EDTA) at 30°C. TTMGII 
cells were grown in SPP with 1% proteose peptone at 22°C. For conjuga-
tion, midlog phase cells were washed and resuspended in starvation 
media (10 mM Tris, pH 7.5). After 18–20 h, equal numbers of each mating 
type were combined and incubated at 30°C.

𝛄-Tubulin shutoff
TTMGII (Shang et al., 2002) cells were grown to midlog phase in SPP with 
1 mg/ml CdCl2 to maintain γ-tubulin expression. To deplete γ-tubulin, cells 
were washed three times in starvation media and diluted to 3 × 103 cells/ml 
without CdCl2 for 24 h at 22°C before pellicle preparation.

Pellicle preparation
Pellicles were prepared from 1 liter of TTMGII cells grown to �2 × 105 
cells/ml in SPP with and without 1 mg/ml CdCl2. Cells were spun for 
15 min at 600 g and 4°C and were resuspended in 15 ml of ice-cold homoge-
nization buffer (HB; 20 mM Hepes, pH 7.0, 40 mM NaCl, 0.3 M sucrose, 
and 2 mM MgCl2) plus protease inhibitors (1 �g/ml leupeptin, 15 �g/ml 
E64, 10 �g/ml chymostatin, and 10 �g/ml antipain). Cells were spun 
again for 1 min, resuspended in 15 ml HB, left on ice for 10 min,  transferred 
to a Dounce homogenizer, and lysed with 40 strokes. The lysed cells were 
loaded onto a sucrose step gradient (1.46 and 1 M sucrose) and spun at 
2,500 rpm for 10 min at 4°C. Pellicles were collected from the interphase 
layer and washed with HB (the protocol was adapted from Nozawa and 
Thompson [1971]). Electron micrographs show that much of the cytoplasm 
and contaminating organelles were removed through this preparation. 
Pellicles were solubilized in HB + 1% NP-40 and TCA precipitated.

Basal body lysate preparation
Basal body protein lysates were prepared using modifi ed methods that 
were previously published (Wolfe, 1970). 1.5 liters of cells were grown to 
�3 × 105 cells/ml in SPP, harvested, and washed with cold 0.12 M sucrose. 
All of the following procedures were performed at 4°C. Cells were incu-
bated in isolation buffer (IB; 1 M sucrose, 1 mM EDTA, 0.1% 2-mercapto-
ethanol, 10 mM Tris, pH 7.3, at room temperature, and 0.75% Triton 
X-100) for 4 h to isolate oral apparatuses from the cell cortex. Samples were 
then washed with 2% Triton X-100 in IB before douncing in a 50-ml tissue 
homogenizer. Samples were washed again with 2% Triton X-100 in IB, fi l-
tered through an 8.0-μm polycarbonate fi lter (Nucleopore Filter Corp.), and 
spun, and the isolated oral apparatuses were resuspended in IB without 
detergent (Fig. 1 C). To isolate basal body proteins (basal body lysate) from 
the oral apparatus framework, KCl was added to a fi nal concentration of 

Figure 4. New T. thermophila basal body components were shown to localize to discrete structural domains. Protein localizations were assigned to spe-
cifi c domains if at least 20% of all gold particles in the immunoelectron microscopy compilation images are associated with the region. New protein com-
ponents are listed in Fig. 2 B and in Figs. S1–3 (available at http://www.jcb.org/cgi/content/full/jcb.200703109/DC1). Color reference and domain 
are listed for each new basal body component described. 
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1 M and incubated for 18 h with gentle stirring. Samples were then spun at 
30,000 g for 30 min to pellet the oral apparatus framework, leaving the 
soluble basal body lysate. The lysate was then dialyzed into storage buffer 
(10 mM MES, pH 6.7, 150 mM KCl, 0.5 mM MgSO4, 1 mM EGTA, 0.5 mM 
DTT, and 1 M sucrose) and TCA precipitated.

Mass spectrometry
TCA precipitates from purifi ed basal bodies were resuspended in 200 mM 
Na2CO3, pH 11, adjusted to 8 M urea, reduced, and alkylated as reported 
previously (Washburn et al., 2001). 5 μg proteinase K was added to the 
sample and incubated at 37°C for 5 h in a Thermomixer (Brinkmann; 
Wu et al., 2003). The digestion was stopped by the addition of formic acid 
to 5%, microcentrifuged at 18,000 g and 4°C for 15 min to remove particu-
lates, and subsequently pressure loaded on a 6-cm-long fritted (Meiring, 
2002) microcapillary-fused silica column (250-μm inner diameter) packed 
with 3 cm/5 μm C-18 resin (Aqua; Phenomenex) and 3 cm/5 μm strong 
cation exchange resin (Whatman). This precolumn was coupled via a true 
zero dead volume union (UpChurch Scientifi c) to a 15-cm/75-μm analytical 
column packed with 3 μm C-18 resin (Aqua; Phenomenex). Liquid chroma-
tography/liquid chromatography/mass spectrometry/mass spectrometry 
was then performed as described previously (Keller et al., 2005). Next, the 
collection of resulting ms2 spectra was searched against the preliminary 
sequence data for T. thermophila using the SEQUEST algorithm (Eng, 1994). 
Data for T. thermophila scaffolds was obtained from The Institute for Geno-
mic Research (TIGR; http://www.ciliate.org; Eisen et al., 2006). Peptide 
identifi cations were organized and fi ltered using the DTASelect and Con-
trast programs (Tabb et al., 2002). Filtering criteria for positive protein iden-
tifi cations for all purifi cations were the identifi cation of two unique peptides 
with a false positive rate ≤5%. The proteins corresponding to the matching 
peptides are listed in Table S1 along with the number of peptides matched 
to each protein and spectral count, which gives an indication of the relative 
abundance of the protein in the sample. All proteins were analyzed with 
BLAST searches to human, Drosophila, P. tetraurelia, C. reinhardtii, and 
C. elegans databases (BLAST e value > 10−6).

Western blotting
To demonstrate the presence of γ-tubulin, α-tubulin, and centrin in pellicles, 
0.5 × 105 pellicles (solubilized in SDS-PAGE buffer) per lane were separated 
by SDS-PAGE. Blots were performed with anti–γ-tubulin antibody (GTU88; 
1:500), anticentrin (1:1,000), or anti–α-tubulin (DM1A; 1:500). Proteins 
were detected using an infrared scanner (Odyssey System; LI-COR).

Plasmid construction and protein expression
Candidate gene ORFs (preliminary gene predictions TIGR Genome Data-
base) were amplifi ed from genomic DNA by PCR with attached cloning 
sites. The products were cloned into pIGF.1 (gift from D. Chalker, Washington 
University, St. Louis, MO) to generate an N-terminal GFP fusion under the 
control of the metallothionein promoter. Protein expression was induced by 
the addition of 0.2–1.0 μg/ml CdCl2 for 1–2 h, and cells were then washed 
into fresh media without induction for 2–4 h. Live cells were washed in 10 mM 
Tris, pH 7.4, and GFP was imaged using an upright microscope (DMRXA/
RF4/V; Leica) with a CCD camera (SensiCam; Cooke) at 25°C. Images were 
collected using a PL-APO 63× NA 1.32 objective (Leica) and the Slidebook 
software package (version 3.0.6.6; Intelligent Imaging Innovations). Through 
z series, maximum projections were generated using ImageJ software 
(National Institutes of Health [NIH]).

Immunoelectron microscopy
T. thermophila cells were pelleted, high-pressure frozen in a machine (HPM-
010; Bal-Tec), freeze substituted in 0.25% glutaraldehyde/0.1% uranyl ace-
tate in acetone, and embedded in Lowicryl HM20. 60-nm serial sections 
were cut and put on nickel slot grids, blocked with 1% milk in PBS–Tween 20, 
and incubated with anti-GFP (a gift from J. Kahana and P. Silver, Dana Farber 
Cancer Institute, Boston, MA) at 1:100. 15 nm gold-conjugated secondary 
antibody was applied to the grids at a dilution of 1:20 (Ted Pella). Grids 
were poststained with 2% uranyl acetate and lead citrate. Images were col-
lected using an electron microscope (CM10; Philips) equipped with a digital 
camera (BioScan2; Gatan) and digital micrograph software (Gatan). The 
domains of localization for each protein were determined by imaging the 
basal bodies of at least fi ve cells and compiling the gold particles onto one 
schematic cartoon image (Figs. S1–3). Domain localization was defi ned if at 
least 20% of the total gold particles were seen at a specifi c region.

Online supplemental material
Figs. S1–3 describe the fl uorescence and immunoelectron microscopy 
local ization of basal body components found in this study. Table S1 shows 

a summary of the mass spectrometry data. Table S2 shows a summary 
of the comparison to other proteomics/genomics studies. Online supple-
mental material is available at http://www.jcb.org/cgi/content/full/
jcb.200703109/DC1.
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