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Abstract
Alzheimer’s disease (AD) is a progressive brain ailment that causes memory loss, cog-
nitive decline, and behavioral changes. It is quite concerning that one in nine adults over
the age of 65 have AD. Currently there is almost no cure for AD except very few exper-
imental treatments. However, early detection offers chances to take part in clinical trials
or other investigations looking at potential new and effective Alzheimer’s treatments. To
detect Alzheimer’s disease, brain scans such as computed tomography (CT), magnetic
resonance imaging (MRI), or positron emission tomography (PET) can be performed.
Many researches have been undertaken to use computer vision on MRI images, and
their accuracy ranges from 80–90%, new computer vision algorithms and cutting-edge
transformers have the potential to improve this performance.We utilize advanced trans-
formers and computer vision algorithms to enhance diagnostic accuracy, achieving an
impressive 99% accuracy in categorizing Alzheimer’s disease stages through translat-
ing RNA text data and brain MRI images in near-real-time. We integrate the Local Inter-
pretable Model-agnostic Explanations (LIME) explainable AI (XAI) technique to ensure
the transformers’ acceptance, reliability, and human interpretability. LIME helps identify
crucial features in RNA sequences or specific areas in MRI images essential for diagnos-
ing AD.

1 Introduction
Alzheimer’s disease (AD) typically begins with mild memory loss and cognitive decline, rep-
resenting a progressive and degenerative brain disorder. The absence of preventive medica-
tions utilizing modern medical technologies raises concerns about the escalating number
of AD patients in the coming decades, imposing significant strain on patients, caregivers,
and healthcare systems [1]. Despite the widespread prevalence and severity of the condition,
effective therapy for Alzheimer’s disease remains elusive. Current diagnostic tests necessi-
tate a comprehensive understanding of the patient’s medical history but often fail to provide
conclusive results during the patient’s lifetime [2].

Early diagnosis of AD is crucial for timely intervention. However, the diagnosis of AD
is often delayed, with a substantial time gap between the onset of symptoms and confirma-
tion. Individuals in the early stages are frequently identified with mild cognitive impairment
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(MCI), a precursor to Alzheimer’s disease [3]. Various assessments, including cognitive tests,Competing interests: There are no competing
interests for biasing in this work. blood tests, neurological evaluations [4], and brain imaging techniques such as computed

tomography (CT) [5], magnetic resonance imaging (MRI) [6], and positron emission tomog-
raphy (PET) [7], are employed for detection. In traditional research, manually extracting
regions of interest such as the hippocampus and amygdala has been the norm for identify-
ing AD characteristics. Recognizing AD early is also essential for enrolling patients in clinical
trials or investigative studies.

Machine Learning (ML) offers a promising avenue for improving diagnostic accuracy in
Alzheimer’s disease. The well-established presence of neurological changes in AD-related MRI
scans justifies evaluating the effectiveness of ML approaches. Many ML-based methods for
AD diagnosis rely on conventional techniques like support vector machines (SVM), logis-
tic regression (LR), linear program boosting methods (LPBM), and support vector machine-
recursive feature elimination (SVM-RFE) to analyze patterns and predict AD progression. In
addition, ML models can integrate gene expression data to enhance AD detection capabili-
ties. However, traditional ML approaches often require domain-specific expertise to identify
valuable features, limiting their accessibility.

Deep Learning (DL), a subset of ML, overcomes these limitations by enabling incremen-
tal feature learning. DL models are highly effective at recognizing complex patterns and pro-
cessing large datasets. The traditional recurrent neural networks (RNNs) suffer from the van-
ishing gradient problem [8], which limits their ability to capture long-range dependencies in
sequential data. A notable advancement in DL is the development of the Transformer archi-
tecture, which employs attention mechanisms to capture relationships between elements in
data. Initially designed for Natural Language Processing (NLP), the Transformer’s architecture
has been adapted for image analysis, resulting in the Visual Transformer (ViT). ViT is better
than conventional CNNs because they capture global dependencies in images through self-
attention mechanisms. CNNs particularly focus on local patterns while ViTs can capture intri-
cate patterns in an image due to their ability to their ability to extract long range dependencies
across the entire image, rather than just local features like CNNs. Also, ViTs offer more flex-
ibility and scalability, especially with large datasets. This model utilizes parallel processing to
enhance speed, capacity, and accuracy in image-based applications.

Despite these advancements, the application of transformer-based models in AD diagno-
sis remains relatively underexplored. Notably, Convolutional Neural Networks (CNNs) and
SpinalNet have demonstrated considerable accuracy in determining different stages of AD [9].
However, there is a gap in incorporating explainable artificial intelligence (XAI) techniques
into transformer-based models.

This limitation highlights the need for further investigation into the integration of XAI
tools to enhance interpretability and reliability in AD diagnostics. XAI can provide detailed
explanations for model predictions, aiding clinicians in understanding the reasoning behind
diagnostic outcomes. This is particularly important in a critical field like AD detection, where
transparency and trust are essential for ensuring clinical adoption and improving patient
outcomes

In this study, we aim to utilize transformer models for Alzheimer’s Disease (AD) detection
and evaluate their effectiveness in translating RNA text data sequences and brain MRI images.
The key contributions of this work include:

(a) Implementation and evaluation of attention-based transformers with encoder-decoder
architecture on AD datasets, specifically RNA sequences and MRI images.

(b) Formation of a distinctive architecture by combining vision and text transformers,
designed for processing both text sequences and MRI image data.
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(c) Integration of an explainable artificial intelligence (XAI) method, LIME, with the trans-
former. This inclusion aims to interpret the crucial features in sequence and image
datasets that are essential for identifying an individual with AD.

The paper’s structure is outlined as follows: Section 1 presents the introduction, Section 2
summarize previous works. In Section 3, we present the datasets, highlighting the intercon-
nection between input attributes. Section 4 details the methodology and architecture of the
proposed framework. The experimental approach, results, and analysis are elucidated in
Section 5. Section 6 provides the discussion, and Section 7 concludes the study, while Section
8 briefly discusses future works in this field.

2 Literature review
Various earlier studies in the field have explored the prediction of Alzheimer’s disease (AD)
using diverse techniques, including machine learning (ML) and computer vision. In one
study [10], RNA-Seq methodology demonstrated greater effectiveness than microarray anal-
ysis in assessing gene expression profiles. Machine learning models applied to Differentially
Expressed Genes (DEGs) identified 740 DEGs (361 upregulated and 379 downregulated) in
AD patients with varying lifespans. The Robust Rank Aggregation (RRA) technique facilitated
meta-analysis of DEGs across multiple microarray platforms.

In another study [11], researchers utilized three large blood gene expression datasets
(ANM1, ANM2, and ADNI) to identify genes associated with AD and classify patients using
ML techniques. The study employed two procedures: extracting DEGs and feature engineer-
ing to select informative genes from the training set. Five classification techniques (logistic
regression, L1-regularized logistic regression, Support Vector Machines [SVM], Random
Forest [RF], and Deep Neural Networks [DNN]) were used to develop a prediction model.
Both internal and external validation showed promising results, suggesting that blood-based
biomarkers could advance AD diagnostics and treatments. However, challenges such as data
heterogeneity, sample size variability, and RNA quality need to be addressed.

Hind Alamro et al. [12] combined three brain tissue-based AD GEO datasets, resulting
in 189 AD samples and 256 non-AD samples. They identified 924 DEGs and used RF, SVM,
DNN, and Convolutional Neural Networks (CNNs) for prediction. Using genes selected
through LASSO and Ridge algorithms, their models achieved an Area Under the Curve
(AUC) of 97.9% on independent test datasets, demonstrating the efficacy of these feature
selection and classification methods.

Bhatkoti et al. [13] proposed a hybrid multi-class deep learning (DL) framework for early
AD diagnosis. Their enhanced k-Sparse Autoencoder (KSA) algorithm identified degraded
brain regions using MRI, cerebrospinal fluid (CSF), and positron emission tomography (PET)
images from the ADNI dataset. The modified KSA achieved an accuracy of 83.143% com-
pared to 71.327% with traditional methods. However, the need for manual tuning in deter-
mining sparsity levels (k) remains a limitation.

Tran et al. [14] introduced a computational strategy combining CNN and Gaussian Mix-
ture Model (GMM) for brain tissue segmentation, followed by a hybrid classification model
utilizing Extreme Gradient Boosting (XGBoost) and SVM.Their approach yielded high clas-
sification accuracies (0.88 and 0.80) on two datasets, with segmentation Dice coefficients of
0.96. The authors suggested further segmentation of specific brain tissues to improve preci-
sion, particularly for datasets with complex anatomical changes due to aging.
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Cheng et al. [15] proposed the use of 3D-CNNs to extract features fromMRI brain scans,
achieving an accuracy of 87.15% and an AUC of 92.26% on the ADNI dataset. This auto-
mated method effectively identified key features for AD classification. Similarly, Isik et al. [16]
achieved approximately 80% accuracy using CNNs for sMR brain images from the OASIS and
MIRIAD datasets. However, they noted challenges in distinguishing mild cognitive impair-
ment from AD.

Wang et al. [17] developed a multimodal deep learning framework for Alzheimer’s disease
dementia assessment, integrating data from neuroimaging, genetic markers, and cognitive
tests. Their approach combines CNNs and recurrent neural networks (RNNs) to capture both
spatial and temporal patterns in the data. The study shows that multimodal data fusion signif-
icantly improves diagnostic accuracy compared to single-modality approaches. The authors
reported an accuracy of 92.1% for Alzheimer’s disease (AD) diagnosis using their multimodal
deep learning framework, which integrated neuroimaging, genetic markers, and cognitive
tests. This multi-modal approach was quite a new addition to the field of AD diagnosis at the
time of publication but new state-of-the-art algorithms like models can be used for further
accuracy improvements.

Another study conducted by Liu M et al. [18] proposed a deep learning system for the dif-
ferential diagnosis of Alzheimer’s disease (AD) and mild cognitive impairment (MCI) using
structural MRI. Their model leverages 3D convolutional neural networks (CNNs) to extract
features from brain scans, achieving high accuracy in distinguishing between AD, MCI, and
healthy controls. The study highlights the potential of deep learning in automating AD diag-
nosis and emphasizes the importance of structural MRI as a key biomarker for early detection.
reported an accuracy of 88.6% for differentiating Alzheimer’s disease (AD) from healthy con-
trols and 76.5% for distinguishing mild cognitive impairment (MCI) from healthy controls
using their deep learning system based on structural MRI. The accuracy still remains rela-
tively low due to the use of CNN based architectures and the usability of moderately accurate
model can cause serious discrepancy in the field of AD detection.

In contrast, G. Kwon et al. [19] achieved 96.12% accuracy using a CNN pipeline inspired
by ResNet and ConvMixer, which reduced computational complexity while effectively clas-
sifying AD stages. Other studies, such as that by Tufail et al. [20], demonstrated the superi-
ority of transfer learning over traditional CNNs, achieving 77.23% accuracy in binary AD
classification with InceptionV3 and Xception architectures. Thamaraiselvi et al. [21] utilized
DenseNet 169 for AD identification, achieving a validation accuracy of 82.23%, highlighting
its efficacy in transfer learning-based approaches.

Sarwar Kamal et al. [9] explored SpinalNet and CNN for AD stage classification, achiev-
ing accuracies of 89.6% and 96.6%, respectively. They further analyzed gene expression data
using SVM, k-Nearest Neighbors (KNN), and XGBoost, with SVM reaching an accuracy of
82.4%. The study employed the LIME explainable AI library to elucidate the role of genes in
classification, enhancing interpretability.

Recent work by [22] applied transformer-based models, including Swin Transformer,
Vision Transformer (ViT), and Bidirectional Encoder Representation from Image Trans-
formers (BEiT), to classify Alzheimer’s and Parkinson’s diseases using brain imaging data.
The study utilized a balanced dataset of 450 brain images, achieving classification accuracy
exceeding 80%, with ViT demonstrating the highest performance (94.4% accuracy, 94.7% pre-
cision). While the results highlight the efficacy of transformer architectures in disease detec-
tion, the study has notable shortcomings. The dataset size (450 images) is relatively small,
which may limit the generalizability of the findings. Also, the accuracy is not satisfactory in
terms of AD disease diagnosis.
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Transformer models, initially designed for natural language processing, have recently
gained attention for their ability to handle long sequences through attention mechanisms and
parallel processing. Despite their success in various domains, their application in AD diag-
nosis remains underexplored. This study addresses this gap by applying transformer-based
models to both MRI and mRNA sequencing data, leveraging their capacity to identify novel
biomarkers and complex patterns. Unlike conventional DL models like CNNs and Recurrent
Neural Networks (RNNs), transformers overcome limitations such as vanishing gradients and
sequential processing inefficiencies. Incorporating the LIME explanation technique enhances
the interpretability of transformer models, bridging the gap between performance and clin-
ical usability. An overview of the studies reviewed in this work, including their algorithms,
data types, and accuracies, is summarized in Table 1, while their originality, strengths, and
limitations are presented in Table 2.

3 Dataset description
This section provides an overview of the datasets utilized in our study, encompassing MRI
images and mRNA sequencing data in tabular CSV format.

3.1 MRI image dataset (Alzheimer’s dataset)
We utilized the Alzheimer’s dataset from Kaggle [24], which includes gray MRI scans of the
brain from individuals in various stages of Alzheimer’s disease. The dataset encompasses
four classes: MildDemented, ModerateDemented, NonDemented, and VeryMildDemented.
It is organized into two folders: Train and Test, comprising a total of 5121 training images
across the four classes and 1379 test images. Table ?? illustrates the distribution of images
in the dataset. This dataset is valuable for predicting Alzheimer’s disease stages using com-
puter vision algorithms. Given the limited size of the test set, we allocated 10% of the training
dataset for validation to ensure a robust evaluation of the model’s performance. This approach
was necessary because the dataset did not provide a separate validation set, and splitting the
training set further would have risked overfitting due to the imbalanced class distribution.
Using a small portion of the test set for validation allowed us to tune hyper-parameters and
monitor model performance during training without significantly compromising the final
evaluation on the remaining test data.

Table 1. Algorithms, data type, and accuracy.
Author Algorithm Data type Accuracies
Lee et al. [11] L1-Regularized (LR),

SVM, RF, DNN
Gene Expression 87.40% (ANMI1), 80.40%

(ANM2), 65.70% (ADNI)
Cheng et al. [15] 3D-CNN MRI Images 87.12% (ADNI)
Ahsan Bil Tufail et al. [20] 2D-CNN MRI Images 77.23% (OASIS)
Kwon et al. [19] CNN MRI Images 96.12% (ADNI)
Isik et al. [16] CNN MRI Images 80% (OASIS, MIRIAD)
Thamaraiselvi et al. [21] DenseNet MRI Images 82.23% (OASIS)
Md. Sarwar Kamal et al. [9] SpinalNet, CNN, SVC MRI Images, Gene Expression 89.60% (MRI), 96.60%

(MRI), 82.40% (Gene)
Hind Alamro et al. [12] RF, SVM, DNN, CNN Gene Expression 97.9% AUC
Bhatkoti et al. [13] Modified KSA MRI, CSF, PET 83.143%
Tran et al. [14] CNN, GMM,

XGBoost, SVM
MRI Images 0.88, 0.80 (Dice coefficients)

Wang et al. [17] CNN, RNN Multimodal (MRI, Genetic, Cognitive) 92.1%
Liu et al. [18] 3D-CNN MRI Images 88.6% (AD), 76.5% (MCI)

https://doi.org/10.1371/journal.pone.0322607.t001
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Table 2. Originality, plus aspects, and minus aspects.
Author Originality Plus Aspects Minus Aspects
T. Lee et al. [11] Blood-based biomarkers for AD

diagnosis
High interpretability, external validation Limited by data heterogeneity and

small sample sizes
D. Cheng et al. [15] Automated feature extraction from

3DMRI
High accuracy, robust feature extraction Limited to single modality (MRI)

Ahsan Bil Tufail et al. [20] Transfer learning with
InceptionV3 and Xception

Reduced computational complexity Lower accuracy compared to
state-of-the-art

G. Kwon et al. [19] ResNet and ConvMixer-inspired
pipeline

High accuracy, reduced computational
complexity

Limited interpretability of model
decisions

Z. Isik et al. [16] CNN for sMRI classification Effective for sMRI data Difficulty distinguishing MCI from
AD

D.Thamaraiselvi et al. [21] Transfer learning with DenseNet
169

High efficacy in transfer learning Moderate accuracy, limited to MRI
data

Md. Sarwar Kamal et al. [9] SpinalNet for AD classification,
LIME for interpretability

High accuracy, explainable AI integration Limited by dataset size and
complexity

Hind Alamro et al. [12] Integration of multiple GEO
datasets

High AUC, robust feature selection Limited to gene expression data

Bhatkoti et al. [13] Hybrid multi-class DL framework Improved accuracy over traditional
methods

Requires manual tuning of sparsity
levels

Tran et al. [14] Hybrid segmentation and
classification model

High Dice coefficients, effective
segmentation

Complex pipeline, limited to
specific datasets

Wang et al. [17] Multimodal data fusion for AD
diagnosis

High accuracy, leverages multiple data
sources

Computationally intensive,
requires full multimodal data

Liu et al. [18] Deep learning for AD and MCI
differentiation

High accuracy for AD, robust feature
extraction

Lower accuracy for MCI, limited
generalizability

https://doi.org/10.1371/journal.pone.0322607.t002

3.2 NCBI’s RNA-sequencing datasets
In this dataset, a comprehensive collection of 191,890 nuclei associated with Alzheimer’s dis-
ease (AD) has been incorporated at the single-nucleus level, providing multi-omic informa-
tion. The dataset captures significant cellular heterogeneity by concurrently assessing chro-
matin accessibility and gene expression in the same biological samples. Leveraging single-
nucleus ATAC-sequencing and RNA-sequencing, this dataset serves as a multi-omics explo-
ration of Alzheimer’s Disease in human brain tissue, accessible through the National Center
for Biotechnology Information (NCBI) database under Accession Number: 174367 [25].

The assay for transpose-accessible chromatin with sequencing (ATAC-Seq) is a preva-
lent technique employed for evaluating chromatin accessibility throughout the genome.
This method involves sequencing open chromatin regions, allowing the determination of
how chromatin packaging and other factors influence gene expression. ATAC-sequencing is
instrumental in detecting open chromatin regions and regulatory elements in the genome,
facilitating the identification of locations potentially responsible for unregulated gene expres-
sion associated with Alzheimer’s disease. The dataset integrates ATAC and RNA sequencing
data, complemented by crucial factors such as age and gender, forming a binary classification
dataset. This comprehensive dataset enables objective comparisons of gene expression levels

Table 3. Dataset split for Alzheimer’s disease classes.
Type Moderate Mild Non Very Mild
Train 645 137 2304 1613
Validation 72 15 256 179
Test 179 112 640 448

https://doi.org/10.1371/journal.pone.0322607.t003
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between AD patients and healthy individuals, shedding light on the molecular underpinnings
of the disease.

4 Methodology
In our methodology, we employ a unified network of vision and text transformers. To classify
MRI images, we utilize a vision transformer algorithm, while a text transformer is employed
for determining the presence of Alzheimer’s Disease (AD) using mRNA sequence data. The
vision transformer algorithm was initially introduced by Alexey Dosovitskiy et al. in [26].
These individual models are then assembled to form a cohesive transformer model, applicable
for both MRI images and mRNA sequencing data. To enhance interpretability, we incorporate
the LIME algorithm, providing explanations for these transformer models. This combined
approach allows for a comprehensive analysis of both imaging and textual data in the context
of AD diagnosis.

4.1 Proposed transformer model architecture
In our study, we deal with two types of input data—images and sequential data. For process-
ing MRI images, we utilize a patch division layer that divides the images into fixed-size, non-
overlapping patches, treating each patch as a meaningful unit. On the other hand, when work-
ing with mRNA sequencing data, numerical data are converted into word sequences, allowing
us to represent the information as sequences of words. This dual approach, involving patch
embedding for images and word sequence conversion for sequential data, enables our model
to effectively handle both data types, contributing to a comprehensive analysis for Alzheimer’s
Disease diagnosis. Fig. 1 depitcs the unified network of Vision and text transformers.

Fig 1. The unified network of vision and text transformers.

https://doi.org/10.1371/journal.pone.0322607.g001
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4.1.1 Patch embedding (for MRI images). In order to accommodate 2D images, we
transform the image x∈ℝH×W×C into a sequence of flattened 2D patches xp ∈ℝN×(P2⋅C),
where (H = 640,W = 640) represents the original image resolution, C = 3 is the number of
channels, (P = 32,P = 32) is the resolution of each image patch, and N = HW

P2 = 400 is the
resulting number of patches. This N value also serves as the effective input sequence length
for the transformer.Output class xclass is also prepared as a learnable class embedding to the
sequence of embedded patches. Throughout all its layers, the transformer maintains a con-
stant latent vector size denoted as D. Consequently, we flatten the patches and project them
onto D dimensions using a trainable linear projection, as expressed by Eq. 1 [20]. Position
embeddings are added to the output of this projection to retain positional information.

Z0 = [xclass; x1pE; x2pE;… ; xNp E] + Epos … (1)

where E∈ℝ(p2⋅C)×D, Epos ∈ℝ(N+1)×D.
4.1.2 Token embedding (mRNA sequencing datasets). The standard text transformer

receives as input a 1D mRNA sequence of tokens, where these tokens are words or sub-words
in combination with different numbers and characters. Each token is associated with an
embedding vector (512 size), and an embedding layer is utilized to link each token in the
input sequence to its respective embedding vector. This approach enables the model to han-
dle continuous vector representations of discrete tokens, enhancing its ability to process
and comprehend the information embedded in the input sequences more effectively. The
mode_max_length attribute is set to 512, which indicates that the maximum length of the
input sequence that the text transformer model can handle is 512 tokens.

4.1.3 Positional encoding. In the process of patch embedding, positional encoding val-
ues are computed based on the positions of patches within the image grid. Each position in
the grid corresponds to a unique set of positional encoding values. For each patch embedding,
these positional encoding values are element-wise added. This addition imbues the patch
embeddings with information regarding their spatial positions relative to other patches in the
image. Contrastingly, in the context of token embeddings, each token is assigned a distinct
position. These positions signify the order of the tokens within the sequence. Positively, sinu-
soidal functions are employed to generate positional encodings. These functions generate a
series of continuous values that smoothly change in all directions. The positional encoding
values for each token embedding are then added element-wise. In both cases, the resulting
sequence of embedding vectors serves as input to the encoder layer.

4.1.4 Transformer encoder layer. Amulti-headed attention (MHA) mechanism, a 2-
layer MLP, layer normalization, and residual connections are all included in the encoder
component. Around each sub-layer, residual connections and layer normalization are used
to improve information flow. The dimension of each sub-layer and embedding layer output
is dmodel = 512. We have implemented Z-Score Normalization in the hidden layer, it involves
dividing each activation value by the standard deviation after subtracting the mean value from
each activation. This results in a new set of activation functions with a mean of 0 and a stan-
dard deviation of 1. Notably, the normalization is conducted independently for each channel
in the output tensor.

The following Eq (2) corresponds to the multi-head attention (MHA) step.

z′l =MHA (AT (LN (zl–1))) + zl–1, l = 1…L (2)

AT(q, k, v) = softmax( qk
T

√
dk
) v (3)
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zl =MLP (LN (z′l)) + z′l , l = 1…L (4)
y = LN (z0L) (5)

The Attention (AT) function operates within the Multi-Head Attention (MHA) function,
involving three vectors: the query (q), key (k), and value (v). The key vector is employed to
compute the attention score with the query vector, involving the transpose of the key. To nor-
malize this computation, it is divided by the square root of dk, representing the dimension
of the keys. Subsequently, the softmax function is applied to the result, resulting in scaled
dot product attention. These dot products are employed across six attention layers, known
as heads, as detailed in Eq. 3. Eq. 4 corresponds to the step involving a multilayer perceptron
(MLP). A 2-layer MLP is utilized for pre-training, and the network’s final output is a vector
with dimensions (1, ncls), containing probabilities for each of the ncls classes.

4.1.5 Classification head. The classification head only uses the final representation of
the patches and tokens. In the context of MRI image prediction, the softmax activation func-
tion is used due to the multi-class classification nature of the problem. For token embeddings
or sequential RNA data, the activation function is sigmoid, given the binary classification
nature of the problem. Eq. 5 corresponds to the output step found in each of the L-stacked
transformers.

4.2 Model application and hyperparameter tuning
Our data is loaded from the training directory using the Data_loaders function. All images
are resized to 256 × 256 pixels to ensure uniformity. Subsequently, the images were center-
cropped to obtain a size of 224 × 224, as required by the vision transformer algorithm.
The images are then converted to Python arrays using the to.tensor function and the array
values are normalized. We utilize the timm library [27] to load a pre-trained ViT model
(“vit_base_patch16_224”). To customize the model, we replace its head (topmost classifica-
tion layer) with a bespoke head comprising fully connected layers. The topmost classifica-
tion layer consists of a fully connected layer with some input features and 512 output features.
ReLU serves as the activation function, and dropout regularization with a dropout probabil-
ity of 0.3 is applied to prevent overfitting. The ReLU activation introduced non-linearity to the
model.

After configuring the topmost classification head, our transformer model is created. We set
a batch size of 100 for the model, using LabelSmoothingCrossEntropy as the loss function in
each iteration. This loss function, tailores for classification tasks, is a modification of conven-
tional cross-entropy and addresses overconfidence and overfitting issues during training [28].
The number of epochs is set to 30, and the Adam optimizer function is employed as the opti-
mizer. Adam optimizes model parameters efficiently and adaptively, extending the stochastic
gradient descent (SGD) method. Finally, we train our model using the model.fit method in
Python. The training is conducted on a Google Colab GPU, resulting in a test average accu-
racy of 98.6%. Table 4 depicts the key training parameters that were used tp train the model.

4.3 LIME algorithm
Understanding how to articulate a predictive model and ensure precise predictions is essen-
tial. Explainable AI (XAI) is gaining traction due to its straightforward and easily understand-
able processes. Among the popular XAI techniques for interpreting predictive models is Local
Interpretable Model-agnostic Explanations (LIME) [29]. In this context, consider X as the
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Table 4. Summary of key training parameters.
Parameter Value
Image size (after preprocessing) 224 × 224 pixels
Batch Size 100
Loss function LabelSmoothingCrossEntropy
Number of epochs 30
Optimizer Adam
Dropout probability 0.3
Activation function ReLU
Pretrained model ViT (“vit_base_patch16_224”)
Fully connected layer output features 512
Training platform Google Colab GPU
Test accuracy 98.6%

https://doi.org/10.1371/journal.pone.0322607.t004

feature space, and x as a specific instance of a feature in the data. LIME serves the purpose of
describing a prediction model. The two integral components of LIME include the black-box
model (p) and the explanation (f). LIME locally elucidates the procedure by employing an
interpretable function.

exp(x) = argmin
f∈F
[𝜃(p, f,𝜆x) +𝜔(f)] (6)

In this context, the loss function (p, f,𝜆x) is composed of three elements: p, representing
the black-box model; exp(x), denoting the interpretable feature explained by LIME. The term
Ω accounts for the penalty associated with the complexity of the model f, while 𝜆x represents
the similarity measure between data points x. The function f serves as the explainer. Through
the utilization of anomaly data to address Eqn. 6, LIME is capable of pinpointing the features.

To elucidate the image classifications conducted by a machine learning model, we devised
a Python function named show_img_exp that leverages the LIME (Local Interpretable Model-
Agnostic Explanations) module. This function takes two parameters: model, representing the
machine learning model to be explained, and infile, denoting the file path to the input image.

Within the function, a LimeImageExplainer object is instantiated, facilitating explana-
tions for image classifications. The input image undergoes preprocessing through an unspec-
ified img_prep function, and the LIME explainer is employed to generate an explanation. This
explanation accentuates areas of the image primarily influencing the top predicted label in the
model. To visually emphasize these significant areas, the mark_boundaries function from the
scikit-image package is applied, overlaying borders on the image. This process aims to high-
light regions critical to the model’s top prediction. Finally, the plt.show() function is employed
to display the resulting image with highlighted boundaries, enabling a clear understanding of
how the model arrived at its prediction for the input image.

5 Results and analysis
We have obtained promising outcomes in our algorithms after completing their implementa-
tion on the datasets.

5.1 Results of transformer for classifying MRI images
Table 6 outlines the outcomes obtained by employing a vision transformer across various
classes in the testing dataset. The NonDemented class attains the highest accuracy at 99.7%,
while the MildDemented class registers the lowest accuracy at 97.31%. The vision transformer
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Fig 2. Accuracy vs epoch curve of vision transformer.

https://doi.org/10.1371/journal.pone.0322607.g002

accurately classifies 98.6% of cases, with only a few instances of mis-prediction. The accu-
racy of the MildDemented class is less due to the presence of fewer training images in the
dataset. The model performs a little less when there is a small number of training data. Other
classes achieve appreciable results. Consequently, the overall accuracy of the model stands at
98.6% for all testing images, with a 95% confidence interval (CI) of [97.41%, 99.36%], indi-
cating a high degree of reliability in classification performance. We derive the CI using 5-fold
cross-validation, where the dataset was split into five subsets, training and testing the model
iteratively to ensure stable performance across folds. The narrow CI range confirms robust-
ness, as it reflects consistent accuracy with minimal variation across these folds. The CI pro-
vides a lower and upper range because it accounts for statistical uncertainty in the sample
data, estimating the plausible bounds of the true accuracy. The lower bound (97.41%) rep-
resents the minimum expected performance with 95% confidence, while the upper bound
(99.36%) suggests the potential peak accuracy under optimal conditions. The corresponding
loss and accuracy curves are depicted in Figs 3 and 2. The accuracy curves for both train-
ing and testing exhibit an initial surge to 80% within the initial 5 epochs, eventually sur-
passing 95% after 15 epochs. Both curves demonstrate similar trends in loss calculations,
reaching saturation after 15 epochs at the same point. Also, the ROC curve is displayed in
Fig 4. The Cohen Kappa coefficient value we obtain is 0.97, indicating almost perfect agree-
ment between the true and predicted labels. Similarly, the Matthews Correlation Coefficient
(MCC) is 0.98, reflecting a strong correlation and robust performance of the model across all
classes.
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Fig 3. Loss vs epoch curve of vision transformer.

https://doi.org/10.1371/journal.pone.0322607.g003

Fig 4. AUC score of all classes of ViT.

https://doi.org/10.1371/journal.pone.0322607.g004
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In Fig 5, LIME explanations are presented for all four classes of test images. The LIME
explanation highlights the specific regions of the images that contributed to the prediction of
these classes. Red patches in the explanation images represent areas that positively influenced
the model’s accurate prediction. Positive influence implies that these regions were instrumen-
tal in the model correctly identifying the class or label. In essence, the presence of red zones
indicates that the characteristics or patterns in those areas align with the expected class. In
Fig 6, overlays of the explanations are displayed. The yellow lines point out distinct pixels that
played significant roles in predicting the class of these particular images.

Fig 5. LIME Explanation of (a) MildDemented, (b) ModerateDemented, (c) NonDemented, and (d) VeryMildDemented Class images.

https://doi.org/10.1371/journal.pone.0322607.g005
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Fig 6. Overlay of (a) MildDemented, (b) ModerateDemented, (c) NonDemented, and (d) VeryMildDemented
class images.

https://doi.org/10.1371/journal.pone.0322607.g006

5.2 Comparative analysis of vision transformer and other state-of-the-art
computer vision algorithms on MRI image classification
In our MRI image classification study, we apply four off-the-shelf computer vision algo-
rithms which are- the vision transformer (ViT), MobileNetV2, Swin Transformer and
Skip-connected Convolutional Autoencoder (SCAE). Among these algorithms, ViT and
MobileNetv2, both exhibit excellent performance with only a marginal 1% accuracy dif-
ference. We select MobileNetV2 for its capability to be easily ported into mobile devices
aligns well with our plans of building an embedded device for detecting Alzheimer’s Disease
(AD). MobileNetV2 is known for its efficiency and suitability for deployment on resource-
constrained platforms, making it a practical choice for mobile applications. This decision
reflects a strategic consideration for the practicality of deploying your AD detection model in
real-world scenarios, especially on devices with limited computational resources. The motiva-
tion behind selecting Swin Transformer is its hierarchical feature extraction and shift-window
mechanism. This mechanism particularly adept at capturing fine-grained spatial information
in images, which makes it highly effective for medical imaging tasks, as reflected by its strong
performance, achieving an accuracy of 91.67% on the test set.The hierarchical design of Swin
Transformer makes it suitable for large-scale image classification tasks. Additionally, we apply
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Table 5. Overall test accuracy.
Algorithm Accuracy F1- score AUC Score Cohen’s Kappa Matthew’s

Coefficient
ViT 98.60% 98.47% 0.992 0.97 0.98
MobileNetV2 97.61% 97.52% 0.969 0.95 0.96
Swin Transformer 91.67% 91.93% 0.907 0.84 0.85
SCAE 88.31% 88.83% 0.893 0.78 0.80
EfficientNet-B0 91.57% 92.01% 0.92 0.83 0.84
ResNet-50 86.59% 86.87% 0.878 0.77 0.79

https://doi.org/10.1371/journal.pone.0322607.t005

Table 6. Test accuracy for the classes.
Classes Test Accuracy AUC
ModerateDemented 99.20% 0.98
MildDemented 97.31% 0.96
NonDemented 99.70% 1.00
VeryMildDemented 98.19% 0.99

https://doi.org/10.1371/journal.pone.0322607.t006

SCAE for its lightweight architecture and computational efficiency which gives us an accu-
racy of 88.31%. Additionally, EfficientNet-B0 and ResNet-50 are included for benchmarking,
achieving accuracies of 91.57% and 86.59%, respectively, further validating the robustness of
our approach. These results collectively highlight the trade-offs between accuracy, compu-
tational efficiency, and deployment feasibility. Based on our findings, it can be conclusively
stated that the ViT proves to be a highly effective and efficient algorithm for the classifica-
tion of MRI images related to Alzheimer’s Disease. Table 5 displays the Accuracy, F1-score,
Cohen’s Kappa and Matthew’s correlation coefficient of each model on the dataset. Based on
our findings, it can be conclusively stated that the Vision Transformer proves to be a highly
effective and efficient algorithm for the classification of MRI images related to Alzheimer’s
Disease. Also, Fig 4 represents the ROC curve of ViT, where we can see that ViT achieves
high Area Under the Curve (AUC) scores across all Alzheimer’s Disease classes, reflecting its
strong ability to distinguish between positive and negative cases for each category. The AUC
values 0.98 for ModerateDemented, 0.96 for MildDemented, 1.00 for NonDemented, and 0.99
for VeryMildDemented indicate near-perfect discrimination, with NonDemented reaching an
ideal 1.00, aligning with its top accuracy of 99.70%. These results underscore ViT’s robustness
in handling class-specific patterns in brain imaging data, even for challenging cases like Mild-
Demented as the number of training images are very low, where accuracy dips slightly and so
does the AUC. Also, the Cohen’s Kappa and Matthew’s correlation coefficients are consistent
with these findings.

5.3 Results of transformer for classifying RNA-sequencing
The text transformer demonstrates a 98.9% accuracy on the test RNA-Sequencing Datasets,
with an 80% training and 20% testing split of the entire RNA datasets. Following this, model
explanations are provided using LIME. The LIME explanation reveals the feature importance
values contributing to the prediction of the probability of Alzheimer’s Disease (AD). Notably,
the Age attribute emerges as a highly significant factor in AD presence, while Sex shows no
discernible impact. RIN, cluster, Tangle.Stage, Cell.Type, and PMI exhibit varying degrees of
significance in influencing AD prediction. Additionally, a Deep Neural Network (DNN) was
employed, achieving a 93.23% accuracy. Figs 7 and 8 present LIME explanations for further
insights.
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Fig 7. LIME explanation of feature value range on prediction.

https://doi.org/10.1371/journal.pone.0322607.g007

5.4 Combined results of transformer models
Impressively, by employing ensemble vision and text transformers for Alzheimer’s Disease
(AD) prediction using both MRI images and categorical data, we attain a remarkable accu-
racy of 98.75%. The model demonstrates high reliability, especially in terms of accuracy. In
the next two subsections, the robustness of our model is discussed.

5.5 Interpretation of the model from a medical perspective
From Fig 5 we can see that the regions highlighted by LIME are responsible for the respec-
tive predictions. In the image (b) the brain is moderately demented. It can be seen that the
LIME explanation highlighting the ventricular and cerebellar regions in the MRI scan aligns
well with known clinical biomarkers of Alzheimer’s Disease (AD). Ventricular enlargement,
as observed in the highlighted regions, is a well-established indicator of gray matter atrophy,
particularly in the hippocampus and temporal lobes, which are critical for memory processing
[30]. This degeneration seen in AD leads to cognitive impairment, and this shrinkage causes
the lateral ventricles to expand [31]. The highlighted cerebellar region is also noteworthy,
as recent studies suggest that cerebellar atrophy correlates with late-stage AD and cognitive
decline [32]. Furthermore, cortical atrophy in the parietal and temporal lobes, also contribut-
ing to dementia symptoms, is consistent with the LIME-explained model’s focus. The model’s
emphasis on these regions suggests that it has effectively learned clinically relevant patterns
for AD detection. Also, in image (a), which corresponds to a mildly demented patient, the
LIME overlay highlights critical brain regions associated with early-stage Alzheimer’s Disease
(AD). The hippocampus and temporal lobe regions are highlighted in red show significant
importance for the model’s classification. Clinically, hippocampal atrophy is a well-known
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Fig 8. LIME feature impacts on prediction.

https://doi.org/10.1371/journal.pone.0322607.g008

early biomarker for AD, leading to short-term memory loss and cognitive decline [30]. Addi-
tionally, ventricular enlargement is apparent, likely due to gray matter loss. As a result, cere-
brospinal fluid (CSF)-filled spaces will expand [31]. In image (c), corresponding to a non-
demented individual, the LIME explanation shows activation in white matter regions and
cerebellum. The absence of significant highlights in the hippocampus or temporal lobe sug-
gests a healthy brain structure with no signs of neurodegeneration. The mild highlighting
in the cerebellum and cortical areas could be due to normal variations in MRI signal inten-
sity or non-pathological age-related changes [32]. Unlike the demented case, the ventricular
spaces appear normal, indicating that the brain volume is well-preserved. Thus it can be con-
cluded based on clinical research evidence that, the LIME explanation supports the validity of
the model. For the RNA sequencing data, Fig 7 illustrates a LIME-based decision boundary,
showing how different features contribute to predicting Alzheimer’s Disease (AD). The Tan-
gle.Stage, Plaque.Stage, and Cell.Type features play a significant role, as neurofibrillary tangles
and amyloid plaques are established biomarkers of AD pathology [31]. Fig 8 highlights the
feature importance ranking, where Tangle.Stage (3.00) and Plaque.Stage (3.00) have strong
contributions, supporting their role in AD progression. Age (90 years) and cluster (16.00) also
impact prediction, aligning with research showing that age-related neuronal changes increase
AD risk [30]. The model’s reliance on these biologically relevant features suggests clinically
meaningful predictions, reinforcing the validity of LIME explanations.
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5.6 Additional proof of robustness
5.6.1 Validation using ADNI dataset After training our model using the ADNI dataset,

we receive remarkable accuracy of 98.29% in the test dataset with the same hyperparameters
and configuration. The accuracies of different classes are depicted in the Table 7.

5.6.2 LIME interpretation Themodel’s robustness is reinforced through LIME-
based interpretability, which highlights clinically significant brain regions associated with
Alzheimer’s Disease (AD). The ventricular enlargement, hippocampal atrophy, and cerebel-
lar atrophy identified in the LIME explanations align with well-documented biomarkers of
AD. These findings confirm that the model is not relying on spurious correlations but instead
learning meaningful anatomical features relevant to AD progression. Additionally, the LIME
interpretations for non-demented cases show no significant highlighting in the hippocampus
or temporal lobe, further validating the model’s ability to differentiate between pathological
and healthy brain structures. Furthermore, in the RNA sequencing data, the model correctly
emphasizes Tangle.Stage and Plaque.Stage, which are well-known indicators of AD pathology.
The alignment between model predictions and established clinical knowledge supports the
model’s reliability and generalizability, demonstrating its robustness in detecting AD across
different modalities.

6 Discussion
The findings of this study underscore the transformative potential of advanced deep learn-
ing models, such as Vision Transformer (ViT) and MobileNetV2, in enhancing the accuracy
of Alzheimer’s disease (AD) diagnosis through MRI image analysis. ViT’s superior perfor-
mance, achieving an overall accuracy of 98.6% with a tight 95% confidence interval [97.41%,
99.36%], highlights its ability to capture intricate patterns in brain imaging data that tradi-
tional methods might overlook. MobileNetV2, while slightly less accurate, offers a lightweight
alternative, making it viable for resource-constrained settings, which broadens the practi-
cal scope of AI-driven diagnostics. The integration of Explainable AI (XAI) techniques like
LIME further elevates these models by providing interpretable insights, such as highlighting
the hippocampus and temporal cortex as key regions in AD progression. This interpretabil-
ity bridges the gap between complex AI outputs and clinical utility, fostering trust among
healthcare professionals who rely on actionable explanations. Extending the analysis to RNA-
sequencing data with transformer learning revealed complementary insights, suggesting that
multi-modal approaches could refine AD prediction beyond imaging alone. However, the
study’s reliance on specific datasets raises concerns about generalizability, as demographic
imbalances—age, gender, or ethnicity—may skew model performance across diverse popu-
lations. Similarly, variations in MRI equipment and protocols across institutions introduce
noise, potentially undermining the models’ consistency in real-world scenarios. These lim-
itations echo broader challenges in AI healthcare research, where dataset quality often dic-
tates success more than algorithmic sophistication. The high AUC scores across AD stages

Table 7. Class-wise accuracy of ADNI dataset.
Class Accuracy (%)
CN (Cognitively Normal) 99.1
EMCI (Early Mild Cognitive Impairment) 97.3
LMCI (Late Mild Cognitive Impairment) 98.5
AD (Alzheimer’s Disease) 98.29

https://doi.org/10.1371/journal.pone.0322607.t007
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(e.g., 1.00 for NonDemented, 0.96 for MildDemented) from ViT suggest robust discrimina-
tion, yet they also prompt questions about overfitting to the training data’s characteristics.
From a clinical perspective, aligning AI outputs with known AD biomarkers, like hippocam-
pal atrophy, strengthens diagnostic confidence, but validation against larger, standardized
cohorts remains critical. The regulatory landscape adds another layer of complexity, as FDA
approval demands rigorous, multi-center trials to ensure safety and efficacy beyond academic
benchmarks. Encouragingly, the narrow confidence intervals from 5-fold cross-validation
affirm the models’ stability, yet future work must address scalability to diverse clinical envi-
ronments. Integrating multi-center datasets with standardized protocols could mitigate biases
and enhance deployment feasibility. Ultimately, this study lays a foundation for AI to revolu-
tionize AD diagnostics, but its success hinges on overcoming technical, ethical, and regulatory
hurdles in tandem.

7 Conclusion
This study demonstrates the efficacy of employing ensemble vision and text transformer
model enhanced by XAI techniques like LIME, in accurately diagnosing AD stages using
both MRI and RNA-sequencing data. The high accuracy (98.75%) and interpretability under-
score their potential to improve clinical understanding and early detection of AD. Our exper-
iments also highlight the robustness, absence of overfitting and tendency to bias towards
different types of data. However, noisy dataset and variations of MRI protocol may high-
light our model’s limitations that future work must address. Regulatory challenges, including
FDA approval, remain significant for real-world adoption. These findings pave the way for
advanced AI tools in AD management, pending broader validation and standardization.

8 Future works
In the future, the progression of this research could involve the development of an embedded
hardware system employing Vision Transformer techniques to enhance the accuracy of MRI
image predictions. Additionally, the inclusion of diverse and standardized datasets for model
training could lead to the creation of a more generalized and efficient system, improving over-
all prediction accuracy. Furthermore, utilizing the MobileNetV2 algorithm, there is poten-
tial for the creation of a mobile cloud application dedicated to Alzheimer’s Disease detection
using MRI images.
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