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Abstract

Screening and prioritization of chemicals is essential to ensure that available evalua-

tion capacity is invested in those substances that are of highest concern. We, there-

fore, recently developed structural similarity models that evaluate the structural

similarity of substances with unknown properties to known Substances of Very High

Concern (SVHC), which could be an indication of comparable effects. In the current

study the performance of these models is improved by (1) separating known SVHCs

in more specific subgroups, (2) (re-)optimizing similarity models for the various

SVHC-subgroups, and (3) improving interpretability of the predicted outcomes by

providing a confidence score. The improvements are directly incorporated in a freely

accessible web-based tool, named the ZZS similarity tool: https://rvszoeksysteem.

rivm.nl/ZzsSimilarityTool. Accordingly, this tool can be used by risk assessors, acade-

mia and industrial partners to screen and prioritize chemicals for further action and

evaluation within varying frameworks, and could support the identification of tomor-

row's substances of concern.
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1 | INTRODUCTION

Evaluation and regulation of chemical substances is crucial to ensure

safe production and use of chemicals. For substances that are of

concern, regulatory measures can be implemented that assure a

minimization of emissions and exposure, and/or could stimulate the

substitution by safer (non-regrettable) alternatives. Such actions con-

tribute to the European ambitions of a toxic-free environment.1 How-

ever, as available evaluation capacity is limited, it is essential to first

evaluate (and subsequently regulate) those substances that are of

highest concern. To facilitate the identification of substances of

potential concern, we recently developed structural similarity models

that evaluate the structural similarity of substances with unknown

hazard properties to known Substances of Very High Concern

(SVHC).2 Substances are identified as SVHC based on a regulatory

decision process, in which available data is evaluated and compared to

specific criteria (see Supplemental Material S1 for more details). When

a substance is identified as SVHC, there are specific consequences for

production/emission and use. This relates particularly to industrial

chemicals. The developed models are based on structural similarity,

which is considered an important descriptor in various research fields,

including toxicology (e.g., for read-across3) and pharmacology (e.g., for

virtual screening4–6), as a high resemblance in chemical structure

could be an indication of comparable properties and effects (‘similar
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property principle’).7 Therefore, substances that are structurally simi-

lar to known SVHCs might be selected for further evaluation.

The SVHC similarity models are based on chemical fingerprints

and similarity coefficients8,9 and the workflow of the models is illus-

trated in Figure 1. Separate similarity models have been developed for

three groups of SVHCs, including (1) SVHCs with carcinogenic (C),

mutagenic (M) or reprotoxic (R) properties (i.e., CMR), (2) SVHCs with

persistent, bioaccumulative and toxic (PBT) or very persistent and

very bioaccumulative (vPvB) properties (i.e., PBT/vPvB), and (3) SVHCs

with endocrine disrupting (ED) properties. These models showed

promising performance statistics (with balanced accuracies of 0.80–

0.99),2 and showed a reasonable performance on a broader universe

of chemicals as analyzed by a pseudo-external validation (with bal-

anced accuracies of 0.69–0.87).10 In addition, the model predictions

appear to be more robust than expert judgments.10 To enable the use

of the similarity models by academia, industrial partners and risk

assessors (including regulators that have to decide on emission per-

mits), we have made the models publicly available via a freely accessi-

ble web-based tool, named the ZZS similarity tool: https://

rvszoeksysteem.rivm.nl/ZzsSimilarityTool (ZZS = ‘Zeer Zorgwekkende

Stoffen’ [in Dutch], which is literally translated as substances of very

high concern). Accordingly, this tool can be used to screen and priori-

tize chemicals for further action and evaluation within varying frame-

works and safe-by-design trajectories, and is already applied in

various screening activities.11,12

Upon obtaining more experience with the application of the

similarity models, we identified several methodological aspects that

could be further optimized to improve the performance of the

models.2,10 Particularly, the PBT/vPvB model misclassified various

substances due to amongst others insufficient consideration of the

type and number of halogenated fragments and aromatic structures.

Moreover, the SVHC-categorization insufficiently reflected the

current SVHC status, and the binary nature of the predictions limited

the interpretation of the results. Therefore, the current study aims

to improve the performance of the models by (1) separating the

known SVHCs in more specific subgroups, (2) (re-)optimizing similar-

ity models for the various SVHC-subgroups, and (3) improving inter-

pretability of the predicted outcomes by providing a confidence

score. In addition, the underlying reference dataset of SVHC sub-

stances was updated. The improvements as described in this study

are directly incorporated in the ZZS similarity tool, and enhance the

applicability of the models.

F IGURE 1 Illustration of the workflow of each of the separate similarity models that are incorporated in the ZZS similarity tool (note that
there are some variations for the specific sub-models, see section ‘3.2 models’). Step 1 and 6 consider the input and output as shown by the ZZS
similarity tool, and step 2–5 are used to calculate and predict the structural similarity. The exact specifications of step 3–5 differ per SVHC-
category. An input structure can be provided as SMILES or CAS-number (step 1), which is converted to a standardized SMILES to ensure equal
comparison to SVHC structures (step 2). The standardized SMILES is used to generate chemical fingerprints using PaDEL-descriptor13 (step 3).
The fingerprint of the input structure is compared to the fingerprints of all SVHCs of a specific category to calculated similarity values by using a
similarity coefficient (step 4). The calculated similarity values are compared to a similarity threshold to predict whether the input structure is
considered sufficiently structurally similar to an SVCH (step 5), and the results are reported (step 6). For each SVHC-category a specific model
was developed and optimized, that consists of a unique fingerprint, coefficient and threshold combination; and the outcomes are reported
separately for each SVHC-category
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2 | METHODS

The methodological aspects of the similarity models that are adjusted

in this study are shown in Table 1, and include an update of the

underlying SVHC dataset, a re-categorization of the SVHCs into sub-

groups, a (re-)optimization of the similarity models, and the addition

of a quantitative outcome score.

2.1 | Dataset

The dataset of SVHCs was updated between 2018 to 2021 based on

the substances that were included on a Dutch list of SVHCs (January

25, 202114) following the same refinement procedure as previously

described.2 This list includes substances that are identified based on

the same hazard criteria as the European SVHCs, but—besides the

European SVHC list—are derived from various additional sources as

well. Therefore, this Dutch list of SVHCs covers a slightly broader

range of chemicals than the EU-SVHCs under REACH (see Supple-

mental Material S1 for a detailed description of the composition of

the Dutch list of SVHCs).

The substances included on the refined/final SVHC list were cate-

gorized based on their hazard class (in which a chemical can belong to

multiple hazard classes). Distinctions were made between the ‘classi-
cal’ SVHC hazard categories, including C, M, R, PBT and vPvB. Sub-

stances were added to these categories when they were considered

to have such specific effects according to their inclusion on the

European SVHC list, the European CLP list Annex VI, or on the list of

Persistent Organic Pollutants (POPs). All POPs were considered as

PBT and/or vPvB within the dataset. In addition, as within our

previous work, a specific ED category was used. Substances were

added to this category when they were included on the European

SVHC list based on ED effects. Substances on the Dutch list of SVHCs

that do not belong to any of the above-mentioned categories were

included in the ‘Other’-category, like substances on the European

SVHC list with persistent, mobile and toxic (PMT) properties, specific

target organ toxicity after repeated exposure (STOT-RE) or sensitizing

properties. In addition, substances were also included in the ‘Other’-
category when they were only included on the Dutch list of SVHCs

based on other sources, like substances on the OSPAR list for priority

action15 or priority hazardous substances according to the Water

Framework Directive (see Supplemental Material S1 for more details

about the Dutch list of SVHCs).

For modeling purposes, also a list of non-SVHCs was required.

We used the same list as used by Wassenaar et al.,2 but excluded the

substances that were now included on the ‘new’ list of SVHCs

(resulting in a total of 406 substances). This list consists of substances

that are considered inherently safe (i.e., all substances on REACH

Annex IV), and includes approved biocides and pesticides (which have

been tested experimentally and are negative for all SVHC-endpoints).

As chemical similarity evaluations require unambiguous chemical

structures as input information, we normalized and standardized all

SMILES to QSAR ready structures with a Kekulé representation.16

This was done by extracting the QSAR ready structures from a CAS-

SMILES list from the US-EPA17 or by generating QSAR ready struc-

tures with a KNIME workflow.18 In exceptional cases, where no QSAR

ready SMILES could be generated, the most uniform representation

was manually selected (e.g., from PubChem or ECHA dissemina-

tion site).

2.2 | Models

The SVHC dataset was separated into five different hazard classes,

including CM, R, PBT/vPvB, ED and Other, and all used the same set

of non-SVHCs for model optimization.

The selection of the best performing similarity models was specif-

ically restricted to fingerprints that could be generated with PaDEL-

Descriptor (as those are incorporated in the online ZZS similarity

tool).13 This includes the Substructure, MACCS, E-State, PubChem,

Klekota-Roth and CDK Extended fingerprint. Fingerprints were gener-

ated for all QSAR ready SMILES of the SVHC and non-SVHC sub-

stances with PaDEL-Descriptor, enabling PaDEL to remove salts,

detect aromaticity, and standardize tautomers and nitro groups.13

These fingerprints were all tested in combination with the JT, HL,

CT4, SS3, Coh, SM and Yu2 similarity coefficients.2,9 More details on

the fingerprints and similarity coefficients are provided in Supplemen-

tal Material S2 (Tables S1 and S2).

We analyzed the predictive performance of the varying

fingerprint-coefficient combinations for classifying the substances in

the dataset as (potential) SVHC or non-SVHC per SVHC category

(i.e., CM, R, PBT/vPvB, ED and Other). For each fingerprint-coefficient

combination similarity values were calculated. Non-SVHC substances

TABLE 1 Aspects of the structural similarity models that are
adjusted within the current study.

Adjusted

aspects Description and motivation

Dataset Update of the underlying SVHC dataset.

Model-

separation

Separation of CM and R concerns, as these effects

are often exerted via different mode of actions.

Improved distinction between European SVHCs

(including CLP classifications and POP

identifications) and Dutch SVHCs.

Model (re-)

optimization

Optimization of the sub-models. Specifically

necessary for the PBT/vPvB category, for

which a moderate performance on the broader

universe of chemicals was observed.

Outcome

interpretation

Addition of a quantitative confidence score,

besides the qualitative conclusion (sufficiently

similar: yes/no), to support better outcome

interpretation.

Abbreviations: SVHC—substances of very high concern; CMR—
carcinogenic (C), mutagenic (M) or reprotoxic (R) properties; PBT/vPvB—
very (v) persistent (P), bioaccumulative (B) and toxic (T) properties;

CLP—classification, labelling and packaging of substances and mixtures;

POP—persistent organic pollutants.

1044 WASSENAAR ET AL.



were compared to all SVHCs, whereas SVHCs were compared to all

other SVHCs (excluding itself), and per substance only the highest

similarity value was retained. Next, the maximum balanced accuracy

was determined (Equation (1)), by selecting the optimal threshold

(i.e., a value between 0 and 1) to predict (potential) SVHC status ver-

sus non-SVHC status. Details are according to Wassenaar et al.2 An

overview of these various steps is provided in Supplemental Material

S2 (Figure S1).

Selection of (or adjustments to) the best performing models focus

on quantitative performance statistics (i.e., balanced accuracy), but

also included qualitative selection criteria (which could vary between

hazard classes), where necessary. For instance, in the case of a sym-

metric similarity coefficient (i.e., coefficients in which absence and

presence of features that are in common between two structures con-

tribute equally to the determined similarity), specific care was given to

symmetric coefficient bias (i.e., the phenomenon where chemicals

with less than a specific number of fragment features are always

predicted to be structurally similar to an SVHC due to high overlap in

absent features) (see Reference [2] for a more detailed description).

Furthermore, for the PBT/vPvB-model (as well as the ‘Other’-model)

specific attention was given to the performance on the broader uni-

verse of chemicals, as these models had a relative low external perfor-

mance in a previous evaluation.10

Balanced accuracy bAccð Þ¼ SensitivityþSpecificity
2

¼
TP

TPþFNþ TN
TNþFP

2
ð1Þ

2.3 | Outcomes

A quantitative confidence score was added to the binary model pre-

dictions (i.e., the yes or no prediction on sufficient structural similar-

ity). The confidence scores represent the confidence in the structural

similarity between a chemical and an SVHC, and are derived from the

similarity values. The following stepwise procedure was followed for

each similarity model. First, we iteratively assessed the performance

for all distinguishing similarity values (i.e., threshold values) based on

the subgroup specific SVHC and non-SVHC datasets, and derived bal-

anced positive predictive values (bPPV) for each similarity threshold

value (see Equation (2)). Second, the bPPVs were min-max normalized

to confidence values ranging from 0 to 1 (i.e., 0%–100%), in which the

model's optimal threshold value was set to a confidence value of 0.5

(i.e., 50%). Third, we fitted two functions through these normalized

bPPVs. One function is fitted to the similarity values ranging from

0 to the model's optimal threshold (with confidence scores ranging

from 0% to 50%), and the other function is fitted to the similarity

values from the model's optimal threshold till 1 (with confidence

scores ranging from 50% to 100%). Depending on the distribution of

the bPPV for all similarity thresholds values, a corresponding function

was selected (e.g., exponential or sigmoidal function). In cases where

no clear distribution pattern was observed, a linear trend was used.

The fitted functions at least had to cover the confidence ranges from

0.5% to 49.5% and 50.5% to 99.5%, and must sufficiently represent

the derived bPPV points, where possible. When necessary, the fit was

manually optimized to meet these conditions, by for instance

constraining the bottom or top of the curves at specific similarity

values, or by providing additional weight to specific datapoints.

A visual example of the fitting through a distribution of bPPV values

as a function of similarity threshold values is given in the results

section (Figure 2).

Balanced positive predictive value bPPVð Þ
¼ Sensitivity
Sensitivityþ 1�Specificityð Þ ¼

TP
TPþFN

TP
TPþFNþ 1� TN

TNþFP

� � ð2Þ

All analyses within this study were performed in R (unless other-

wise specified)19 using caret, ChemmineR, caTools, and ROCR.20–23

3 | RESULTS AND DISCUSSION

3.1 | Dataset

The new dataset consists of 621 substances, of which 80 structures

were not yet included in the previous dataset. In addition, eight

structures were removed (e.g., as they do not meet the SVHC criteria

anymore), or were represented by newly included (n = 3) or already

existing structures (see Supplemental Material Excel for more details).

Furthermore, we re-categorized the substances across the hazard

classes to better reflect the current SVHC status and thereby improve

the interpretability (e.g., distinction between EU-based SVHCs versus

SVHCs that are only identified as a Dutch SVHC; and distinction

between CM- and R-concerns). The distribution of substances within

this updated dataset across the different hazard categories is shown

in Table 2, and the individual substances are included in Supplemental

Material Excel.

TABLE 2 Overview of the new dataset and the distribution over
hazard categories, in comparison to the previous dataset as included
in Reference [2].

Hazard class Previous dataset New dataset

Total 546 621

CM 1501 153

R 1661 178

PBT/vPvB 209 137

ED 52 51

Other -2 1313

Note: 1—In the previous work, CM and R were combined as one class

(n = 306). 2—In the previous work, no ‘Other’-category was included. 3—
The ‘Other’-category consists of 10 substances that are identified as EU-

SVHC based on PMT (n = 3) or respiratory sensitizing properties (n = 7).

All others are not identified as EU-SVHC, EU-CLP or POP, but are

included on the Dutch list of SVHCs based on specific concerns related to

similar endpoints (C: n = 3, M: n = 1, R: n = 14, PBT: n = 64, PBT/vPvB:

n = 29, ED: n = 6, PMT: n = 2, and others: n = 2) from other sources (e.g.,

OSPAR15; in which PBT/vPvB concerns are dominating).
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3.2 | Models

Specifically the PBT/vPvB model required improvement according to

the performance on the broader universe of chemicals.10 Despite the

excellent performance on classifying substances in the original SVHC

dataset, the PBT/vPvB model misclassified many substances when

applied to a broader set of chemicals, due to amongst others insuffi-

cient consideration of the type and number of halogenated fragments

and aromatic structures. In addition, the performance of the other

similarity models (i.e., CMR and ED models) were reanalyzed as sev-

eral adjustments have been made, including an update of the SVHC

dataset and a new categorization of substances (i.e., CM, R,

PBT/vPvB, ED and ‘Other’-models).

Optimization of the CM- and R-models based on the new

datasets indicated that the CDK Extended fingerprint with

SM-coefficient was the best or second best performing fingerprint-

coefficient combination for the CM- and R-dataset, respectively. For

the R-dataset, the Extended-Coh combination scores best followed

closely by the Extended-SM fingerprint-coefficient combination

(with balanced accuracies of 0.814 and 0.808, respectively). These

results are comparable to the results from our previous study, in

which the Extended-SM fingerprint-coefficient combination out-

performed all other combinations for the CMR-dataset with compa-

rable optimal similarity thresholds (i.e., a threshold of 0.946 for the

CM-dataset, 0.944 for the R-dataset and 0.944 for the combined

dataset in the previous study).2 We decided to additionally use an

asymmetric similarity coefficient (i.e., JT or CT4 coefficient) for sub-

stances with a low number of fingerprint bits, as symmetric coeffi-

cient bias was observed. Statistical derivation of an optimal cut-off

value (i.e., below which number of fingerprint bits the JT or CT4

coefficient should ideally be used) resulted in broad uncertainty

ranges due to a limited number of substances in the subsets. As com-

parable best-performing models were derived for the new CM- and

R-dataset as previously determined, we decided to retain the CMR-

model. The established optimal threshold and cut-off specifications

are given in Table 3, and showed to be robust to minor changes

in the dataset and do not specifically require an adjustment of the

optimized parameters. Moreover, this decision was justified by the

fact that besides an update of the dataset there was no specific

incentive to improve the performance of the CMR-model based on

the previous evaluations.

Revision of the PBT/vPvB model using the MACCS-SM

fingerprint-coefficient combination was required considering its per-

formance on the broader universe of chemicals.10 In addition, as many

not (yet) EU-recognized PBT/vPvB chemicals were reallocated to the

‘Other’-category, also specific attention was given to the optimization

of the similarity models for this group. The Klekota-Roth, PubChem

and CDK Extended fingerprint were identified as best performing fin-

gerprints based on performance statistics for the PBT/vPvB-SVHCs

and non-SVHCs. However, upon a more in-depth analysis of the

predicted similarities (including false positives and false negatives) and

its applicability on the broader universe of chemicals, it could be con-

cluded that the Klekota-Roth fingerprint is not suitable to predict

structural similarity amongst PBT/vPvB chemicals. The Klekota-Roth

fingerprint provides a lot of emphasis to (small) linear chains of varying

sizes and to relatively large fragments, but insufficiently weighs typical

PBT-related fragments like aromatic-ring structures. In addition, for

relatively many chemicals only a limited number of fragments are

identified, and accordingly such chemicals are more easily (but often

incorrectly) predicted as structurally similar to a PBT/vPvB-SVHC.

The PubChem and Extended fingerprints have their own strengths

and limitations. The PubChem fingerprint specifically weighs aromatic

structures and halogens, but does not systematically cover the whole

chemical structure. The Extended fingerprint specifically considers all

fragments present within a chemical, but focusses specifically on path-

based fragments which may insufficiently describe ring-structures.

TABLE 3 Overview of the final models—including performance statistics—to predict structural similarity to SVHCs.

Subset Fingerprint Coefficient Threshold #SVHCs #non-SVHCs TP FP TN FN Sens Spec bAcc bPPV

CM <85 CDK Extended CT4 0.851 89 63 55 6 57 34 0.618 0.905 0.761 0.866

CM ≥85 CDK Extended SM 0.944 64 343 36 5 338 28 0.563 0.985 0.774 0.975

CM-combined1 - - - 153 406 91 11 395 62 0.595 0.973 0.784 0.956

R < 85 CDK Extended CT4 0.851 57 63 36 7 56 21 0.632 0.889 0.760 0.850

R ≥ 85 CDK Extended SM 0.944 121 343 77 7 336 44 0.636 0.980 0.808 0.969

R-combined1 - - - 178 406 113 14 392 65 0.635 0.966 0.800 0.948

PBT-1 PubChem JT 0.774 137 406 130 2 404 7 0.949 0.995 0.972 0.995

PBT-2 CDK Extended CT4 0.887 137 406 124 1 405 13 0.905 0.998 0.951 0.997

PBT-combined2 - - - 137 406 123 1 405 14 0.898 0.998 0.948 0.997

ED CDK Extended JT 0.693 51 406 50 0 406 1 0.980 1.000 0.999 1.000

Other-1 PubChem JT 0.818 131 406 87 15 391 44 0.664 0.963 0.814 0.947

Other-2 CDK Extended CT4 0.901 131 406 76 17 389 55 0.580 0.958 0.769 0.933

Other-combined2 - - - 131 406 73 10 396 58 0.557 0.975 0.766 0.958

Note: 1—Substance is either assessed on structural similarity according to model 1 or model 2, depending on its number of fragment features. 2—
Substance is assessed based on model 1 and model 2, and is only considered as structurally similar to an SVHC when it meets the criteria of both models.
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As both fingerprints have their own unique flaws, they were combined

to form the final PBT/vPvB model. The corresponding best performing

coefficients included the JT, CT4 and SS3 coefficients. As the observed

differences between these coefficients are in the details (see Supple-

mental Material S2) and are partially related to the determined optimal

threshold values, we selected the fingerprint-coefficient combinations

with thebest performance on the expert judgment dataset (given pref-

erence to high bPPVs and few false positives, to ensure confidence in

model predictions). The final PBT/vPvB model uses both the

PubChem-JT and Extended-CT4 fingerprint-coefficient combinations,

and only predicts that a chemical is structurally similar to a PBT/vPvB-

SVHC when both models support this conclusion (see Table 3).

In the ED-dataset, four new ED-SVHCs were added and five SVHCs

were allocated to the ‘Other’-category. The results of the model optimi-

zation indicate that multiple fingerprint-coefficient combinations can be

considered as the best-performing model, all with a balanced accuracy of

0.99 (including models based on the CDK Extended fingerprints and

Klekota-Roth fingerprints). Although previously the RDkit based FCFP4

fingerprint with the SS3 coefficient was considered most optimal (with an

equal performance statistics), we now pragmatically selected a PaDEL-

based fingerprint as those were incorporated in the online ZZS similarity

tool. We selected the CDK Extended fingerprint with JT-coefficient from

the best performing fingerprint coefficient combinations. The Extended

fingerprint was chosen above the Klekota-Roth fingerprint, as the

Klekota-Roth fingerprint only considers a specific number of pre-specified

fragments, and therefore, might be less specific when applied to a broader

universe of chemicals. In addition, the JT-coefficient was selected as this

coefficient uses an asymmetric function for which there is no risk of sym-

metric coefficient bias, and was preferred above the CT4 coefficient (see

Supplemental Material S2).

The ‘Other’-category consists of SVHC substances whose proper-

ties are different from the above-mentioned categories, or whose prop-

erties are not universally recognized as such. These substances were

separated from the CM, R, PBT/vPvB and ED-dataset to better reflect

the current SVHC status and thereby improve the interpretability. For

the ‘Other’-dataset very comparable observations and conclusions

were made as compared to the PBT/vPvB-dataset, and this might not

be a surprise considering the broad representation of PBT/vPvB related

chemical concerns in the ‘Other’ category (>70%, see Table 2). The only

differences between both models are the most optimal threshold values

that are derived from the dataset (see Table 3).

Although we specifically assessed the performance of PaDEL-

based fingerprints within this study, comparable or lower perfor-

mances were observed for the RDkit related fingerprints that were

previously tested as well.2,24

3.3 | Outcomes

Within the previous models, only a dichotomous, qualitative, predic-

tion of the concern was made for the structural similarity of a chemi-

cal to an SVHC. Based on the similarity score and model specific

threshold, the models predicted whether or not a chemical is

sufficiently structurally similar to an SVHC (and thus predicted to be a

potential SVHC). To support a better interpretation of the outcomes

for prospective model users, a quantitative confidence score is added

to this binary prediction. The developed quantitative scores describe

the confidence in structural similarity between a chemical and an

SVHC, with a higher confidence for higher structural similarity. This

supports the intuitive interpretation that a substance that is more sim-

ilar to an existing SVHC is also predicted with more certainty to have

SVHC properties. The confidence score functions were derived sepa-

rately for each model and are based on the normalized bPPV for sub-

stances in the SVHC and non-SVHC dataset. A similarity value equal

to a model's optimized threshold was given 50% confidence, with a

maximum confidence of 100% (in case of a similarity score of 1) and a

minimum confidence of 0% (in case of a similarity score of 0). An

example of such a function is shown in Figure 2, and a detailed over-

view of all derived confidence functions (including figures showing

the bPPV as a function of the similarity value) is provided in Supple-

mental Material S3 (Table S3 and Figure S2). The functions do not aim

to provide an exact confidence trigger, but are meant to provide addi-

tional (data-driven) information that could guide interpretation and

follow-up evaluation. We specifically did not include a predictive

score for non-similarity to an SVHC (for instance based on negative

predictive values), as the models only make statements about the sim-

ilarity and not the absence of similarity to SVHCs. This is related to

the fact that it cannot be concluded that a substance is not a potential

SVHC based on a lack of structural similarity, as a substance might

exert effects through different (yet unknown) modes of action.

F IGURE 2 Relation between the structural similarity value and
the confidence in the predicted structural similarity between a
chemical and a Reprotoxic (R)-SVHC based on the CDK extended-
CT4 fingerprint-coefficient combination. The fitted curves describe

the normalized bPPV as a function of the similarity value used as a
threshold value, and are derived from the R-SVHC and non-SVHC
datasets (for substances with less than 85 fragment features, that is,
bits in the CDK extended fingerprint). The vertical line represents the
model's optimized threshold value (0.851) giving the best balanced
accuracy, and the horizontal line represents the 50% confidence
score. More details are presented in Supplemental Material S3
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3.4 | Application to a broader universe of
chemicals

To illustrate the effects of the model adjustments, we applied the

newly optimized similarity models to a dataset of REACH registered

substances that was used by Wassenaar et al.10 Under the European

chemicals legislation REACH, manufacturers and importers of sub-

stances are responsible for the registration of substances produced or

imported in the EU above one ton per year via a registration dossier.

This list of registered substances is managed by the European

Chemicals Agency (https://echa.europa.eu/information-on-chemicals/

registered-substances) and was previously extracted and prepared for

analysis.10 Here, this dataset was slightly adjusted, by converting the

SMILES to QSAR ready SMILES, similarly as performed for the SVHC

dataset (see Section 2.1). This resulted in a dataset of in total 9456

REACH registered substances. The results of the screening are shown

in Table 4, in which also the results of the previous similarity models

are included (using the newly updated SVHC-dataset).

Based on the results as shown in Table 4, it can be observed that

far more substances are identified as potential CM or R, compared to

the other three categories. This difference can likely be explained by a

larger diversity in SVHC structures within the CM- and R-categories.

As previously shown, these categories have much more ‘single-point-
of-knowledge’ structures, compared to PBT/vPvB and ED-SVHCs

which can be divided into relatively few groups of chemicals.2 There-

fore, it cannot simply be concluded that the PBT/vPvB-, ED- and

‘Other’-models are more strict compared to the CM- and R-models.

Nevertheless, the combination of P-, B- and T-properties (or vP- and

vB-properties) might be a more stringent condition compared to C-,

M- or R-properties. The addition of confidence scores to the similarity

models, however, allows for a better interpretation of the predicted

results (with a higher structural similarity resulting in a higher confi-

dence in predicted results).

Furthermore, Table 4 and Supplemental Material S4 (Figure S3)

indicate very comparable distributions in confidence scores across the

varying categories. The results for the ‘Other’-SVHC category are the

only exception, for which a relative high amount of structures are

identified that are structurally very similar to an ‘Other’-SVHC. This

is, at least partially, related to the steep increase in confidence scores

in relation to the similarity values, which follows from the model's

derived bPPV (see Supplemental Material S3). In addition, this might

also be related to a coincidental high representation of structurally

very similar substances in the screened dataset.

Predictions for the PBT/vPvB- (and ‘Other’-) model have much

improved (with a much lower number of incorrect SVHC predictions)

and can be better interpreted using the additional confidence scores

(see Table 5) as compared to predictions reported in Wassenaar

et al.10 These new models better consider the number of halogenated

fragments (examples 1–7, Table 5), the type of halogenated fragments

(example 8, Table 5), and the backbone/aromatic structures (examples

9–11, Table 5). These are important aspects that define the

PBT/vPvB-properties of chemicals. Similar improvements are

observed for the ‘Other’-model, see Supplemental Material S5

(Table S4). The added value of the confidence scores is particularly

evident from examples 1–5 in Table 5, where an increased confidence

in structural similarity is observed with an increase in halogenated

fragments. In addition, these confidence scores are very useful when

interpreting the similarity amongst groups of structurally similar sub-

stances, as illustrated in Supplemental Material S5 (Tables S5 and S6)

where we present the confidence scores for previously discussed

case-studies.10 Despite the many improvements, also a deficiency of

the models can be observed which particularly relates to the use of

the CDK Extended fingerprint (see example 12, Table 5). As this fin-

gerprint considers a path-based fingerprint, not many additional frag-

ments are identified for substances with a straight-chain of (carbon)

atoms or when these atoms are structured in a ring.

TABLE 4 Application of the newly optimized similarity models to a dataset of 9456 REACH registered substances.

Model Similar substances

Similar substances by

previous models 50%–75% confidence 75%–90% confidence ≥90% confidence

CM-combined1 1060 -3 701 149 210

CM < 85 688 466 76 146

CM ≥ 85 372 235 73 64

R-combined1 936 -3 729 98 109

R < 85 522 376 60 86

R ≥ 85 414 353 38 23

PBT/vPvB 532 3604 38 13 2

ED 109 1395 86 13 10

Other 1292 5544,6 32 46 51

Note: The confidence-bins represents the number of substances that are predicted to be structurally similar to an SVHC with a specific confidence in the

structural similarity. The previously used similarity models are described by Wassenaar et al.2 1—Combination of two sub-models. 2—For two chemicals

the PubChem fingerprint could not be generated (total = 9454). 3—The CM- and R-models were not adjusted. 4—For one chemical the MACCS fingerprint

could not be generated (total = 9455). 5—For 82 chemicals the RDkit equivalent FCFP4-fingerprint could not be generated (total = 9374). 6—The

previously derived PBT/vPvB model was applied to the ‘Other’-dataset (as the ‘Other’-SVHCs mainly consists of SVHCs previously included in the

PBT/vPvB-SVHC dataset).

1048 WASSENAAR ET AL.

https://echa.europa.eu/information-on-chemicals/registered-substances
https://echa.europa.eu/information-on-chemicals/registered-substances


3.5 | ZZS similarity tool

The updated dataset and re-optimized similarity models were incorpo-

rated in the online ZZS similarity tool (https://rvszoeksysteem.rivm.

nl/ZzsSimilarityTool). Also the user-interface was improved by adding

the possibility to use a CAS-input as well as a batch-job possibility,

besides the already existing SMILES-input option (see Figure 3). The

CAS-search feature was included by adding a list of >700.000 CAS-

SMILES combinations, originating from the US-EPA.17 We refined this

list by removing entries without a CAS-number or a QSAR ready

SMILES, and removed any chirality description within the SMILES

(as chirality has not been used in the similarity model optimization).

Furthermore, we ensured that SMILES from substances in the final

updated SVHC dataset (for which a CAS-number is available; see

Section 2.1) were consistent or included. Some more details on the

implementation of the similarity models and use of the ZZS similarity

TABLE 5 Specific examples of predictions by the PBT/vPvB-model, including confidence scores in structural similarity.

ID
Substance with ‘unknown’
properties

Previous most similar
known SVHC

Previous
model
prediction

New most similar
known SVHC

New model
prediction

New model

confidence in
structural
similarity

1 SVHC Non-SVHC 43%

2 SVHC SVHC 75%

3 SVHC SVHC 83%

4 SVHC SVHC 93%

5 SVHC SVHC 96%

6 SVHC Non-SVHC 23%

7 SVHC Non-SVHC 7%

8 SVHC Non-SVHC 1%

9 SVHC Non-SVHC 0%

10 SVHC SVHC 75%

11 SVHC Non-SVHC 2%

12 Non-SVHC SVHC 81%

Note: The examples illustrate the model's improved consideration of the number of halogenated fragments (examples 1–7), type of halogenated fragments

(example 8), and backbone/aromatic structures (examples 9–11). A deficiency of the new model is illustrated with example 12. Similar improvements are

observed for the ‘other’-model, see Supplemental Material S5. 1—This SVHC considers the third most similar SVHC, with a comparable similarity value for

the two other most similar SVHCs (i.e., all with 43% confidence in structural similarity). This structure is included in this table as illustrative example in

relation to examples 2–5.
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tool are provided in Supplemental Material S6 (Figures S4 and S5 and

Table S7).

3.6 | Notes on application and future
recommendations

The developed similarity tool has to be considered as a first screening

methodology, which can be easily applied to identify and prioritize

potential SVHCs. Although comparable approaches to the ZZS similar-

ity tool have been developed before,25,26 these earlier methods are

not available for use, are only marginally described, and/or do not pro-

vide an optimized and validated methodology (resulting in an

unknown predictive performance). In contrast to these approaches,

these aspects are specifically covered by the ZZS similarity tool. The

user of the similarity tool should be aware of the fact that SVHC sub-

stances are identified as such based on a regulatory decision process,

and that this status has particular regulatory consequences for

industrial chemicals. Accordingly, potential SVHC predictions are most

valuable for industrial chemicals. The tool can also be applied to any

other type of chemicals, but the results should always be considered

as screening results and should be interpreted as follows:

1. Positive (i.e., SVHC) predictions indicate that a chemical is suffi-

ciently structural similar to an existing SVHC to be marked as a

potential SVHC. Such a prediction should not be interpreted as a

conclusive outcome due to the potential presence of so-called

‘activity cliffs’ (i.e., two very similar chemicals which have an unex-

pectedly high difference in activity/toxicity),27 and therefore

require follow-up analyses. The tool helps to guide such a follow-

up, as the specific concern of the most similar SVHC(s) provides a

relevant direction for further evaluations.

2. Negative (i.e., non-SVHC) predictions indicate the absence of suffi-

cient structural similarity to any of the SVHCs. Accordingly, related

regulatory consequences may—at the moment—not be applicable

for the new chemical. It should be noted, however, that a negative

F IGURE 3 The ZZS similarity tool main web-page with the input modes: Single search and batch search (using SMILES and/or CAS-numbers)
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prediction cannot guarantee absence of any toxicological concern.

A chemical could for instance exert different non-SVHC types of

effects or could exert specific SVHC effects via different mecha-

nisms than the currently known SVHCs (which are mainly indus-

trial chemicals). In addition, the structural overlap might just be too

low according to the models to trigger a warning. To assist expert

users, the tool always shows the most similar SVHCs (even when

the highest structural similarity to an SVHC is below the model's

threshold value), so that the structural similarity could always be

evaluated manually as well.

The ZZS similarity tool can be applied to all organic chemicals, as

the chemical similarity itself can be considered an applicability domain

descriptor. If a chemical is sufficiently structurally similar to an existing

SVHC, the chemical is clearly within the applicability domain of the

model. The similarity models can be used for non-dissociating inorganic

or metal–organic chemicals (e.g., organotin substances), to generate a

first prediction, but results should be interpreted with care. Further-

more, inorganic chemicals with arsenic, beryllium, cadmium, chromium,

lead, mercury, nickel and cobalt-metal derivatives will by definition be

predicted as SVHC substances. For these chemicals, the metal atoms

(or ions) are thought to be the cause of toxicological concern,

irrespective of the (organic) groups or counter-ions present in the inor-

ganic molecule. Additionally, we advise to apply the ZZS similarity tool

to parent chemicals as well as breakdown products/metabolites when

such information is available, as transformation products may give dif-

ferent similarity outcomes than the parent chemical.

Furthermore, it should be noted that the ED similarity model is

limited by the number (and variation) of substances that are classified

as ED-SVHC, and for instance does currently not include substances

with a steroid backbone, that are very likely to be endocrine active.

Accordingly, the user should be reminded that the model only iden-

tifies structural similarity to known ED-SVHCs, and that absence of

similarity should thus not be interpreted as an absence of possible

ED-effects. It is recommended to further develop the ED model when

more substances are classified as ED-SVHC, or by including known

endocrine disrupting substances like natural substrates.

Future improvements of the models could focus on the evaluation

of more sophisticated fingerprints that possibly better define the struc-

tural aspects of chemicals, like count-based fingerprints or 3D-based

fingerprints. Particularly, 3D-based fingerprints could be relevant as they

present a group of important descriptors for determining binding affinity

as well as several other properties.28,29 However, their use also contains

challenges and uncertainties related to chemical conformations and

alignments,8,30 and more advanced fingerprints do not necessarily out-

perform the predictive performance of 2D-binary fingerprints.31 Accord-

ingly, the currently evaluated methodology, which shows very

reasonable performance, is considered adequate, especially for the pro-

posed screening activities. This is also confirmed by an earlier compari-

son of the performance of the similarity tool with the performance of

existing screening methodologies, including Toxtree (i.e., Benigni/Bossa

rulebase for mutagenicity and carcinogenicity), DART and the PB-score

tool.32–34 The results indicated a higher performance for the similarity

models and indicate the added value and relevance of structural similar-

ity for identifying potential SVHC substances.2 Nevertheless, for exten-

sive screening exercises overall screening performance might be

improved by combining the results of multiple screening models. By

combining models that are based on various types of information (e.g.,

also structural features and physicochemical properties), more reliable

and consistent predictions could potentially be obtained.

4 | CONCLUSIONS

Within this study similarity models were extended and optimized to

improve the identification of substances with potential SVHC proper-

ties. We specifically (1) accounted for differences in mode of action,

(2) upgraded the PBT/vPvB sub-models, and (3) added quantitative

confidence scores. In addition, the models were extended by using

more data. The revised similarity models have been incorporated in

the online freely available ZZS similarity tool (https://rvszoeksysteem.

rivm.nl/ZzsSimilarityTool), with an user-friendly interface both

enhancing interpretability and input options. Application of these

models by risk assessors, academia and industrial partners will result

in faster, easier and more reliable identification of substances that are

potentially of very high concern, and as such can contribute to the

transition to a toxic-free environment.
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