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Abstract: Perfluorinated sulfonic acid (PFSA) polymers such as Nafion® are widely used for both
electrolyte membranes and ionomers in the catalytic layer of membrane-electrode assemblies (MEAs)
because of their high protonic conductivity, σH, as well as chemical and thermal stability. The use
of PFSA polymers with shorter side chains and lower equivalent weight (EW) than Nafion®, such
as Aquivion® PFSA ionomers, is a valid approach to improve fuel cell performance and stability
under drastic operative conditions such as those related to automotive applications. In this context,
it is necessary to optimize the composition of the catalytic ink, according to the different ionomer
characteristics. In this work, the influence of the ionomer amount in the catalytic layer was studied,
considering the dispersing agent used to prepare the electrode (water or ethanol). Electrochemical
studies were carried out in a single cell in the presence of H2-air, at intermediate temperatures
(80–95 ◦C), low pressure, and reduced humidity ((50% RH). %). The best fuel cell performance was
found for 26 wt.% Aquivion® at the electrodes using ethanol for the ink preparation, associated to a
maximum catalyst utilization.

Keywords: Aquivion®; short side chain; dispersing agent in catalytic ink; ionomer optimization;
automotive applications; PEFC

1. Introduction

Polymer electrolyte membrane fuel cells (PEMFCs) have been developed as an efficient
and eco-friendly energy-conversion device for distributed power generation, transporta-
tion, and stationary uses [1,2]. Notwithstanding the advances in PEMFC technology,
durability and cost remain the two main challenges to be overcome for their commer-
cialization [3–5]. Durability and cost are strictly related, since they mainly depend on
the perfluorosulfonic acid (PSFA) membrane and Pt-Group-Metal (PGM) catalysts used
as core components of the PEMFC [6–8]. In particular, the Pt loading reduction is often
associated to a reduction in durability; thus, the current direction is the development of
membrane-electrode assemblies (MEAs) with a low Pt loading and long lifetime. In order
to reach this target, it is necessary to develop MEAs with highly efficient catalytic layers
(CLs). While, the effect of MEA manufacturing processes on cell performance has been
investigated by different authors [9–13], minor attention has been devoted to the role of
ionomers in the CL. The ionomer can influence the performance of fuel cells, and in fact it
affects the ionic conductivity, the catalyst utilization, and the mass transport of the catalytic
layer [14–17].
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The most used ionomer is Nafion®, a long-side-chain perfluorosulfonic acid, consid-
ered as the benchmark for several kinds of applications ranging from energy production
to sensors. A wide literature is available about the use of Nafion® in both membranes
and catalytic ink preparation reporting the use of the pristine polymer or composite with
inorganic and organic materials [18–21]. With the aim of overcoming some limitations
of Nafion® when it operates in more drastic conditions, such as high temperature and
low relative humidity, a short-side-chain ionomer can be used. In particular, Aquivion®,
developed by Solvay Specialty Polymers, is a short-side-chain (SSC) perfluorosulfonic poly-
mer and presents a higher crystallinity, higher glass-transition temperature (Tg) and lower
swelling than Nafion® together with a high proton conductivity, making this SSC polymer
more suitable to work in a PEMFC at higher cell temperature and lower relative humidity
levels (RH, %) [22–26]. Talukdar et al. observed a correlation between the composition
of the ionomer and the durability, with SSC polymer being chemically less stable than
long-side-chain polymer [27]. Instead, Shahgaldi et al. found a better compatibility of SSC
ionomers in the catalytic layer compared to their long-side-chain counterparts [28]. It is
thus relevant that the ionomer structure plays an important role in cell performance and
durability aspects.

The use of different ionomers requires an optimization of the entire composition of the
catalytic ink, in terms of ionomer amount, dispersing agent, and thermal treatment [29–31].
Garsany et al. investigated the effects of the fuel cell component preparation method
with SSC ionomers by comparing Aquivion® with Nafion®, and finding superior fuel cell
power density upon appropriate catalyst-loading optimization, with durability issues still
a remaining challenge [32,33]. In our previous and recent study [34], it was found that
the Aquivion®-polymer-based MEAs, treated at 125 ◦C, although presenting the highest
performance loss after an accelerated stress test (AST), maintains a lower degradation in
terms of H2 crossover, electrochemical surface area (ECSA), and double layer capacitance
(Cdl) between the beginning (BoT) and the end of test (EoT).

In this work, an investigation of the influence of the dispersing agent and ionomer
content in the catalytic ink on fuel cell performance was carried out. Different gas diffusion
electrodes (GDEs) with different dispersing agents and different ionomer amounts were
prepared and coupled with Aquivion® membranes. The obtained MEAs were electro-
chemically characterized in a 25 cm2 single cell in the presence of H2-air, at intermediate
temperatures (80–95 ◦C), low pressure, and reduced humidity (50% RH), to evaluate how
the catalytic ink composition influenced the electrochemical performance.

2. Materials and Methods
2.1. Materials
2.1.1. Electrocatalyst Preparation

The cathode catalyst consisted of a 50 wt.% PtCo, supported on Ketjenblack EC
(PtCo/KB) with a nominal alloy composition of Pt3Co1 (at.), prepared by an incipient
wetness of cobalt nitrate on an amorphous PtOx/C catalyst, as reported elsewhere [35].
The anode catalyst was a 50 wt.% Pt/KB. This catalyst was prepared according to a previous
work [36].

2.1.2. Membrane and Ionomer Preparation

The membrane used in this work was an experimental Aquivion®-reinforced mem-
brane developed by Solvay Specialty Polymers and named R79-01SX+. The membrane
(10 µm in thickness) was prepared by ePTFE web impregnation starting from the com-
mercially available Aquivion® PFSA D79-25BS water-based dispersion. The membrane-
manufacturing process was reported elsewhere [37]. Regarding the ionomer, a dispersion
based on Aquivion® PFSA, D79-20BS with an EW: 790 g mol−1, and water as a dispersing
solvent was used in the catalytic layer.
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2.1.3. Electrode and MEA Preparation

In-house prepared electrodes were realized by the spray-coating technique [38–41].
The catalytic ink was obtained by mixing the developed catalysts and Aquivion® ionomer
dispersions D79-20BS at different percentages, ranging between 16 and 36 wt.%. Moreover,
H2O or ethanol (EtOH) was used as a dispersing agent to prepare the catalytic ink. A
20 wt.% of ammonium carbonate (Carlo Erba Reagents s.r.l., Milano Italy) was used as
a pore-former. The catalytic ink was deposited onto the commercial gas diffusion layer
Sigracet-25BC (SGL group). A Pt loading of 0.2 mg cm−2 both for the anode and cathode
side was used.

Membrane-electrode assemblies (MEAs) were obtained by hot pressing the electrodes
onto the R79-01SX+ membrane at 125 ◦C [34] with a pressure of 20 kg cm−2 for 5 min. The
membranes were used as received without any further treatments.

In Table 1, a summary of the developed MEAs is reported.

Table 1. MEAs developed.

MEA Catalytic Ink Dispersion Agent Ionomer Amount, wt.%

26-H2O H2O 26
26-EtOH EtOH 26
16-EtOH EtOH 16
36-EtOH EtOH 36

2.2. Methods
2.2.1. Electrocatalysts Characterization

The electrocatalyst powders were characterized to confirm the morphology, the crys-
tallographic structure, and the degree of alloying. Transmission Electron Microscopy (TEM)
was carried out through a Philips (Amsterdam, NL) CM12 microscope by depositing the
catalyst powder dispersed in 2-propanol on a carbon-film-coated Cu grid.

X-ray diffraction (XRD) analysis was performed using a Philips (Amsterdam, NL)
Xpert 3710 X-ray diffractometer with Cu Kα radiation operating at 40 kV and 20 mA.
The Pt and Pt alloy crystallite sizes were calculated from the (220) reflection in the face-
centered cubic (FCC) structure, since this reflection has no other interferences with other
signals, considering the Debye-Scherrer equation, and removing the contribution from the
instrumental broadening.

2.2.2. Membrane Characterization

The membranes were morphologically characterized using the FE-SEM Jeol JMS 7610F.
The membrane cross-section was obtained through the liquid nitrogen freezing method.
Sample was frozen in liquid nitrogen and then fractured, bending it.

2.2.3. Electrochemical Tests

Electrochemical tests were performed in a 25 cm2 single cell, at 80 ◦C and 95 ◦C, at
1.5–2 barabs, and 50 RH%, by feeding the cell with H2 at the anode and air or O2 as an
oxidant at the cathode. The flow rates were fixed at 2 and 1.5 times the stoichiometric value
for oxidant and fuel, respectively. The single-cell performance in terms of polarization curve
was investigated by steady-state galvanostatic measurements in H2/air. Measurements in
O2 were carried out to determine the mass activity (jm) of the electrocatalysts. The cell was
connected to a Fuel Cell Technologies test station including an HP6051A electronic load.
An AUTOLAB Potentiostat/Galvanostat (Metrohm Autolab B.V., Netherlands), equipped
with a 20 A current booster, was used for electrochemical diagnostics in terms of cyclic
voltammetry (CV). CV studies, under PEMFC configuration, were carried out by feeding
hydrogen to the anode that operated as both counter and reference electrode and nitrogen to
the cathode (working electrode) at 1 barabs. The potential ranged between 20 and 1250 mV
with a sweep rate of 50 mV s−1. The Electrochemical Surface Area (ECSA) was determined
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by integrating the CV profile in the hydrogen adsorption region after a correction for the
double layer capacitance. Data were not corrected for hydrogen cross-over.

3. Results and Discussion

The XRD patterns for the developed electrocatalysts (Pt/KB and PtCo/KB) are re-
ported in Figure 1. Of note is the FCC structure of Pt for Pt/KB, with a crystallite size of
2.5 nm. The PtCo/KB catalyst presents a single-ordered primitive cubic (L12) phase for the
alloy, with reflections slightly shifted towards larger Bragg angles in comparison to Pt/KB.
In this case, a crystallite size of 3.3 nm was calculated [35].
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Figure 1. XRD patterns for Pt/KB (lower, black) and PtCo/KB (upper, red) electrocatalysts.

TEM images highlight a good dispersion of the Pt particles (Figure 2a) and the metallic
PtCo (Figure 2b) alloy on the carbonaceous support. Moreover, the particle size derived
from TEM images of 2.8 nm for Pt/KB (Figure 2c) and 3.4 nm for PtCo/KB (Figure 2d)
confirm the data obtained from the XRD characterization.
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Figure 2. TEM images and particle-size distribution for Pt/KB (a,c) and PtCo/KB (b,d).

In Figure 3, the chemical structure of the short-side-chain Aquivion® PFSA polymer
and the SEM image of the R79-01SX+-reinforced membrane are shown. The cross-section
image confirms that the membrane has a total thickness of about 10 µm and it consists
of three layers with a smooth surface and tight interpenetration between the support
and ionomer.
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Figure 3. Chemical structure of Aquivion® PFSA (left) and SEM images of cross-section of the
Aquivion® R79-01SX+ membrane (right).

Thanks to the support, the thin membrane shows improved mechanical properties,
when compared to the extruded congener, and, notwithstanding low thickness, shows
a longer durability in AST than thicker ones, while maintaining a high conductivity, as
reported elsewhere [31].

Few studies [42–45] have been dedicated to the effects of the dispersion medium on
the CL structure. A good selection of the dispersion agent is necessary to obtain the desired
viscosity, surface tension, and control of the aggregate size in the CL above all when a
spraying technique is used for deposition. To optimize the catalytic ink composition, the
influence of dispersing agent, maintaining as a constant the ionomer loading, was firstly
carried out. Starting from a previous paper, in which a correlation between the sulfonic
groups and total ionomer content in the catalytic layer was found [29], an ionomer loading
of 26 wt.% was calculated by considering that the EW of the Aquivion® PFSA polymer used
in this work is 790 g mol−1. Moreover, in order to evaluate the influence of the dispersing
agent of the catalytic ink, initially H2O (26-H2O), and, successively, EtOH (26-EtOH) were
used. Such prepared MEAs were electrochemically characterized in terms of I–V curves at
different operating conditions. In Figure 4, the polarization curves are reported.
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At 80 ◦C and 50%RH, the EtOH used as dispersing agent for the ink seems to improve
the performance (Figure 4a). This phenomenon could be explained considering that alcohol
is able to swell the ionomer, making the sulfonic groups more accessible, producing a
more homogeneous distribution of the ionomer in the catalytic layer [30], in particular
at a reduced gas humidification. At 95 ◦C, the trend seems to be different. In fact at a
low current density, the performance of MEA 26-H2O is slightly higher than the 26-EtOH,
whereas at practical cell potential (0.6–0.7 V), the curves are almost the same: EtOH-based
electrode preparation produces a similar performance than that prepared using water
(Figure 4b).

As known, the I–V curves in H2/air provide information on the whole MEA, including
various effects such as: membrane, diffusive layer, water-management phenomena, etc.
With the aim of better understanding the effect of the dispersing agent on the catalytic layer
and its interaction with the catalyst, the most indicative electrochemical parameters, ECSA
and jm, were considered.

In Table 2, jm (calculated in O2) and the ECSA for both MEAs in two different operating
conditions are reported. The improvement of the ionomer dispersion in the catalytic layer,
promoted by the addition of EtOH in the ink, is more evident in the activation zone,
wherein the MEA prepared with EtOH achieves a better jm. This is well in agreement with
an increase in ECSA.

Table 2. Electro-kinetic parameters for MEAs with different dispersing agents.

Operating Conditions
jm @ 0.9VIRfree, mA mg−1 ECSA, m2 g−1

26-H2O 26-EtOH 26-H2O 26-EtOH

80 ◦C, 50%RH, 1.5 bar 257 304 36 37
95 ◦C, 50%RH, 2 bar 257 357 30 32

A higher functional-group availability of the ionomer dispersion in the catalyst layer
positively influences three-phase boundary formation and, consequently, the platinum
utilization. Accordingly, EtOH was selected for the catalytic ink preparation.

In order to validate the correlation reported in reference [29] also with the Aquivion®

ionomer and to identify the optimal catalytic ink composition, three different ionomer
contents ranging from 16 to 36 wt.% were evaluated using EtOH as a dispersing agent.
Electrochemical characterizations in single cells, in terms of I–V curves at 80 ◦C and 95 ◦C,
50% RH, and low pressure are reported in Figure 5.
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For both operating temperatures, the amount of 16 wt.% shows the worst performance,
probably due to a poor electronic and ionic percolation within the catalytic layer.

The increase in the ionomer amounts up to a 26 wt.% produces an evident benefit on
the fuel cell performance, especially at a higher current density. A further increase up to
36 wt.% of ionomer maintains unaltered the performance. This trend is the same both at
80 ◦C and 95 ◦C. In particular, in operating conditions typical for automotive applications
(95 ◦C), current densities of 600 mA cm−2, 870 mA cm−2 and 850 mA cm−2 at 0.6V were
recorded for the 16-EtOH, 26-EtOH, and 36-EtOH MEAs, respectively.

In addition, this behavior is also confirmed by an analysis of the electro-kinetic
parameters reported in Table 3. In different operating conditions, the best electrochemical
surface area (ECSA) and jm values were recorded relatively to the 26 wt.% ionomer loading,
demonstrating that optimal characteristics of ionic/electronic percolation and interface are
obtained using this content.

Table 3. Electro-kinetic parameters for developed MEAs with different ionomer amounts.

MEA
80 ◦C, 50%RH 95 ◦C, 50%RH

ECSA,
m2 g−1

jm @ 0.9VIRfree,
mA mg−1

ECSA,
m2 g−1

jm @ 0.9VIRfree,
mA mg−1

16-EtOH 20 207 24 106
26-EtOH 37 304 32 357
36-EtOH 34 155 36 205

In Figure 6, the ECSA variation as a function of the different ionomer amounts and
different operating conditions is shown.

It is evident that the ECSA of the MEA with the 26 wt.% of ionomer loading is the
highest for all operating conditions investigated.

As found for long-side-chain (LSC) ionomers, such as Nafion®, an increased ionomer
content increases the three-phase reaction zone, producing a higher ECSA and improving
the ionic conductivity in the catalytic layer. On the other side, a further increase in ionomer
could produce an insulating effect on the catalyst particles, reducing the catalyst utilization
and/or the electronic conductivity. Moreover, the increase in ionomer content produces a
thickness increase in the ionomer film on the catalyst particles and a diffusion barrier for
both gas and water transport [46]. In conclusion, the optimal ionomer content is strongly
dependent on the type of polymer and its EW. Moreover, the dispersing agent also affects
the performance and electrochemical parameters, when the same optimal ionomer loading
is used.
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4. Conclusions

The influence of the ionomer amount in the catalytic layer was studied, considering
the dispersing agent used to prepare the electrode (water or ethanol). The optimal ionomer
amount depends on the polymer characteristics, specific catalyst, and the operating condi-
tions. In particular, it was found ethanol is a proper dispersing agent for the catalytic ink
preparation for the Aquivion® ionomer, a promising SSC polymer, since both performance
and ECSA improvements were recorded compared to using water as solvent. Moreover,
the electrode formulation based on a 26 wt.% of ionomer content reaches the highest
performance both at 80 and 95 ◦C, indicating an optimized catalytic ink composition. Ad-
ditionally, the MEA with a 26 wt.% of ionomer content shows the highest values for the
electro-kinetic parameters, such as ECSA and jm, confirming a good electronic and ionic
percolation within the catalytic layer.
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