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A B S T R A C T

The new approach for modeling kinetics of complex spatial self-propagating traveling-wave reactions is proposed.
This approach is intended to replace well-known reaction–diffusion equations and self-propagating high-tem-
perature synthesis (SHS) as methods for mathematical modeling of spatial propagation of chemical reactions. A
chemical kinetic model for frontal polymerization of metal-containing monomers under this approach is
suggested.
1. Introduction

So far, mathematical modeling of the macro «traveling-waves» of
chemical transformation has been made by means of reaction–diffusion
equation, or (for exothermic processes) in the context of spatial thermal
self-propagation sourced from heat of reaction [1, 2, 3, 4]. In general, the
latter method is called self-propagating high-temperature synthesis
(SHS) [1, 2]. These approaches outcome in the large number of inter-
esting results in chemical physics, combustion theory, SHS theory, and
also in biochemistry and economy. Nevertheless, they offer no universal
paradigm for the mathematical modeling of spatial propagation of
chemical reactions, focusing on two though important, but particular
cases. Those cases when the leading defining moments of process is the
physics of diffusion or (and) heat transfer. The chemical kinetics in there
is a priori secondary since it is responsible either for the “source” term of
the production of some components, resulted from the considered pro-
cess, or, in general, for the total heat of all reactions.

The non-universality fundamental nature of those approaches for the
theory of chemical kinetics emphasizes the absence of the general
paradigm of modeling the dynamics of chemical transformation by time
and space (!) in non-homogeneous (generally, not heterogeneous either)
environment. In our opinion, such theory would offer new opportunities
for studying complex multistage and multiphase processes of
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transformation, as the gnoseological potential of the diffusion and ther-
mal approaches is considerably exhausted over the past eighty years. For
example, the thermophysics of metal-containing monomers frontal
polymerization is already studied, largely due to SHS-theory, and that
cannot be told about its chemical kinetics [5], many of the nuances of
which are not covered by a context of neither thermal, nor diffusion
models [6].

Here we describe the way for creating the partial differential equa-
tions of chemical kinetics with time and spatial variables without
appealing to the equations of heat transfer and diffusion. We consider the
particular case of chemical reaction taking form of a one-dimensional
traveling wave, or in other words when the component concentration is

formally expressed by function Ci ¼ Ci

�
t � x

w

�
, where t is the time var-

iable, x is the spatial variable,w is the rate constant of the traveling wave.
Actually, the approach is based only on a nonconventional view of the

well-known fact that the reaction rate constant in the equations of
chemical kinetics is usually not a constant, but function of component
concentrations and temperature k ¼ kðC1;::;CN ;TÞ. Let us examine that in
detail. The rate of reaction ν1X1 þ ν2X2 þ :::þ νNXN → Y is as follows:

dξ
dt

¼ kAðTÞCν1
1 C

ν2
2 ::C

νN
N ; (1)
om (B.C. Yadav).

ember 2019
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

mailto:zakievs@icp.ac.ru
mailto:balchandra_yadav@rediffmail.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2019.e02829&domain=pdf
www.sciencedirect.com/science/journal/24058440
www.heliyon.com
https://doi.org/10.1016/j.heliyon.2019.e02829
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.heliyon.2019.e02829


S.E. Zakiev et al. Heliyon 5 (2019) e02829
where kAðTÞ is Arrhenius equation (or one of its versions), νi is stoi-
chiometric coefficient of the reaction, Ci is molar concentration of Xi, ξ is
conversion such that the following is true:

dξ¼ dC1

ν1
¼ dC2

ν2
¼ :: ¼ dCN

νN

Notice that the right part of (1) is true only for the elementary reac-
tion. If the complex reaction occurring in multi steps is considered, then
usually exponents are the reaction orders si in Xi. Thus follows:

dξ
dt
¼kAðTÞCs1

1 ::C
sN
N ¼�

kAðTÞCs1�ν1
1 ::CsN�νN

N

�
Cν1

1 ::C
νN
N ¼kðC1;::;CN ;TÞφðC1;::;CNÞ

(2)

We reckon that the term “reaction rate constant” in this context looks
as unnaturally, as in the phrase, “It has become general practice, how-
ever, to express the reaction rates in terms of the concentrations and to
include the effects of changing activities in the rate constants” [[7],
р.238]. While the multipliers in the right part of (2) have a simple
interpretation, the factor φðC1;::;CNÞ¼Cν1

1 ::CνN
N settles “chemical brut-

to–netto” of transformation, and kðC1;::;CN ;TÞ¼kAðTÞCs1�ν1
1 ::CsN�νN

N ap-
pears to be the local (in a representative elementary volume (REV) at a
given moment in time) intensity of the reaction. This local intensity for
complex multi-stage reactions in non-homogeneous environments is
actually the central macro-kinetic functional (!) characteristic of their
chemical kinetics. Nevertheless, authors are going to follow tradition and
to use the term “reaction rate constant” instead of the “local intensity of
reaction”.

To sum up, we'll notice that if the reaction appears to be the self-
propagating one-dimensional traveling wave, and since the reaction con-

stant is formally expressed as a function of concentration Ci ¼ Ci

�
t � x

w

�
,

then with T ¼ Const it would also be a traveling wave:

�
∂
∂tþw

∂
∂x

�
kðC1; ::;CN ;TÞ¼ 0: (3)

Besides, as the temperature is normally non-variable, the function can
be written down as follows:

k¼ kðC1; ::;CNÞ: (4)

If, as in the case of frontal polymerization of metal-containing
monomers, chemical transformation releases energy, then the traveling
wave of reaction is accompanied by the running thermal wave T ¼
T
�
t � x

w

�
. Thereby, (3) is true for a reaction rate constant. Moreover,

numerous studies of SHS-systems [1, 2] (in particular, [5]) indicate that
in this case the temperature could always be expressed as a function of
components concentrations T � ΦðC1; ::;CNÞ. Therefore, (4) is also true.

Further, (4) is used without any special comments. At the same time
the less restrictive statements are used instead of (3). This substitution is
an attempt to approach the issue at hand from more common positions,
open either to further specifications, or discussions.

2. Equations of non-homogeneous chemical macro-kinetics

Even considering the most general situation, it is necessary to
mention that diffusional and thermal appearances of reaction for gaseous
fluids often allow using known approaches effectively. Therefore, we are
going to discuss a complex multiphase process of transformation, such as
polymerization of metal-containing monomers (namely metal nitrate
acrylamides) that ought not to be compared to gas-phase reactions even
in qualitative terms. These monomers appear to be complex molecular
formations that could significantly change their inner structure (to lose or
to get subunits, rebuild bonds, etc.) during polymerization.

Monomer-polymer melt includes complex associates of tens and
hundreds of molecules consisting of interconnected layers, similar to
2

high-dispersed partly oriented submicroscopic crystallites in solid mat-
ter. This polymerization process has a free-radical nature with some
specific features. The growing macroradicals change their arrangement
or collide with the monomer molecules only upon chain growth (because
the reacting monomer particles are lacking in translational diffusion),
and crystallographic defects (dislocations, cracks, vacancies) tend to
terminate chain growth. Macroradicals grow in line with structural as-
pects of not only the macroradicals themselves but also of monomers,
assuming no diffusion of either of them [5]. Linear dimensions of the
defects caused by elementary reactions are comparable to average
intermolecular distances.

The matter is situation when it is better to use non-dimensional mass
fractions of components yi (i ¼ 1,..,N) in mathematical models of
chemical kinetics. That also makes easier working with dimensions in
appearing non-linear equations and normalizes mass conversation law:

XN
i¼1

yi ¼ 1: (5)

From mathematical point of view, hyperbolic (wave) or parabolic
(evolutional) equations can be used to characterize process of spatial
propagation. This research exploits parabolic equations. In doing so, the
authors consider unreasonable to rely on any similarities or connections
between propagation of transformation and mechanical motion or ther-
mal physics in continuum. In general, spatial self-propagation of reaction
is not connected with any mechanical macro-motion or migration of heat
waves. That is why considering reaction rate of spatial propagation as its
basic characteristic seems to be the most natural in our case.

Dissimilarity between actual rate of reaction in considered repre-
sentative elementary volume (REV) and the rate of reaction that would
be observed under the condition of homogeneity of the process (i.e. zero
concentration gradients of reacting components) can be used to describe
“spatial motion of transformation”.

To make this statement formal, we shall consider a monomolecular
reaction: one reagent converting to one product. Due to (5) describing
the kinetics of either component would be sufficient {reagent, product}
¼ {y1, y2}. Let's define a rate of homogeneous process relative to the
product:

dy2
dt

¼ k � ð1� y2Þ; y2ð0Þ¼ 0 (6)

And then we shall consider the rate of reaction in non-homogeneous
system. Let's suggest that k ¼ kðt; xÞ and y2 ¼ y2ðt; xÞ, and pick two
neighbor elementary (in terms of local equilibrium thermodynamics [5])
volumes V(x) and V(xþΔx) centered at points x and xþΔx, respectively.
To define the rate of spatial reaction propagation we assume that if k(t,x)
is the reaction rate constant in the given volume V(x) at the moment t
then there is such Δt that k(t,x) ¼ k(tþΔt, xþΔx) in V(xþΔx) at the
moment tþΔt which also could be written down as:

kðtþΔt; xþΔxÞ� kðtþΔt; xÞþ kðtþΔt; xÞ� kðt; xÞ¼ 0

Then, assuming that k is differantiable:

∂kðt þ Δt; xÞ
∂x Δxþ ∂kðt; xÞ

∂t Δt¼ 0 ⇔
∂kðt þ Δt; xÞ

∂x
Δx
Δt

þ ∂kðt; xÞ
∂t ¼ 0

Evaluating limits:

∂kðt; xÞ
∂x wðt; xÞþ ∂kðt; xÞ

∂t ¼ 0 (7)

where w(t,x) is instanteneous spatial rate of reaction.
From the equation of homogeneous chemical kinetics (6) we move to

the partial differential equation describing non-homogeneous chemical
kinetics (the initial condition for (6) transforms to the initial condition
determined in every point x of the selected area):
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∂y2ðx;tÞ
∂t ¼ kðx; tÞ; (8)
1� y2ðx; tÞ
Differentiating both sides of (8) with respect to t:

∂
∂t

0
B@

∂y2ðx;tÞ
∂t

1� y2ðx; tÞ

1
CA¼ ∂kðx; tÞ

∂t

Then we expand the parentheses on the left side and changing the
right side in accordance with (7):

1
1� y2

∂2y2
∂t2 þ

0
B@

∂y2
∂t

1� y2

1
CA
2

¼ � wðt; xÞ ∂kðy2Þ∂x (9)

It should be noted that the rate w(t, x) in our consideration is deter-
mined solely by the specificity of chemical transformations. Therefore, its
formal assessment should be based on the law of mass action in a non-
homogeneous system. In our opinion, despite the fact that the wording
of this law has recently attracted the attention of researchers [8], it is still
far from ideal. In view of this, in determining w(t, x), one can use either
the corresponding phenomenological approach, constructed, for
example, on the basis of the principles set forth in [9], or experimental
data.

Replacing parentheses on the left side according to equation (8) and
multiplying both sides by (1-y2) we arrive at

∂2y2
∂t2 þwðt; xÞ ∂kðy2Þ∂x ð1� y2Þþ kðy2Þ2ð1� y2Þ¼ 0: (10)

The same goes for the general situation. Consider the system of or-
dinary differential equations describing chemical kinetics in homoge-
neous medium

�
dyi
dt

¼ kiðy1; ::; yNÞφiðy1; ::; yNÞ
	N

i¼1

(11)

Turning to elementary volume we get to the system of partial dif-
ferential equations in non-homogeneous medium:

8><
>:

∂yi
∂t

φiðy1; ::; yNÞ
¼ kiðy1; ::; yNÞ

9>=
>;

N

i¼1

(12)a

Then we introduce the chemical motion hypothesis, which is
expressed as follows:

�
∂kiðt; xÞ

∂x w iðt; xÞ þ ∂kiðt; xÞ
∂t ¼ 0

	N

i¼1

(12)b

Based on (12)a and (12)b the result is

8><
>:

∂
∂t

0
B@

∂yi
∂t

φiðy1; ::; yNÞ

1
CA ¼ �wiðt; xÞ ∂kiðy1; ::; yNÞ∂x

9>=
>;

N

i¼1

And after differentiating the left parts of the equations:

�
∂2yi
∂t2 þ wiðt; xÞ ∂kiðy1; ::; yNÞ∂x φiðy1; ::; yNÞ �

∂φiðy1; ::; yNÞ
∂t kiðy1; ::; yNÞ ¼ 0

	N

i¼1

Taking into account the additive acceleration (deceleration) factorsGi

corresponding to yi that have no connection with chemical reaction (e.g.
describing the rate of the mass loss in certain REV during the “i”
component non-uniform motion through the reacting medium) might
sum up the above. Considering the system of N components, we canmake
these equations, which are suggested to refer to as Equations of
3

Inhomogeneous Chemical Macro-kinetics (EICM):

�
∂2yi
∂t2 þwiðt;xÞ∂kiðy1;::;yNÞ∂x φiðy1;::;yNÞ�

∂φiðy1;::;yNÞ
∂t kiðy1;::;yNÞþGi¼0

	N�1

i¼1

XN
i¼1

yi¼1

9>>>>=
>>>>;

(13)

To illustrate facilities provided by this new approach we'll use the
simple example (10). The reaction rate constant k within (6) is different
from the constant k ¼ k(y2) within (10) according to the difference in
proceeding of homogeneous reaction (6) and non-homogeneous reaction
(10). Indeed, assuming their equality leads to

∂kðy2Þ
∂x → 0; but wðx; tÞ ∂kðy2Þ∂x → � ∂kðy2Þ

∂t

Substituting that into (9) leads to (6). In other words, using (10)
instead of (6) ((10) is deduced from (9)) is correct only when reaction is
non-homogeneous:

∂kðy2Þ
∂x 6¼ 0

Assuming that wðt;xÞ ¼ w ¼ const, let's find a solution for (10) in a

form of the travelling wave y2 ¼ y2
�
t � x

w

�
. To do that, we'll assign a

variable τ ¼ t � x
w having the dimension of time, rewrite (10) with that

variable and add one more initial condition:

d2y2
dτ2

� dkðy2Þ
dτ

ð1� y2Þ þ kðy2Þ2ð1� y2Þ ¼ 0

y2ð0Þ ¼ δ;
dy2
dτ

ð0Þ ¼ kðδÞð1� δÞ

9>>=
>>;

(14)

where the initial condition is set using (8). Note that if k(0) ¼ 0 then in
order to avoid falling into a stationary point we should set 0 < δ << 1.
Otherwise, we can assume δ ¼ 0.

To compare the solutions to (6) and (14) let's remove all the units
from these equations. Assuming that the reaction rate constant k in (6) is
invariable, let's define Δt ¼ 1

k and s ¼ t
Δt. To remove the dimensions of

(14) we define Δτ ¼ 1
k and s ¼ τ

Δτ, k is the reaction rate constant from (6).
Besides that, we shall consider 2 expressions for the non-homogeneous
reaction rate constant:

aÞΔτ � kðy2Þ¼αð1� y2Þ; α¼ const> 0 ; bÞΔτ � kðy2Þ¼ βy2; β¼ const> 0

After simple transformations each of obtained equations becomes a
system of two first-order equations with a new variable q ¼ dy2

ds :

dy2
ds

¼ q

dq
ds

¼ �αqð1� y2Þ � α2ð1� y2Þ3

9>>=
>>;
;

�
y2ð0Þ
qð0Þ

�
¼
�
0
α

�
(15)

and

dy2
ds

¼ q

dq
ds

¼ βqð1� y2Þ � β2y22ð1� y2Þ

9>>=
>>;
;

�
y2ð0Þ
qð0Þ

�
¼
�

δ
βð1� δÞδ

�
(16)

Fig. 1 shows plots of solutions for “homogeneous” equation (6), EICM
(15) and EICM (16). Notice that given example, despite its simplicity,
demonstrates principal steps of modeling within submitted approach.



Fig. 1. Curve 1 is a graph of the function y2 ¼ 1� e�x that is the solution of the
dimensionless equation (6), curve 2 is the graph of the solution (15) at α ¼ 1,
δ ¼ 0, curve 3 is the graph of the solution (16) at β ¼ 1; δ ¼ 0:00001.
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3. The models of polymerization of metal-containing monomers

The following is objected to compare the mathematical models of
homogeneous polymerization of metal-containing monomers and non-
homogeneous – frontal, described by means of EICM.

One of the simplest examples of the kinetic process was provided in
[6]:

M!k
*
M R*

R*
n þM!

k*p
R*
nþ1

R*
n þ R*

m!
k*0 P

(17)

where M is monomer, R*
n – free radicals, P – generating polymer, k*M , k

*
p,

k*o – kinetic constants.
The system of the ordinary equations of homogeneous chemical ki-

netics for (17) can be written down as follows:

dy1
dt

¼ �k*My1 � k*py1y2

dy2
dt

¼ k*My1 � k*oy
2
2

y1 þ y2 þ y3 ¼ 1

9>>>>>=
>>>>>;
; 0� t; y1ð0Þ¼ 1; y2ð0Þ¼ y3ð0Þ¼ 0 (18)

where y1; y2; y3 are the corresponding mass fractions of monomer, free
radicals and polymer. It should be pointed out that y2 is the mass fraction
not only of the free radicals but also of the intermediate compounds that
monomer transforms to before becoming the radical (more details in
[5]).

The system (18) by means of its third equation is reduced to system of
two ordinary differential equations:

dy1
dt

¼ �k*My1 � k*py1ð1� y1 � y3Þ

dy3
dt

¼ k*py1ð1� y1 � y3Þ þ k*oð1� y1 � y3Þ
2

9>>=
>>;
; 0� t; y1ð0Þ¼ 1; y3ð0Þ¼ 0

(19)

Changing
4

Δt¼ 1
* ; s ¼ t

;
d ¼ k*M

d
; kp ¼

k*p
* ; ko ¼ k*o

* (20)

kM Δt dt ds kM kM

leads (19) to a dimensionless look

dy1
ds

¼�y1
�
1þ kp � kpðy1 þ y3Þ

�
dy3
ds

¼ �
ko �



ko � kp

�
y1 � koy3

�ð1� y1 � y3Þ

9>>=
>>;
; 0� s; y1ð0Þ¼1; y3ð0Þ¼0

(21)

Proceeding from (19), let us construct the system of EICM, describing
the frontal type of kinetics of the considered process:

∂2y1
∂t2

þ w1ðt; xÞ ∂k1ðy1; y3Þ∂x φ1ðy1; y3Þ �
∂φ1ðy1; y3Þ

∂t k1ðy1; y3Þ ¼ 0

∂2y3
∂t2

þ w3ðt; xÞ ∂k3ðy1; y3Þ∂x φ3ðy1; y3Þ �
∂φ3ðy1; y3Þ

∂t k3ðy1; y3Þ ¼ 0

9>>>=
>>>;
; 0 � t

(22)

Let's seek for the solution of (22) represented by traveling waves

y1 ¼ y1
�
t�x

w

�
and y3 ¼ y3

�
t � x

w

�
, assuming that w1ðt; xÞ ¼ w3ðt; xÞ ¼

w � const, τ ¼ t� x
w. In this case (22) becomes

d2y1
dτ2

¼ d
dτ

½k1ðy1; y3Þφ1ðy1; y3Þ�

d2y3
dτ2

¼ d
dτ

½k3ðy1; y3Þφ3ðy1; y3Þ�

9>>>=
>>>;
; 0 � τ

Whence it follows that

dy1
dτ

¼ C1 þ k1ðy1; y3Þφ1ðy1; y3Þ
dy3
dτ

¼ C3 þ k3ðy1; y3Þφ3ðy1; y3Þ

9>>=
>>;
; 0� τ; y1ð0Þ¼ 1; y3ð0Þ¼ 0:

(23)

It looks like (19) and (23) differ from each other in only “artificially
arisen” non-variables C1 and C3. But the principal difference between
these systems lies in the variables t and τ. The system (19) describes
transformation in homogeneous environment in every spot of it from the
moment the reaction began. System (23) describes the structure of the
travelling wave of transformation which could be comprehended in two
ways (see [6] for the details). First, as spatial propagation of reaction
component mass fractions in non-homogeneous system at the moment
t ¼ t0 and second, as changing dynamics of those mass fractions in certain
REV (in terms of local equilibrium thermodynamics) since its meeting
with the travelling wave of reaction. In the latter case, the elementary
volume is a priori homogeneous. Also the second interpretation shows
physical meaning of C1 and C3. If

k1ðy1ð0Þ; y3ð0ÞÞφ1ðy1ð0Þ; y3ð0ÞÞ¼ k3ðy1ð0Þ; y3ð0ÞÞφ3ðy1ð0Þ; y3ð0ÞÞ¼ 0;

Then those invariables describe the initiation of the reaction at the
moment the travelling wave reaches the considered REV. However, the
most significant difference is observed between the rate constants of the
homogeneous (19) and non-homogeneous reaction (22). After defining
the dimensionless values

kp ¼
k*p
k*M

; ko ¼ k*o
k*M

; φ1ðy1; y3Þ¼ � y1
�
1þ kp � kpðy1 þ y3Þ

�
; (24)

φ3ðy1; y3Þ¼
�
ko �



ko � kp

�
y1 � koy3

�ð1� y1 � y3Þ
for (19), we can see that

k1 ¼ k3 ¼ k*M � const;

At the same time for (23)



S.E. Zakiev et al. Heliyon 5 (2019) e02829
k1ðy1; y3Þ¼ k*Mψ1ðy1; y3Þ; k3ðy1; y3Þ¼ k*Mψ3ðy1; y3Þ
Fig. 3. The solution of system (28) with kp ¼ 100, ko ¼ 7. Curve 1 is the mass
fraction of a monomer y1, curve 2 is the mass fraction of active radicals y2 ,
curve 3 is the mass fraction of a polymer y3.
As mentioned in the introduction, frontal polymerization of metal-

containing monomers is accompanied by a heat wave T ¼ T
�
t �

x
w

�
¼ TðsÞ. According to SHS, such constants a and b could be found that

T ¼TðsÞ� aþ by3ðsÞ: (25)

Therefore, in this case ψ i must look like the Arrhenius equation with
T(s) substituted by the right part of (25). But the numerical analysys
showed that such implicit consideration of the Arrhenius law in (22)
leads to the solution that is qualitatively similar to the solution of (19).
Hence in the considered approach the Arrhenius law doesn't have that
primal role for structuring the travelling waves, as it has in SHS or
Combustion Theory. The types of ψ i equations that are inherent for the
situation are still the pending issue. However, taking into account the
existing experimental data (some of it is presented in [5]), we shall
consider the following:

k1ðy1; y3Þ¼ k*M ; k3ðy1; y3Þ¼ k*Mð1� y1 � y3Þ
1
2 (26)

Assuming for (23) that

Δτ¼ 1
k*M

; s ¼ τ
Δτ

;
d
dτ

¼ k*M
d
ds

; C1 ¼ 0; C3 ¼ 0 (27)

Bearing in mind (24) and (26), we can conclude:

dy1
ds

¼�y1
�
1þ kp � kpðy1 þ y3Þ

�
dy3
ds

¼ �
ko �



ko � kp

�
y1 � koy3

�ð1� y1 � y3Þ
3
2

9>>>>=
>>>>;
; 0� s; y1ð1Þ¼1; y3ð0Þ¼0

(28)

4. Numerical analysis

The solutions for the systems (21) and (28) were found numerically
with the same parameters kp ¼ 100, ko ¼ 7. Taking into account (20) and
(27), it allows comparing the durations of the process in both cases.

The numerical solution for (21) is presented in Fig. 2. It is charac-
terized by the fact that the mass fraction of all intermediate products and
radicals do not exceed 0,13 and falls down smoothly by the end of
Fig. 2. The solution of system (21) with kp ¼ 100, ko ¼ 7. Curve 1 is the mass
fraction of a monomer y1, curve 2 is the mass fraction of active radicals y2 ,
curve 3 is the mass fraction of a polymer y3.

5

process. Considering that too big mass fraction of radicals leads to failure
of polymerization process for metal-containing monomers, the obtained
solution describes a typical homogeneous process [5].

The numerical solution for (28) is presented in Fig. 3. Its particular
feature is the clear allocation of the active reacting layer in the reaction
front that can be seen from the small part of the figure, where y2 fraction
prevails over the other components. As it was mentioned, y2 includes not
only free radicals, but also the intermediate compounds, and then the
lamination of those compounds inside the wave, artificially fastened to
the structure of heat wave [5], is naturally coordinates within the
transformation wave. It is necessary to highlight that lamination of
frontal type of transformation was repeatedly noted by experimenters for
the most different reacting systems [5].

The solution in Fig. 3 could also be interpreted as the spatial waves
moving across the Os axis in the negative direction. However, estimating
their real scales would require the values of constants wand k*M . And it
should be mentioned that the danger of termination for the homogeneous
polymerization requires moderate mass fraction of radicals, whereas for
the frontal polymerization the possibility of termination demands
(throughout all process) moderate spatial thickness of the active reacting
layer.

5. Conclusion

The aim of this study is development of the mathematical apparatus
for the description of spatial self-propagating chemical transformation at
the macro level that would be based on the chemical kinetics of the re-
action, not the physics of diffusion or (and) heat transfer.

This attempt is the first of a kind, and its effectiveness has yet to be
defined. The authors reckon that this work should help “rehabilitating”
the macrokinetics as one of the efficient instruments for investigating the
complex multi-staged and multi-phased chemical transformations. The
skepticism about macrokinetics, which originates from the end of XX
century [10], was aroused sufficiently by the intuitively perceived
“chemical incorrectness” (or non-constructivity) of macro-level
substituting the rate of diffusion or heat transfer for the chemical reac-
tion rate in many particular cases. However, stochastic method (which
was proposed as an alternative to the macrokinetics [10] over the last few
decades) couldn't go beyond its original range, which was determined as
far back as in the second half of the last century. Macro kinetics is a
natural instrument for a researcher and a convenient theory for a
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technologist to consider complex self-organizing processes (such as
frontal polymerization of metal-containing monomers) having a firm
macro geometry. This explains the appreciable increase of interest for the
macrokinetic models that is observed now in biology, bio-physics, eco-
nomics, etc.

This work was performed in accordance with the state tasks, state
registrations N АААА-А19-119041090087-4 and АААА-А19-
119032690060-9.
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