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Somatic production of reactive oxygen 
species does not predict its production in sperm 
cells across Drosophila melanogaster lines
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Abstract 

Objective: Sperm ageing has major evolutionary implications but has received comparatively little attention. Ageing 
in sperm and other cells is driven largely by oxidative damage from reactive oxygen species (ROS) generated by the 
mitochondria. Rates of organismal ageing differ across species and are theorized to be linked to somatic ROS levels. 
However, it is unknown whether sperm ageing rates are correlated with organismal ageing rates. Here, we investigate 
this question by comparing sperm ROS production in four lines of Drosophila melanogaster that have previously been 
shown to differ in somatic mitochondrial ROS production, including two commonly used wild‑type lines and two 
lines with genetic modifications standardly used in ageing research.

Results: Somatic ROS production was previously shown to be lower in wild‑type Oregon‑R than in wild‑type 
Dahomey flies; decreased by the expression of alternative oxidase (AOX), a protein that shortens the electron trans‑
port chain; and increased by a loss‑of‑function mutation in dj-1β, a gene involved in ROS scavenging. Contrary to 
predictions, we found no differences among these four lines in the rate of sperm ROS production. We discuss the 
implications of our results, the limitations of our study, and possible directions for future research.
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Introduction
Like sexually reproducing organisms, sperm cells have 
a life cycle during which they develop, age, and die. As 
in organisms, the ageing process in sperm cells leads 
to declines in both performance and fitness outcomes. 
Older sperm cells have reduced motility [1], velocity [2, 
3] and fertilization capacity [4], and produce fewer and 
less viable offspring [4–6]. Sperm ageing has major con-
sequences for sexual selection. On the male side, it may 
account for some of the wide, largely unexplained vari-
ation in competitive fertilization success [7–9]. On the 
female side, sperm ageing may influence both pre- and 

post-copulatory behaviour, driving frequent mating to 
refresh old sperm stores [7] and providing a potential 
mechanism for cryptic choice [10]. As in somatic cells, 
ageing in sperm is driven in large part by reactive oxy-
gen species (ROS). When more ROS are produced than 
are scavenged by antioxidants, they can damage cellular 
components like lipids, proteins, and DNA. Sperm cells 
are particularly vulnerable to this oxidative stress, both 
because of their limited antioxidant reserves and because 
of the high concentration of oxidation-prone polyunsatu-
rated fatty acids in their membranes [1].

Most cellular ROS are produced by the mitochon-
dria during aerobic respiration. Production rates vary 
widely across species and are often negatively correlated 
with lifespan, as predicted by the mitochondrial free 
radical theory of ageing [11]. ROS production also com-
monly varies with tissue type [12–14], and cross-species 
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differences in ROS production can themselves be tissue-
dependent; that is, production may be higher in one 
species than in another, but only in certain tissues [15]. 
These species by tissue interactions raise the question of 
whether the ageing rate of sperm is at all related to the 
ageing rate of the organism producing them [16]. Such a 
relationship would have significant implications for the 
intersection of life history patterns and sexual selection. 
To our knowledge, however, no studies have compared 
sperm ROS production rates within or across species.

Here, we measure rates of sperm ROS production and 
compare them to previously reported rates of somatic 
mitochondrial (mt) ROS production in four Drosophila 
melanogaster lines: (1) wild-type Oregon-R; (2) wild-type 
Dahomey; and two genetically modified lines express-
ing, in the Dahomey background, either (3) alternative 
oxidase (AOX), a protein that decreases ROS formation 
by bypassing part of the electron transport chain; or (4) 
or a loss-of-function mutation in dj-1β, a gene involved 
in ROS scavenging. Sanz et  al. [17], as predicted, found 
a negative correlation between lifespan and whole-body 
mtROS production across the two wild-type lines, with 
Oregon-R flies living longer and producing less ROS 
than Dahomey flies. In contrast, lifespan did not differ 
between flies expressing AOX, which produced more 
mtROS, and mutant dj-1β flies, which produced less.

We predicted that sperm ROS production would 
mirror somatic mtROS production, being lowest in in 
Oregon-R and in AOX-expressing flies, moderate in 
Dahomey flies, and highest in mutant dj-1β flies.

Main text
Materials and methods
Fly lines and husbandry
The Oregon-R line (referred to hereafter as “OR”) is 
a wild-type line widely used in Drosophila research. 
UAS-AOX F6 [18], daughterless-Gal4 driver (daGal4) 
(previously BL55849) [19], dj-1βGE23381 [20], and white 
wild-type Dahomey [21] (wDAH, referred to hereaf-
ter as “DAH”) flies were kindly provided by Dr. Alberto 
Sanz (then University of Newcastle). The UAS-AOX F6, 
daGal4, and dj-1β lines had been backcrossed into the 
DAH background for 11, 11, and 7 generations, respec-
tively [17]. In the current study, AOX-expressing AOX/
daGal4 flies (referred to hereafter as “AOX”) were gen-
erated by mating UAS-AOX F6 males to virgin daGal4 
females. Flies were maintained at 25 °C and 60% humidity 
on a 12:12 light:dark cycle and fed on a yeast-corn-sugar 
medium (40 g/l yeast, 90 g/l corn meal, 100 g/l sucrose, 
12 g/l agar, 40 ml/l nipagin [10% in ethanol] and 3 ml/l 
propionic acid in water). Males were collected upon eclo-
sion and kept in groups of three to eight individuals.

Rate of reactive oxygen species production measured 
by time‑resolved microfluorimetry
The rate of ROS production in sperm was measured as 
described in [14]. Briefly, time-resolved microfluorim-
etry of the oxygen probe 1-pyrene butyric acid (PBA) 
was used to measure the in situ production rate of ROS. 
PBA’s fluorescence lifetime decreases upon collision with 
small ROS molecules like superoxide, but not upon col-
lision with the stable, accumulating ROS molecules like 
hydrogen peroxide into which they transform [22]. PBA 
lifetime is unaffected by probe concentration and cell 
number [23]. Seminal vesicles from three-to-six-day-
old virgin males were dissected in PBS and punctured to 
release the sperm, which were then incubated in 20 μl of 
1 μM PBA in 2% ethanol on a coverslip for four minutes 
and washed three times with PBS to remove the excess 
probe. Sperm were laser-excited as described previously 
to generate the fluorescence decay curve [14]. Eight 
readings per sample were taken, resulting in eight decay 
curves that were then averaged to obtain the mean fluo-
rescence lifetime. Relative rates of ROS production were 
calculated using the Stern–Volmer equation [14, 24]. All 
statistics were performed in R version 3.6.1 [25].

Results
Sperm ROS production rates, being non-normally dis-
tributed (Shapiro–Wilk normality test, p < 1e−7), were 
compared using a Kruskal–Wallis rank sum test. There 
was no difference across lines in the rate of ROS produc-
tion in sperm (Fig. 1; χ2 = 0.10, p = 0.99, n = 21 per line; 
see Additional file 1 for raw data).

β

Fig. 1 Relative rate of production of reactive oxygen species in 
sperm from Oregon‑R, Dahomey, AOX, and mutant dj-1β males, as 
measured by the fluorescence lifetime of the oxygen probe 1‑pyrene 
butyric acid (PBA) and calculated by the Stern‑Vomer equation (see 
text for details). Black line = mean, white box = 95% CI
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Discussion
Sperm ageing, an underappreciated phenomenon, has 
the potential to drive selection on traits in males and 
females, pre- and post-mating, and at the gametic 
and organismal levels. Because sperm ageing shares a 
mechanism with somatic ageing—oxidative stress via 
ROS—a correlation between the rates of sperm and 
somatic ageing, whether across species or individu-
als, may be predicted. Here, we find no evidence for 
such a correlation. Contrary to expectations, sperm 
from wild-type Oregon-R (OR) flies, which have lower 
somatic mtROS production and longer lifespans [17], 
did not produce less ROS than sperm from high-
mtROS, shorter-lived wild-type Dahomey (DAH) flies. 
More surprisingly, sperm ROS production did not dif-
fer between DAH and either of the two genetically 
modified lines with a DAH background: one expressing 
alternative oxidase (AOX) and producing less somatic 
mtROS, and one expressing a loss-of-function dj-1β 
mutation and producing more somatic mtROS.

Post-meiotic D. melanogaster sperm have been shown 
to undergo oxidative phosphorylation [14, 26], generating 
mtROS in the process [14, 27]. Sperm expressing AOX, 
which bypasses a major site of mtROS formation in the 
electron transport chain, complex III [28], would there-
fore be expected to show lower ROS production. Given 
our results, it seems likely that, while AOX is expressed 
in the testes and seminal vesicles of AOX males [29], it 
is not expressed in the germline itself. Although the 
daGal4 driver is supposedly ubiquitously expressed, it is 
not unusual for “ubiquitous” drivers to show no expres-
sion in germ cells [30]. Indeed, a different AOX construct 
driven by the also ubiquitous α-tubulin promoter was not 
expressed in the D. melanogaster male germline [29].

Unlike the AOX gene, the mutated dj-1β gene should, 
in theory, certainly be expressed in the germline. How-
ever, the dj-1β protein in Drosophila may chiefly promote 
the scavenging of hydrogen peroxide [31], a non-radical 
ROS whose production is not detected by our method. It 
is thus possible that mutant dj-1β sperm accumulates a 
greater amount of stable ROS than DAH sperm despite 
producing small radical ROS like superoxide at the same 
rate.

While sperm from the four lines did not differ in their 
rates of endogenous ROS production, they are likely to 
experience different levels of exogenous mtROS pro-
duced by the testes and seminal vesicles during spermat-
ogenesis and storage. Sperm from AOX males may thus 
be expected to accumulate age-related cellular damage 
more slowly, despite producing normal amounts of ROS. 
Likewise, sperm from mutant dj-1β males may age more 
quickly due to decreased antioxidant production in the 
surrounding reproductive tissues, which would lead to 

less scavenging of ROS both exogenous and endogenous 
to the sperm.

The rate of sperm ageing may also be affected by the 
post-mating environment of the female reproductive 
tract. Sperm transferred to females in lines with low 
somatic mtROS production may survive longer in stor-
age, regardless of their endogenous ROS production. 
Females may also mitigate the effects of mtROS, whether 
originating from the stored sperm itself or from the sur-
rounding female tissues, by increasing antioxidant pro-
duction. Antioxidant genes are upregulated in the sperm 
storage organs of mated females in D. melanogaster [32, 
33] (reviewed in [34]), honeybees [35, 36], and ants [37], 
and high antioxidant levels have also been found in the 
female sperm storage organs of mammals and birds [38].

The rate of sperm ageing is likely affected by both male 
and female factors. Indeed, in a related study, we found 
indications of slower sperm ageing both in AOX sperm 
stored by control females and in control sperm stored by 
AOX females, as evidenced by the increased reproduc-
tive output of these crosses. Conversely, crosses involving 
mutant dj-1β males or females had decreased reproduc-
tive output, consistent with faster ageing in control-
stored dj-1β sperm and in dj-1β-stored control sperm 
[39].

In conclusion, we predicted that sperm ROS pro-
duction rates would correlate with somatic mtROS 
production rates across D. melanogaster lines. To our 
knowledge, this is the first study to compare sperm ROS 
production within or across species. While we found no 
between-line differences in the rates of sperm-endoge-
nous ROS production, it is nonetheless possible that the 
lines differ in their rates of sperm ageing. Measuring cel-
lular damage markers and antioxidant activity in male- 
and female-stored sperm, as well as the fitness outcomes 
of the individuals transferring and using that sperm, 
would help to shed further light on the factors influenc-
ing sperm ageing and on its evolutionary consequences.

Limitations
The fly lines used in this study were obtained directly 
from the authors of [17]. We did not independently verify 
either their genotypes or their rates of somatic mtROS 
production.
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