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M. H. Cruz,1 Å. Sidén,1, 2 G. M. Calaf,3, 4 Z. M. Delwar,1 and J. S. Yakisich1

1 Department of Clinical Neuroscience R54, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
2 Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
3 Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile
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The identification of a fraction of cancer stem cells (CSCs) associated with resistance to chemotherapy in most solid tumors leads
to the dogma that eliminating this fraction will cure cancer. Experimental data has challenged this simplistic and optimistic model.
Opposite to the classical cancer stem cell model, we introduced the stemness phenotype model (SPM), which proposed that all
glioma cells possess stem cell properties and that the stemness is modulated by the microenvironment. A key prediction of the
SPM is that to cure gliomas all gliomas cells (CSCs and non-CSCs) should be eliminated at once. Other theories closely resembling
the SPM and its predictions have recently been proposed, suggesting that the SPM may be a useful model for other type of tumors.
Here, we review data from other tumors that strongly support the concepts of the SPM applied to gliomas. We include data related
to: (1) the presence of a rare but constant fraction of CSCs in established cancer cell lines, (2) the clonal origin of cancer, (3) the
symmetrical division, (4) the ability of “non-CSCs” to generate “CSCs,” and (5) the effect of the microenvironment on cancer
stemness. The aforenamed issues that decisively supported the SPM proposed for gliomas can also be applied to breast, lung,
prostate cancer, and melanoma and perhaps other tumors in general. If the glioma SPM is correct and can be extrapolated to other
types of cancer, it will have profound implications in the development of novel modalities for cancer treatment.

1. Introduction

The identification of putative cancer stem cells (CSCs)
in tumors some years ago gave rise to new concepts
in cancer biology, and consequently new dogmas in the
cancer field were established. The classical cancer stem
cells model (CSM) proposes that all cancer types have a
subpopulation of cancer stem cell responsible for resistance
to chemo- and/or radiotherapy, concluding that eliminating
this subpopulation of CSCs will cure cancer [1–5]. However,
there is no consensus among experimental data regarding key
issues that are important for the establishment of effective
treatments. For instance, the percentage of cancer stem cells
detected in glioma cell lines tumors varies from less than
1% to 100% (for review see [6]). The differences have
also been observed in other types of cancer (see below).
However, these discrepancies, which might be well due to
differences in methodology and criteria used to detect and
characterize these cells have important clinical consequences.

If the percentage of CSCs is rare (<1%), the elimination (if
feasible) of this fraction with some kind of targeted treatment
would indeed be a success, providing that non-cancer stem
cells (non-CSCs) are easily controlled by other cytotoxic or
cytostatic therapies. In the other extreme scenario, where
100% of cancer cells are CSCs, the effective therapy will
require a novel treatment able to eliminate 100% of cancer
cells at once in order to prevent regrowth.

Based on our observations of proliferation kinetics of
mixed cell cultures, we have developed a novel model of
glioma biology (Stemness Phenotype Model, SPM), which
proposes that all glioma cells have the potential to develop
stem cell properties and that the stemness degree depends on
the microenvironment [6]. Although the SPM was almost
entirely derived from experimental data obtained from cell
lines, it is important to keep in mind that the recent interest
in the cancer stem theory comes after the isolation of putative
cancer stem cells from a variety of well-established cell lines.
More important, the tools and criteria to isolate and/or
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identify putative cancer stem cells (e.g., stem cell markers,
neurosphere, clonogenicity) are similar in both stable cell
lines or freshly isolated primary cancer cells. In general, the
criteria to define CSCs are (1) extensive self-renewal ability,
(2) cancer-initiating ability on orthotopic implantation, (3)
karyotypic or genetic alterations, (4) aberrant differentiation
properties, (5) capacity to generate non-tumorigenic end
cells, and (6) multilineage differentiation capacity [7, 8].
Experimental data from primary cells cultured under stem
cell propagating conditions that are more relevant than cell
lines are also included in this paper (see examples in Tables
2 and 3) and further support the SPM. During the last
two years, this idea that a stem cancer cell may not have a
unique state of stemness has also been expressed by others.
Thus, in a recent paper, Hatiboglu et al. wrote: “. . .This
raises the possibility that “stemness” is a dynamic property
that many glioma cells may potentially adopt, depending on
circumstance. If this is true, targeting gCSCs (glioma Cancer
Stem Cells) in isolation should not be considered a panacea for
GBM, since even after successful eradication of gCSCs, other
glioma cells may acquire gCSC properties and reconstitute a
population of gCSCs.” [9] reinforcing the notion by Dong and
Huang that “simply eradicating the existing GSCs (Glioma
Stem Cells) is not enough to be a cure for gliomas” [10].
On the other hand, recently published observations are in
agreement with the SPM, (1) the radioresistance of glioma
cells has been attributed to a putative “microenvironment-
stem cell unit” giving less importance to the intrinsic
characteristic of glioma stem cells [11]. Jamal et al. found
that the brain microenvironment preferentially enhances
the radioresistance of glioma stem-like cells [12], (2) C6
glioma cells growing under different culture conditions
showed distinct stem cell properties and were tumorigenic
as predicted by the SPM [13], (3) similar to the C6 glioma
cell line, most of the human glioma SHG44 cells could
be considered gCSCs [14], and (4) the capacity of cancer
progenitor cells to dedifferentiate and acquire a stem-like
phenotype supports a bidirectional conversion [15].

The aim of this short review is to expand the concept of
the stemness phenotype model to other cancer types. Five
aspects of cancer biology supporting the stemness phenotype
model for other tumors will be reviewed and discussed: (1)
the presence of a rare but constant fraction of stem cell
subpopulation in established cancer cell lines, (2) the clonal
origin of cancer, (3) the symmetrical division, (4) the ability
of “non-cancer stem cells” to generate “cancer stem cells,”
and (5) the effect of the microenvironment on cancer cell
phenotype. Figure 1 provides an integrative view of these five
aspects of cancer biology.

2. Presence of a Rare but Constant
Fraction of Stem Cell Subpopulation
in Established Cancer Cell Lines

The presence of cancer cells with stem cell properties has
been reported in several cancer types. In this paper, we
show examples for breast cancer, lung cancer, prostate cancer,
and melanoma (Tables 1–4) and also from other tumors

where crucial experimental data have been reported. CSCs
or cancer stem-like cells (CS-LCs) have also been identified
in colon [38], hepatic [39], pancreatic [40], thyroid [41],
bladder [42], cervix [43], ovarian [44] cancer, urothelial
cell carcinomas [45], renal carcinomas [46], chordomas
[47], and, in general, in all types of tumors where these
cells had been searched for. The existence of a rare but
constant fraction of CSC in established cell lines can easily be
explained if one assumes that CSC and non-CSC have exactly
the same population doubling time. In this case, if a cell line
contained 1% of CSC and 99% of non-CSC, this proportion
should be preserved no matter how many passages the cell
line underwent through the years. For instance, the C6
glioma cell line [48] and the A549 human lung cancer
cell line have been propagated in vitro thousands of times
[49]. However, one of the key characteristic of CSCs often
highlighted in the stem cell theory is the quiescent slow-
cycling phenotype [50], that is, CSCs often divide slower
than non-CSCs but the opposite also exists (see below). As
previously discussed for the glioma C6 cell line [6], it is
unlikely that a cell line containing a mixture of slow and fast
proliferating cells could maintain a constant fraction of stem
cells since, after continuous passage, the faster subpopulation
should overgrow the slower subpopulation(s) as we clearly
showed in the original SPM article (see Table 2 in [6]). In
the human bladder transitional cell cancer cell line T24,
originally established in 1973 [51], the SP cells comprised
approximately 34.7% of the total cells [52]. Contrary to
putative glioma stem cells that grew slower than nonstem
cells [7], the SP cells isolated from the T24 cell line grew
significantly faster (more than twice) than non-SP cells
[52]. In this case, after certain number of passages, this cell
line should contain only SP cells. Perhaps HeLa cells, the
first human cancer cell line grown in culture, represents
one of the most extreme cases. The HeLa cell line was
established in 1951 [53] and extensively propagated since
then in many laboratories and still at present contains a
subpopulation (1.1± 0.19% by the side population method)
of self-renewing, highly tumorigenic, cancer initiating cells
[43]. Cancer stem-like cells have also been isolated from
HeLa cells by the sphere culture method [43, 54].

To explain the occurrence of subpopulations of cells
with different growth rate is even more problematic
in the case of the MCF-7 cell line. In one study, six
different subpopulations were isolated by Percoll gradient
centrifugation. Each of these subpopulations showed
different growth rate showing increase ratio of 1.1x, 3.8x,
6.2x, 6.8x, 7x, and 16x between the cell numbers at day 8
and at day 0 [55]. In this study, the authors suggested that
the fastest fraction contained the stem cells. If the MCF-7
cell line was composed of six different and independent
subpopulations, after repeated passages should it be
composed mostly of the stem cells. This is not likely the case.

Three subpopulations of cancer cells having different
tumorigenicity have been reported for the established
HC116 cell line [56]. In these cells, a small but not
significant difference in the population doubling time (PDT)
was observed. However, even small differences in the PDT
are enough to enrich one population [6]. In melanomas, it
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Figure 1: The stemness phenotype model proposes that all cancer cells have stem cell properties and that the stemness of individual cell
depends on the microenvironment. (a) Cell division mode. (b) Schematic representation of the dynamic of cancer cells within a tumor. For
simplicity, the depicted tumor is composed of three compartments (microenvironments M1, M2, and M3), and only three cell phenotypes are
shown (non-CSC, intermediate, and CSC phenotype). According to the SPM, (1) all cancer cells (non-CSCs and CSCs) divide symmetrically,
(2) changes in the microenvironment modify the phenotype of individual cells (e.g., broken arrows in M1 →M2 or M2 →M3, indicate
phenotype transition and not cell division), thus, (3) non-CSCs are able to generate CSCs when changes in the microenvironment favours
this conversion (e.g., from M1 →M2 →M3), (4) isolated single cells can generate a tumor (or a cell culture) containing different cell
phenotypes. For instance, if a single cell (e.g., CellA or CellB) is transferred alone to a microenvironment that allows its survival (e.g., M2) this
cell has the potential, by only symmetrical division, to generate cells with intermediate phenotype as wells as cells with stem cell phenotype
(clonal origin of tumors and cell lines). The same can be predicted for other cells regardless of their phenotype (e.g., CellC–CellG), and (5)
the model predicts that the relative percentage of CSCs in a given tumor will depend on the microenvironmental profile of each individual
tumor (e.g., expanding the size of the M3 compartment will result in an increase number of cells having a pure CSC phenotype). In this figure
non-CSC (especially in Figure 1(b)) refers to any cancer cell that does not show any trait of stemness and not to a normal nontransformed
cell.

has been reported that (1) three stable metastatic cell lines (in
spite of constant passage for over a year) maintained a heter-
ogeneous population of cells with different morphologies
including small ovoid, spindle, flat polygonal, and large
dendritic forms being the larger cells that proliferated faster.
The purified single tumor cells retained the capacity to
give rise to heterogeneous cultures [57], (2) a small sub-
population of slow-cycling cells (JARID1B+) was present in
in vivo and in vitro studies. This fraction had doubling times
of >4 weeks when compared to the rapidly proliferating
main population (48 hs). Remarkably, JARID1B− cells were
found to be able to generate the JARID1B+ subpopulation
[58]. In these cases, the ability of single melanoma cells
or specific subpopulations to regenerate a heterogeneous
culture explains the maintenance of the tumor heterogeneity
(see below Section 2.3).

Ware et al. reported the isolation of subclones from
the parental lines of human breast (MCF-7 and T-47D),
prostate (DU145 and PC-3), lung (A427 and A549), colon

(HCT-116 and HT-29), and bladder (TCCSUP andT24)
cancer cells. All these subclones showed different PDT. For
instance, while the parental T-47D cells had a PDT of
55.3 hrs the eleven isolated subclones showed PTD between
40.5 and 65.4 hrs. Similar results were observed in all
other subclones isolated from the parental cell line [59].
Although the subclones were not characterized in terms of
stemness, the great variability in the PDT suggests that each
subclone corresponds to a specific phenotype and that the
subpopulations having the longest PDT should be constantly
generated.

In conclusion, this type of analysis strongly suggests that
cells with specific phenotype (e.g., stem cell phenotype in
the glioma cell lines or SP cells in the T24 bladder cell lines)
should be constantly generated in order to not disappear
after continuous passages.

2.1. The Clonal Origin. One of the key proposals of the
SPM is that all cancer cells phenotypes must be originated
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Table 1: Detection of CSCs in established breast cancer cell lines.

Cell line Percentage Method Reference

BT-474 0.5% SP (H33342 labeling) [16]

EFM-19 0.3% SP (H33342 labeling) [16]

KPL-1 8.4% SP (H33342 labeling) [16]

MCF-7 0.8% SP (H33342 labeling) [16]

UACC-893 20% SP (H33342 labeling) [16]

BT-20 5.8% SP (H33342 labeling) [16]

Cal-51 0.8–2% SP (H33342 labeling) [16]

MCF-7 2.4± 0.4% SP (H33342 labeling) [17]

MCF-7 1.5% SP (H33342 labeling) [18]

T47D, 0% SP (H33342 labeling) [17]

SK-BR-3 0% SP (H33342 labeling) [17]

MDA-MB-231 0% SP (H33342 labeling) [17]

MDA-MB-231 0.1% SP (H33342 labeling) [18]

MDA-MB-231 >90% CD44pos/CD24neg/low (flow cytometry) [19]

MCF-7 1.6% (monolayer cultures)
40.3% (mammospheres)

CD44pos/CD24neg/low (flow cytometry) [20]

MCF-7 <2% (monolayer cultures)
∼50% (mammospheres)

CD44pos/CD24neg/low (flow cytometry) [21]

MCF-7 3.5% SP (H33342 labeling) [22]

Table 2: Detection of CSCs in established lung cancer cell lines.

Cell line Percentage Method Reference

LHK2, 1-87, A549, Lc817 0.4% to 2.8% SP [23]

A549 0.98% CD133 [24]

H446 1% CD133 [24]

A549 >45% Cloning and tumorigenic analyses [25]

H446 >45% Cloning and tumorigenic analyses [25]

A549 24% SP [26]

H460, H23, HTB-58, A549, H441, and H2170 1.5% to 6.1% SP [27]

NCI-H82, H146, H526, A549, and H460 0.8% to 1% SP [28]

H446 6.3± 0.1 SP [29]

NSCLC cell lines H460, H125, H322, H358 average of 2% (2.16± 1.28) Aldefluor followed by clonogenic assays [30]

A549, H1299, CCL-1, CCL-5, C299 0.3% to 1% CD133+ follow serum free culture [31]

60 primary tissue samples 0.02% to a maximum of 35% CD133+ESA+ [32]

from one single parent cell and that tumor heterogeneity is
generated afterwards from that single cell. It is important
to clarify that in this paper the discussion about the clonal
origin is restricted to the tumor heterogeneity found in cell
lines and tumors and not to the origin of cancer. Early studies
provided evidence for a clonal origin of teratocarcinoma [60]
and CML [61]. The clonal origin has also been documented
for the glioma C6 cell line [62] and is likely to be the
case for the A549 human lung cell line [49]. Although
other cell lines were not isolated from single cells, a careful
analysis of the data suggests that the different cell lines
present in cell cultures might have been originated by
clonal evolution. Thus, the above-mentioned MCF-7 cell
line (with its 6 different subpopulations isolated by Percoll
gradient representing six different original and independent
clones) was likely of clonal origin [63] since, as the authors

noticed, two fractions were able to regenerate the different
subpopulations [55] clearly suggesting that they represented
different stages of differentiation. In another study, 5 clones
and subclones were isolated after long-term passage from
a single specimen of a human hepatocarcinoma. These
clones showed different PDT, drug resistance, expression
of stem cell markers, and tumorigenic potential. However,
genomic analysis indicated a possible clonal evolution
[64].

Studies on tumor evolution by sequencing DNA isolated
from tumor tissue suggested a clonal origin [86, 87]. This
finding was later supported by DNA sequencing of single
cells [88]. These data support also the notion that during
malignant transformation the primordial cancer cell has or
acquires stem cell properties and as a result, the ability to
form heterogeneous tumor. It appears that the primordial
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Table 3: Detection of CSCs in established prostate cancer cell lines.

Cell line Percentage Method Reference

Human prostate basal cell isolation (primary culture) 1% CD133+ cells [33]

LNCaP 0.04% CD44+ CD24− [34]

DU145 7–10% CD44+ CD24− [34]

Dul45 50.67± 6.7 CD44+ cells [35]

LAPC-4 0.847± 0.3 CD44+ cells [35]

LAPC-9 13.97± 3.2 CD44+ cells [35]

Primary cultures from 5 different patients 0.3–1.6 CD44+/α2β1hi/CD133+Cells [36]

PC-3, PC3P, PC3MM2 0.2, 0.6, 0.7 CD133high [37]

Table 4: Detection of CSCs in established melanoma cell lines.

Cell line Percentage Method Reference

B16F10 <3.4% CD44+CD133+CD24+ (flow cytometry) [65]

WM115 0.71% CD133+ (flow cytometry) [66]

Cell suspension from biopsies (7 specimens) <1% CD133+ (flow cytometry) [66]

Cell suspension from biopsies (7 specimens) 1.6 to 20.4% ABCB5 (flow cytometry) [67]

WM-266-4 Small (not quantified) Spheroids [68]

cancer cell originates a tumor that grows and invades normal
tissue, giving origin to different microenvironments in which
the stemness of the daughter cells changes accordingly.

A model where a CSC and a non-CSC are originated
independently is very unlikely to occur since the probability
that two cells become malignant (one as CSC and another as
non-CSCs) at the same time and place should be very low.
We want to point out that the exact origin of a cancer cell,
from either a stem cell precursor or from a differentiated
cell that acquired stem cell properties, is a different issue
and the SPM does neither support nor refute any of them.
However, a clonal origin of cancer (as suggested by some of
the studies above mentioned), if ever confirmed, will be in
better agreement with the SPM.

2.2. The Symmetrical Cell Division. Cells that divide
symmetrically will always produce identical daughter cells.
In contrast, a CSC that divides asymmetrically produces (a)
one daughter CSC that can again divide asymmetrically and
(b) one daughter non-CSC that is terminally differentiated
and cannot produce new CSCs (Figure 1(a)). To explain
the experimental finding that all cancer cells have stemness
properties, the SPM predicts that all or most cancer
cells should divide symmetrically. Indeed, a recent paper
concluded that the generation of cellular diversity in glioma
occurs mainly through symmetric cell division [89]. In
oligodendrogliomas, the loss of asymmetric cell division
has been associated with malignant transformation of
oligodendrocyte precursor cells (OPCs). While OPCs
divide asymmetrically, oligodendroglioma cells divide
symmetrically [90]. The SPM model shows in Figure 1(b)
that symmetrical division of cancer cells concomitant
with microenvironmental-dependent phenotype changes
is enough to explain the heterogeneity of tumors and the
ability of each cancer cell to generate a new tumor.

2.3. Ability of “Non-Cancer Stem Cells” to Generate “Cancer
Stem Cells” (Interconversion). In contrast to the classical CSC
model and according to what we have been discussing so far,
the SPM proposed that CSCs and non-CSCs can interconvert
into each other. The more important consequence of this
event is that cells labelled as non-CSCs can generate CSCs
that ultimately induce a new tumor. Experimental data
obtained from a variety of tumors support this hypothesis
for instance (1) clonal analysis of prostate cancer cells showed
that some CD44− Du145 cells (100% purity) could give rise
to CD44+ cells in culture [35], (2) in the MCF-7 breast cancer
cell line, the non-SP cells that were recultured during 7 days
after being sorted indeed contained SP cells indicating that
the non-SP fraction gave rise to a new SP subpopulation
[22], (3) in melanoma (see also above), both ABCB5+ and
ABCB5− as well as CD133+ and CD133− cells were able to
form tumors that exhibited similar heterogeneity regarding
CD133 expression. Similar results were observed with a
panel of other surface markers including CD133, CD166,
L1- CAM, and CD49f (for details, see [91]). The authors
concluded that “These data suggest a phenotypic plasticity
model in which phenotypic heterogeneity is driven largely by
reversible changes within lineages of tumorigenic cells rather
than by irreversible epigenetic or genetic changes” [91], (4)
a direct conversion from a non-CSC phenotype to a CSC
phenotype was demonstrated in breast cancer cells: exposure
to conditioned media stimulates non-CSCs to become CSCs,
and IL6 was enough to drive this conversion in genetically
different breast cell lines, human breast tumors, and a
prostate cell line [92], and (5) Gupta et al. [93–95] experi-
mentally demonstrated interconversion (and determined the
transition probabilities) of subpopulations for two breast
cancer lines that were purified for a given phenotype [93–95].
The comparison between our predictive model (see Figure 2
II in Cruz et al., [6]) and experimental results (see Figure 2D
in Gupta et al., [93–95]) shows striking similarities.
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Table 5: External (microenvironmental) modulators of stemness.

Factor Cell line (cancer) Effect on stemness Reference

Extracellular ATP Gliomas ↓ [69]

High energy metabolites (lactate and ketones) MCF-7 (breast) ↑ [70]

Hypoxia and the hypoxic microenvironment
Prostate, brain, kidney, cervix, lung,
colon, liver, and breast tumors

↑ [71–74]

Hepatocyte growth factor Colon ↑ [75]

VEGF Skin ↑ [76]

VEGF Gliomas ↑ [77]

Nitric oxide Gliomas ↑ [78]

Retinoic acid Gliomas ↓ [79]

ROS Breast ↑ [80]

Conditioned medium DU145
↑ or ↓ depending
on the media

[81]

Non-cancer

Hypoxia Embryonic stem cells ↑ [82]

Hypoxia Human embryonic stem (hES) cells ↑ [83]

If we consider that the PDT of non-GSCs and GSCs
are approximately 28–30 h, and 55–60 h, respectively, then
GSCs should be constantly generated from non-GSCs. In
contrast if we consider the PDT of T24 bladder cell lines
where the PDT of the non-SP fraction is more than twice
longer than the SP fraction that is associated with cancer
stem cells [52], then non-SP cells should be constantly
generated from SP cells. These two opposite cases further
support the idea that the interconversion between cancer
cell phenotypes actually takes place and can be in any
direction and explains the finding that isolated single cells
can repopulate the original tumor as reported for C6 glioma
cells [96, 97].

2.4. Effect of the Microenvironment on Cancer Cell Phenotype
(Modulation of Stemness by External Factors). According
to the SPM, cancer cells have a high degree of plasticity
and the phenotype displayed by them is highly modulated
by the microenvironment. Several external factors have
indeed been shown to modulate the stemness of several
types of cancer cells (Table 5). The tumorigenic capacity
of malignant ovarian ascites-derived cancer cell subpopu-
lations has been shown to be niche-dependent [98] and
subpopulations derived from a single tumor of ovarian
clear cell carcinoma that were clonally expanded showed
intratumoral phenotypic heterogeneity highly dependent on
the tumor microenvironment [99]. For prostate cells, the
ability to express a highly or scarcely aggressive phenotype
was shown to be dependent on factors released from the
tumor environment [81]. Other external factors such as
bile and inflammatory mediators were shown to activate
stem cells in Barret’s metaplasia, a risk factor for esophageal
adenocarcinoma [100, 101].

3. Clinical Implications

It is becoming more evident that the simplistic established
classical CSC model and its corresponding dogmas for cancer

biology are in a need of urgent revision. A clear compre-
hension of cancer stem cell biology is obviously essential for
future medical research ranging from preclinical drug testing
of anticancer drugs to advanced clinical trials. Other models
attempting to explain the controversy between experimental
findings and the predictions of the classical stem cell models
have been recently proposed, among them the “complex
system model” [84], the “Dynamic CSC model” [85], and the
“Dedifferentiation”model [15]. Similar to our SPM, those
models deviate from the classical CSC model and propose or
predict that (1) all cancer cells are potentially tumorigenic.
Therefore, interconversion between phenotypes is implicit in
these models and (2) all cancer cells should be the thera-
peutic target. Table 6 shows the similarities and differences
between the classical CSC models, the SPM, and these other
alternative models of CSCs. The main difference between the
SPM and other CSCs models is that in the SPM, the origin
of all cancer cell subpopulations can be entirely attributed
to microenvironment-driven phenotypic changes without
additional mechanism (e.g., genetic mutations) (Figure 1).
Thus, in the SPM “stemness” is an inherent property of
all cancer cells. This likely to be the case for the dynamic
CSC model that is one of the new alternative models that
closely resembles the SPM. In the dynamic CSC model,
CSCs and differentiated cell can interconvert to each other
depending on signals from the microenvironment shaped by
stromal cells (myofibroblasts, endothelial cells, mesenchymal
stem cells, or infiltrating immune cells) [85]. In other
systems such as the complex system model, several tumor-
initiating cell types may coexist due to genetic and epigenetic
changes within a single tumor. While genetic mutations
produce new tumor cell, epigenetic changes may produce
progeny that can temporarily adopt therapy resistance and
expression of different cell markers [84]. In the repro-
gramming model, CSCs and relatively differentiated cells
coexist and undergo bidirectional conversion. For instance,
cancer progenitor cells are capable of dedifferentiation into
a stem-like phenotype due to either genetic mutations or
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Table 6: Comparison between the SPM and other alternative models.

Model Hierarchy
Interconversion
between CSCs
and non-CSCs

Influence of the
microenvironment
on stemness

Origin of heterogeneity Reference

Classical CSC
model

Yes No Noa

Existence of different subpopulations.
The origin of each subpopulation (e.g.,
CSCs) is controversial.

[6, 15, 84, 85]

SPM No Yes Yes
Microenvironment-driven phenotypic
changes

[6]

Complex system
model

Partial (some
differentiated cells
may not
interconvert)

Probably yes
(not clearly
mentioned)

Probably yes
(referred at “the
niche”)

Genetic, epigenetics
Cell-cell and cell-niche interactions

[84]

Dynamic CSC
model

No Yes Yes

Genetic, epigenetics,
microenvironment-driven phenotypic
changes

[85]

Reprogramming
model

No Yes Yes
Epigenetics, endogenous transcriptional
reprogramming networks,
microenvironmental signals

[15]

a
In the classical CSC, cells are preferentially enriched in specific niches rather than shaped by the microenvironment.

microenvironmental signals [15]. All these novel models
of CSCs (including the SPM) may complement each other
and even coexist in a complex heterogeneous tumor. For
instance, in addition to intratumoral microenvironmental
phenotypic-driven heterogeneity, genetic mutations (likely
to occur due to genomic instability of cancer cells) may create
new subpopulations of CSCs in the same tumor. If the glioma
SPM is accurate and can be extrapolated to other cancer
types, the vast majority of therapies aimed to eliminate one
or few cancer stem cell subpopulations (e.g., CD133+ cells)
will be a waste of time, resources and ultimately cost more
lives. Even in the possible cases that (1) only a subset of non-
CSC can interconvert to CSC rather than “all tumor cells” or
(2) tumors contain different cell subtypes that obey either the
SPM or the classical CSC model (since both models, and the
other newly proposed alternative models, are not necessarily
mutually exclusive), the ultimate goal should be to eradicate
both CSCs and non-CSCs at once and, accordingly, to design
novel clinical trials in a more coherent manner [85].

4. Conclusions

As more studies are being published regarding isolation
and characterization of CSCs in different cancer types, it is
becoming more evident that the so far established stem cells
model cannot be universally applied as previously described
for gliomas [6], melanomas [91], and hepatocellular carcino-
mas [64]. Our paper provides further support for alternative
models of cancer biology that favour the existence of a
single type of cancer cell with different stemness properties
highly dependent on the microenvironmental conditions.
The SPM originally proposed for gliomas [6] is an attractive
and simple working model that reconciles experimental data
with the stem cell hypothesis. Most of the key proposal or
predictions of the SPM have been observed in melanomas

(rare subpopulations of slow dividing cells, interconversion,
and modulation of stemness by external factors) and other
solid tumors briefly discussed in specific sections of this
paper. The accumulative experimental evidence provides a
strong indication that the SPM can be extrapolated to other
types of cancer.
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