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Abstract: Whole genome analysis based on next generation sequencing (NGS) now 

represents an affordable framework in public health systems. Robust analytical pipelines 

of genomic data provides in a short lapse of time (hours) information about taxonomy, 

comparative genomics (pan-genome) and single polymorphisms profiles. Pathogenic 

organisms of interest can be tracked at the genomic level, allowing monitoring at one-time 

several variables including: epidemiology, pathogenicity, resistance to antibiotics, 

virulence, persistence factors, mobile elements and adaptation features. Such information 

can be obtained not only at large spectra, but also at the “local” level, such as in the event 

of a recurrent or emergency outbreak. This paper reviews the state of the art in infection 

diagnostics in the context of modern NGS methodologies. We describe how actuation 

protocols in a public health environment will benefit from a “streaming approach” 

(pipeline). Such pipeline would include NGS data quality assessment, data mining for 

comparative analysis, searching differential genetic features, such as virulence, resistance 

persistence factors and mutation profiles (SNPs and InDels) and formatted 

“comprehensible” results. Such analytical protocols will enable a quick response to the 

needs of locally circumscribed outbreaks, providing information on the causes of 
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resistance and genetic tracking elements for rapid detection, and monitoring actuations 

for present and future occurrences. 

Keywords: pathogens outbreaks; pan-genome; comparative genomics; bioinformatics;  

resistance; public health 

 

1. Introduction 

1.1. Following Microbes in Public Health Microbiology 

Care units such as oncology and surgery, where patients are in most cases under conditions of 

immunodepression, are known for the presence of “the usual suspects” such as multi resistant 

Pseudomonas aeruginosa, Escherichia coli ESBL and Staphylococcus aureus MRSA. These are often the 

last obstacle to the clinical evolution of the patients. Around 0.1% of patients suffer sepsis every year 

whereas 20%–40% of these die in hospital. Without a deep knowledge of the organisms causing the sepsis, 

empirical antibiotic treatment is the first practice applied to stop the infection [1]. Guidelines for 

empirical therapy have to take into account the epidemiology of microbes isolated in care units. 

Intensive care units and hospitals are major reservoirs for pathogenic opportunistic organisms. 

Succeeding in eradicating the infection is mainly a race against time coupled with the selection of the 

proper empirical antibiotic treatment and the capabilities of bacteria in exchanging or evolving a 

variety of factors such as resistance, virulence and persistence [2]. Although the wide use of antibiotics 

contributed to the eradication of many diseases, continuous changes in trends of antibiotic resistance 

are observed [3]. With the advent of NGS the challenge is now to provide the public health sector with 

tools for fast and robust characterisation of pathogenic organisms, particularly for those cases in which 

difficulties in eradication emerge. 

Resistant bacteria can emerge by a selective process in a particular population, fixing mutation 

conferring antibiotic resistance or by colonisation or infection with drug-resistant organisms already 

present in the surrounding environment [4]. Antibiotic susceptibility is routinely tested in in vitro assays 

after obtaining the isolates. The common accepted method to test antibiotic susceptibility is still officially 

based on minimum inhibitory concentration. Break points for antimicrobial susceptibility are periodically 

revised by specific organisms, for more information see “The European Committee on Antimicrobial 

Susceptibility Testing” [5]. In intensive care units, the first data about bacteria susceptibility are provided 

within 48 h. This time frame allows antibiotic treatment adjustments to eventually be made. Several 

cases showed that the emergence of antibiotic resistant bacteria leads to ineffective treatments [6,7]. 

Rapid antibiotic resistance profiles are thought to highly improve the quality of therapies, reducing, on 

the other hand, side effects such as commensal over-infections or the generation of new resistant 

strains [8]. Exceptions where cohort based studies do not show a significant association between the 

application of the appropriate empiric antimicrobial therapy and in-hospital post-infection length of 

stay or mortality have also been observed [9,10]. However, when eradication of a given infection is 

delayed or when an outbreak is extended, a more detailed gathering of information can help in 

resolving the emergency. 
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1.2. Comparative Genomics in Public Health 

Modern public health microbiology laboratories have means to isolate strains of interest, since most of 

the micro-organisms under surveillance can be accounted for with standardised isolation methodologies. At 

present, it is possible to store, organize and maintain the organism’s genetic/genomic data and its associated 

metadata in bio-banks [11]. Historically, public health microbiology units base their daily work on classical 

microbiology practices. Several metabolite based kits and gene PCR-based systems allow identification 

with good approximation of the presence of specific and/or most common groups of bacteria. Current 

trends show how some of these extend to also recognising specific resistance factors [12–14]. These kits 

can detect the presence of the bacteria or the antibiotic resistance factor directly from blood avoiding the 

time lapse for cultivation. The limitation lies in the lack of continuity in updating the recognition power in 

terms of new organisms or resistance factors appearing, not only in terms of time, but also in terms of 

geographic spaces. Ideally, a new outbreak or a failure in antibiotic treatment is due to a change in 

microbial resistance or persistence profiles. This should be considered as a temporal and local 

(geographical) factor. Commonly observed is the appearance of dangerous nosocomial outbreaks which are 

geographically or temporally defined [15–17]. For these, deeper studies based on the whole genome 

sequencing causing the outbreak will be suitable for gaining insights into the infection and resistance 

mechanism adopted by the pathogen. Whole genome based monitoring during outbreaks as in the case of 
Legionella pneumophila, Mycobacterium tuberculosis, E. coli, etc. point out the importance of working 

with whole genome data in a comparative framework, highlighting taxonomy relationships, mutation based 

clustering, orthologues and accessory genes distribution. The latter is considered to be a main source for 

resistance, virulence and persistence factors [18–21]. 

Nowadays, whole genome sequencing protocols are relatively easy to apply in order to solve daily 

problems. Probably, the most pragmatic approach relies on the proposal of surveillance units of 

candidate organisms to be sequenced. When this actuation plan starts, the same microbiology unit can 

proceed through DNA extraction of the target organism and easily pass the DNA sample(s) to a 

specialised service for sequencing through the most appropriate NGS methods. We have to keep in 

mind that an alert from a surveillance unit can justify the expense for a whole genome sequencing 

project, the costs for which are predicted to be continuously reduced due to the further development of 

sequencing technologies. When the sequencing unit returns the obtained sequences, these can flow 

through pipelines for data mining and extraction of the information required by surveillance and 

microbiology units for further decisions and actuations. 

In this paper, we describe a “live” frame-work in microbial genome sequencing in which data 

mining from comparative genomics continuously populate a relational database with genetic 

information, allowing the extraction of useful differential data of interest such as virulence, resistance 

persistence factors, SNPs and InDels. Such approaches make data consequently suitable for immediate 

designing of new diagnostics systems for early predictions of organisms bringing potential dangerous 

features. Future advances in public health microbiology would entail services based on provision of 

large scale comparative analysis of organisms belonging to the same species. 

For instance, the Global Microbial Identifier (GMI) initiative has started work in this direction 

promoting whole genome sequencing of organisms with public health relevance. GMI aims to store 
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data, compare genomes and identify genes which could be of interest in outbreak characterisation as 

well as describing emerging pathogens [22]. 

Theoretical and technological advances are ready to support all processes from strain collection, 

DNA purification and storing. We are at the turn of microbiology and genomics research towards 

providing multiple genomic information from most similar organisms, analysing commonly shared 

features (or core genome) and additional characters (or disposable genome), in other words, we are in 

the era of the “pan-genome”. 

1.3. Approaching Species Definition in the Genomics Era 

One of the most discussed issues in microbiology is the species definition in taxonomy. Since the 

early 1970s, molecular methods and DNA sequencing techniques have been adopted to provide 

objective criteria in defining bacterial species. At first, whole genome DNA-DNA hybridisation was 

used to determine when two strains were homologous. Johnson (1973) [23] determined that strains 

from the same species nearly always shared 70% or more of their genomes. However, variation in gene 

content and the presence of polymorphisms among strains assigned by DNA-DNA hybridization to the 

same species have led some to consider that such a “species concept” is far too broad, compared to 

those in organisms of higher complexity than bacteria [24]. Other methods have been proposed to 

define microbial species based on diverse cut-off values studying one or more genes. 16S taxonomy, 

Multi Locus Sequence Typing (MLS or MLST) and biochemical characterisations are some of the 

most accepted classification methods [25,26]. Whereas none of these methods describe the complete 

genetic repertoire, whole genome analysis represents the gold standard in comparative genomics 

always permitting a-posteriori single or multiple gene-based characterisations [27]. Pathogenic 

organisms of interest could be tracked at the genomic level, monitoring at the same time its expansion, 

pathogenicity, resistance to antibiotics, virulence and persistence factors, mobile elements, adaptation 

features, all in a geographic context. Though several reference genomes are available, it is worth 

mentioning the efforts needed for sequencing and assembling de-novo without a reference backbone 

[28,29]. The American Center for Disease Control and Prevention (CDC) promotes whole genome 

sequencing for real time epidemiology, where results are expected to provide prospective information 

about outbreak evolution. The European Centre for Disease Prevention and Control (ECDC) is 

working in this direction, focusing on how public health can benefit from the rapidly evolving NGS 
technology in molecular microbiology [30]. While more and more reference genomes are available, 

comparative analysis represents a must in public health microbiology, offering the possibility to 

discover differential traits involved in the pathogenicity of a given organism. 

2. Pan-Genome 

Tracking and comparing genomes entails studying of the genomic difference among compared 

strains. The term “pan-genome” refers to pan (from Greek παν, whole) and genome (genome) referring 

to the inclusion of the core and the dispensable genome [31,32]. While originally microbial expansion 

was thought as clonal, now it is well known that also the overnight culture bacteria go through 

substitutions, insertions and deletions due to polymerases errors, genomic rearrangements (e.g. mobile 

elements) and viral interactions. Bacteria isolated from the same environment can show important 
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genomic differences due to the accumulation of variations during their natural life cycles [33]. The 

differences in accumulation of variations are attributed to the different speeds and scales for all 

organisms in a given environment as a “fractal pattern” in evolution (Figure 1).  

This continuous evolution process, jointly with the genetic enrichment provided by horizontal gene 

transfer events, prevent the genome of a bacteria isolated from a given environment overlapping with 

other genomes of other organisms defined as being taxonomically the same (in terms of 16S rDNA, 

MLST or DNA/DNA hybridisation profiles), which may have been isolated at different times or from 

different locations [34,35]. Central metabolic genes are mostly found as orthologues in all genomes of 

bacteria belonging to the same taxa, (common genome, shared genome or, most used, core-genome). 

Additional genes (dispensable genome) seem to be the ones making the difference [36]. For instance, 

antibiotic resistance factors, toxin/anti-toxin systems or phage-resistance clusters are considered in 

bacteria as arsenals for maintenance, evolution and transferring, making them a challenge in public 

health due to how difficult they are to track and control [37–40]. 

Figure 1. Fractal evolution model. Artwork describing ideally a fractal evolution model 

showing the outcome of new offspring (light green islands) with fitness advantages which 

are fixed and explode (darker islands nuclei), although the evolutionary pattern is 

maintained (fractal periodicity). On the other hand, small generations could be slower in 

their evolution or disappear in the time lapse. This model is established by representing a 

continuum among all organisms inhabiting a given environment. 

 

2.1. Core Genome 

By analysing bacteria belonging to the same species at a whole genome level, comprehensive 

comparative genomics can be carried out. Shared genes among multiple strains are mostly related to 

house-keeping genes or central metabolic processes, most of the structural information and main 

genotypic features. The core genome could be thought as the number of shared features in a pool of 

genomes. The size of the core genome decreases, increasing the number of genes added to the pool. 

While it is possible to link the core genome to common tracts among considered bacteria, it is worth 
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mentioning that such a calculation also depends technically on the number of genomes available for the 

computation. In this review, we propose a comparative analysis example of some organisms considering 

all genomes currently deposited in GenBank of Campylobacter jejuni (nine genomes), Streptococcus 
suis (13 genomes), L. pneumophila (10 strains), and Staphylococcus aureus (31 genomes, see SI1 for a 

strain list). 

2.2. Dispensable-Genome 

As long as new genes (by definition as part of dispensable compartment of the pan-genome) are 

added in the computation to the pool, the volume of the pan-genome increases. The increase of the 

pan-genome size has been observed to be either faster or slower. This has created another concept of 

the open or closed pan-genome [41]. A species pan-genome is considered closed, when as many new 

genomes are added to the pool and no new genetic information appears. For example, Streptococcus 
agalactiae pan-genome can exceed at least three-fold the average genome size [32]. On the other hand, 

highly adapted bacteria, especially those characterised by living in very restricted environmental 

niches, such as host specific pathogens such as Salmonella paratyphi or Bacillus anthracis, show a 

closed pan-genome [36,42]. 

The dispensable genome, also defined as “accessory” or “adaptive genome” [32], includes genes 

conferring adaptive advantages to the strain in order to survive in a specific environment. In most 

cases, these factors are linked to antibiotic resistance, virulence, capsular serotype, adaptation, and 

might reflect the organisms predominant lifestyle [40,41]. Being aware of differential traits in terms of 

presence/absence of genes and their annotations means having knowledge about the versatility or 

pathogenicity of a given organism separate from the pure taxonomic position. A recent study by  

den Bakker and collaborators (2011) offers a good example of comparative genomics applied to the 

identification of evolutionary clades of S. enterica subsp. enterica. Here, the authors provide a 

population genetic framework for studying the virulence and propagation of this pathogen. In their 

work, 46 complete genomes of S. enterica, 16 new genomes sequenced using SOLiDTM system and  

30 genomes already present in GenBank were analysed. S. enterica’s pan-genome was calculated, and 

common and different genomic traits were spotted by identifying in the two clades what differed  

in terms of metabolic capabilities, adhesion and colonization properties. Studying two clades of  

S. enterica subsp. enterica at the level of its pan-genome highlighted the existence of conserved 

pathogenicity islands and a virulence gene repertoire [43]. 

In 2010, D’Auria et al. described the pan-genome of L. pneumophila (five genomes at that time) 

revealing strain-specific and common traits including anti-drug resistance systems; a system for 

transport and secretion of heavy metals; three systems related to DNA transfer; two CRISPR systems, 

known to provide resistance against phage infections; and seven islands of phage-related proteins, five 

of which seem to be strain-specific and two shared among compared genomes [40]. 

3. SNPs/InDels Profiles  

Whole genome sequencing allows having at one time the whole SNPs and InDels profiles for each 

gene in a multi-genome context [44]. Whole genome taxonomy was reviewed in depth by Rannala and 

Yang in 2008 [45]. Phenotype identification and genotypic typing techniques were mentioned as the 
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basis for infectious disease epidemiology, providing profiles that are of use, not only for taxonomic 

reconstruction, but also for tracking strains during outbreaks [46]. The Yersinia pestis plague, 

characterised by a genetic uniformity, made it easy to be traced at the global level. Multi-genome 

SNPs profiles allowed to define its origin in or around China migrating from East to West. SNPs 

lineages were then traced highlighting the radiation to Europe, Africa and South-east Asia, while North 

American radiation originated from a single point [47]. The availability of such fine tools for lineage 

tracking is of great interest. In a public health frame-work, it is probably not useful, nor possible, to 

sequence all genomes of organisms from an outbreak episode, but having the genome of some 

representative strain would help towards obtaining a deeper knowledge about the factors responsible 

for resistance complicating infection eradication. While data mining processes allow the identification 

of statistically relevant SNPs/InDels, applied science will provide the basis to develop new tracking 

PCR-based systems. PCR detection systems have been successfully applied with several genes of 

interest and are often included in commercial test kits [48–50]. In this context, a “live” or continuously 

growing SNPs/InDels database would highly contribute to the prediction of polymorphisms suitable 

for test kits development, not only with globally applicable purposes, but even more interestingly, at 

small local scale (hospitals, villages, city, etc.). In other words, having polymorphisms’ profiles for 

bacteria of interest belonging to a specific outbreak would help to elaborate a short time test for its 

immediate identification and tracking. 

4. Automatic Pipelines 

While it seems impossible to afford the sequencing and perform the bioinformatics tasks in a 

routine daily work time frame for a microbiology unit in public health, automatic pipelines represent 

the solution. These will help automatising several of the necessary steps and tasks providing the user 

with the final data required in a round time compatible with the work beat. While the number of 

software for NGS data analysis is continuously growing [51–53], existing pipelines can be integrated 

and extended according to the microbiology unit needs. In terms of reducing human intervention, 

pipelines can be designed to cover as much of the analytical tasks as possible, not only for quality 

assessment and ancillary data production, but also for data mining and visualisation. Figure 2 reports a 

schematic pipeline for NGS data production and data mining, starting from sequencing of organisms of 

interest to gathering of useful data. 

Among the data which a microbiology unit needs to know in a “live” context, we also suggest including 

properties linked to genes or to specific mutations, in other words, the pan-genome relationship of a given 

isolate within its species and the mutational (SNPs/InDels) profile. This kind of automatic pipeline 

provides the user, in a short frame of time, with differential genes data (dispensable genome) as well as 

with mutation profiles which allow positioning of the studied strain in a phylogenetic context. 

In our example, an automatic pipeline was applied to simulated NGS data obtained using Illumina 

error profiles [54] on complete genomes of Campylobacter jejuni, Streptococcus suis, L. pneumophila 

and S. aureus strains (Table 1 and SI1). 

The applied pipeline starts from sequence data going step-by-step from data cleaning and quality 

assessment through the production of useful intermediate data characterising, on one hand gene-related 

data in a pan-genomic context, and on the other hand, the mutation profiles.  
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Figure 2. Automatic data mining pipeline schema. Picture shows proposed schema from 

strains selection to data reading for actuation plans. All steps over blue path are automatic 

and do not need user supervision. 
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Table 1. Used genomes and main genomic features. SI1 reports accession numbers for 

each genome of each species. Orthologues’ assignation to define pan-genome size was 

carried out by clustering all genes of each organism dataset with at least 60% similarity 

(amino acid) and 60% sequences overlapping using CD-HIT program [55]. 

 C. jejuni S. suis L. pneumophila S. aureus 

Number of genomes 9 13 10 31 

Average genome length 1,678,553.8 bp 2,090,478.5 bp 3,302,389.7 bp 2,894,586.7 bp 

Pan-genome size 953 1,125 1,933 1,765 

4.1. Pipeline—A Little Bioinformatics 

Pipelines are thought to reduce human intervention, maintaining analysis as robust and 

reproducible. Almost all of the necessary steps can be run consecutively one after the other, feeding 

the next step with the output of the previous one. The applied pipeline goes through several 

concatenated steps through the quality assessment process using “PRINSEQ” program [56], mapping 

using “SMALT” program [57], consensus definition and data conversions by the use of SAMtools [58],  

de-novo assembly of unmapped reads by MIRA program [59], gene finding using GLIMMER3 [60], 

automatic annotation using Hidden Markov Models algorithm searching in PFAM database [61–63], 

SNPs/IndDels calling by the use of VarScan program [64], and almost all required statistics have been 

performed in R environment [65,66]. The actual data report can be obtained using appropriate software 

which allows script execution and which could be concatenated with data-mining steps. 

4.2. Pan-genome Data Mining Pipeline 

The interest in pan-genomic data relies on discovering additional features of a given organism. 

In this context, a closed or open pan-genome can provide an idea about the versatility of the 

studied strain. Generally, we face organisms with a reduced ecological niche such as C. jejuni 
(Figure 3, left panels), where the increase in pan-genome size slows down within the nine genomes 

considered (almost closed pan-genome) or with organisms such as L. pneumophila or S. aureus 

(Figure 3, right panels), inclined to horizontal gene transfer and characterised by having an  

open pan-genome. 

Further, orthologue distributions provide the user with gene profiles for each organism, 

identifying differential tracts among organisms. When the mapping step of the pipeline runs by 

identifying reads overlapping with reference genome, unmapped reads can be tracked and 

associated to parts of the genome not present in the reference genome. These reads can be de-novo 
assembled and annotated, contributing towards revealing what makes the strain special with 

respect to previous known genomes. Annotating differential genes highlights the presence of 

pathogenicity factors. Clustering organisms by their differences in genes presence/absence and 

frequency allows stratifying annotation information, in terms of differences in versatility and 

pathogenicity. Figure 4 shows orthologues based dendrograms for the four species used as 

examples. Below each dendrogram, blue marks indicate some of the differential gene features 

related to antibiotics resistance factors highlighted by the data mining pipeline. For instance, 

several strains among all genomes reported resistance factors to betalactamases with different 
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mechanisms that only a fast comparative analysis can bring to light. SI2 reports the complete table 

of differential genes encountered among all considered strains of the four pan-genomes. 

Figure 3. Core genome distributions. Graph shows boxplots of pan-genome and core 

genome contents for increasing pools of genomes belonging to C. jejuni, S. suis, L. 
pneumophila and S. aureus. In S. aureus graph, we considered 31 genomes; due to the 

elevated number of possible combinations of genomes pools from n = 8 to n = 23 the boxes 

describe sampling of 2000 random combinations. 

 

5. Conclusions 

NGS coupled with automatic data mining pipelines represent nowadays the future for promptly 

definition of actuation plans responding to outbreaks or recurrent infections in public health systems. 

This framework is even more useful in small scale situations where a specific and proper action is 

needed. The speed and robustness of NGS methodologies and strategies now make possible the 

production of genetic and mutation profiles within a couple of days, making the automatic data mining 

process compatible with the immediate need of information in emergency cases. In the case of genetic 

data, differential gene profiles obtained comparing the strain(s) of interest with the ones already 

present in databases allows the definition of its pan-genome, thus data mining pipelines can reveal to 

the users which genes are making the difference in terms of antibiotic resistance or environmental 

persistence factors. Moreover, mutation profiles provide users with the correct information for 

taxonomic identification of the proposed strain on a clonal scale as well as with possible targets for the 

fast development of tracking systems kits, based, for example, on PCR methods. An important 

technical challenge is surely represented by the data storage and data mining process in such a growing 

frame-work. The experience from information and communication technology will probably be of help 
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in optimising automatic pipeline processes and data flows avoiding redundancies and focussing the 

attention mainly on differential tracts labelling and flagging. Finally, having these data in relational 

databases interconnected among multiple centres of public health system in the future will be key to 

creating the “live” context for modern genome-based microbiology. 

Figure 4. Antibiotic resistance factors. Dendrograms shows distribution among strains of 

C. jejuni, S. suis, L. pneumophila and S. aureus based on presence/absence of orthologues 

genes. For each genome, the presence of dispensable genes related with antibiotic resistance 

is identified, and by applying automatic pan-genome analysis, the pipeline is reported.  
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