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Abstract
Brown adipose tissue (BAT) possesses a unique uncoupling protein (UCP1)
which, when activated, enables the rapid generation of heat and the oxidation
of lipids or glucose or both. It is present in small amounts (~15–350 mL) in adult
humans. UCP1 is rapidly activated at birth and is essential in preventing
hypothermia in newborns, who rapidly generate large amounts of heat through
non-shivering thermogenesis. Since the “re-discovery” of BAT in adult humans
about 10 years ago, there has been an exceptional amount of research interest.
This has been accompanied by the establishment of beige fat, characterised as
discrete areas of UCP1-containing cells dispersed within white adipocytes.
Typically, the amount of UCP1 in these depots is around 10% of the amount
found in classic BAT. The abundance of brown/beige fat is reduced with
obesity, and the challenge is to prevent its loss with ageing or to reactivate
existing depots or both. This is difficult, as the current gold standard for
assessing BAT function in humans measures radio-labelled glucose uptake in
the fasted state and is usually dependent on cold exposure and the same
subject can be found to exhibit both positive and negative scans with repeated
scanning. Rodent studies have identified multiple pathways that may modulate
brown/beige fat function, but their direct relevance to humans is constrained, as
these studies typically are undertaken in cool-adapted animals. BAT remains a
challenging organ to study in humans and is able to swiftly adapt to changes in
the thermal environment and thus enable rapid changes in heat production and
glucose oxidation.
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Introduction
The subject of brown adipose tissue (BAT) has become increas-
ingly topical and controversial since its re-discovery in adult 
humans in 20071. The simultaneous publication of three studies 
in the New England Journal of Medicine demonstrating the  
unequivocal detection of brown fat in adult humans2–4 paved 
the way for an exponential rise in publications on this subject5. 
Brown fat is important because, though present in relatively small 
amounts in the body, it has the potential to rapidly produce large  
amounts of heat and thus impact on both energy balance and 
glucose and lipid homeostasis6,7. This is exemplified in the 
rapid activation of brown fat around the time of birth and the 
critical role it plays in the prevention of hypothermia8. The  
“re-discovery” of brown fat has been accompanied by the iden-
tification of beige adipocytes (that is, small clusters of brown-
like white adipocytes within white fat depots)9,10. Furthermore,  
lineage-tracing experiments in mice indicated that classic brown  
adipocytes, characterised as possessing the unique mitochondrial  
uncoupling protein 1 (UCP1), have a common lineage with 
skeletal muscle and are very different from the cellular origins  
of beige and white adipocytes8,11.

When UCP1 is stimulated, usually by the sympathetic nervous 
system, this results in the free flow of protons across the inner 
mitochondrial membrane12, thereby bypassing the need to con-
vert ADP to ATP, as occurs in the mitochondria of all other  
tissues. The primary stimulus for uncoupling remains conten-
tious but is considered to be the release of fatty acids from lipid 
either within or surrounding brown adipocytes13. Brown fat has 
the potential to produce far more heat per unit mass than any 
other organ in the body8. Furthermore, the amount of UCP1 in 
classic brown fat is 10 times greater than that in the beige fat of 
rodents14, meaning that the latter has a much smaller capacity to 
impact on whole-body energy balance. Beige fat, however, has 
the largest potential as a therapeutic target in the prevention of  
obesity or diabetes (or both) because it can be present in many 
white depots as clusters of pre-adipocytes that then can be 
recruited14. However, the capacity of beige fat to modulate 
metabolism (especially glucose oxidation) may be mediated 
in part by mechanisms that do not involve UCP1 and have been 
proposed to be non-canonical15. As summarised in Figure 1, the 
amount of activity of brown fat is reduced with raised white fat  
mass in obesity and its accompanying metabolically compromised 
endocrine environment.

Advances in our understanding of the amount and 
activity of brown fat in adult humans
The gold standard by which the activity of brown fat is assessed 
in adult humans is still positron emission tomography-computed 
tomography (PET-CT)16. This was the original method used 
to identify brown fat, and the same technique is used clini-
cally around the world. It is a method that identifies brown fat 
from the uptake of radio-labelled glucose (fludeoxyglucose, 
or 18FDG) and is measured relative to the amount of glucose  
uptake in other tissues16. However, to gain a significant sig-
nal within brown fat, the subject needs to be both fasted and  
cold-exposed17. A better tracer than glucose for assessing brown 
fat thermogenesis is acetate18, which is converted into acetyl-
CoA within the cell and then incorporated into components of the  

citric acid cycle (a reaction that does not occur for 18FDG).  
Consequently, as brown fat rapidly turns over, the radio-labelled  
carbons in acetate are released as carbon dioxide and the amount 
of positron label lost is directly proportional to the meta-
bolic activity of the tissue19, which in the case of brown fat is  
substantial18. When brown fat is activated by cold exposure, lip-
ids stored within the depot are mobilised and oxidised to release 
heat19. Acetate, however, is rarely used as a tracer, as it needs 
to be freshly prepared and, as it is not routinely used for can-
cer detection, such a facility is seldom available. This technical  
challenge means that our understanding of brown fat metabolism  
in humans remains constrained.

Quantification of brown fat in humans
It is now recognised that the amount of brown fat is under-
assessed in most studies which use radio-labelled glucose in 
PET-CT and varies considerably between individuals, with  
current estimates now ranging from about 30 to 350 mL in 
healthy subjects20,21. PET-CT studies examining the impact of an 
intervention on brown fat function in humans have to subdivide 
participants into brown fat “positive/+ve” and “negative/−ve” 
sub-groups22 or only study BAT+ve individuals23. This could be  
considered a rather arbitrary classification, as all adults have 
the potential to exhibit a brown fat+ve response when repeat-
edly assessed with PET-CT21. However, one small study has 
shown that a BAT+ve scan is associated with greater UCP1 
within supraclavicular brown fat24. The same study demonstrated 
a large increase in UCP1 gene expression with cold exposure, 
although there was appreciable variation in response between 
individuals. Taken together, these findings indicate the rapid 
response of brown fat to cold thermal stimulation for which 
increased gene expression24 could be a longer-term response 
that parallels the pronounced change in substrate uptake,  
compared with warm conditions, as recently indicated in human 
supraclavicular brown fat23. It has also been suggested, from 
PET-CT studies, that more brown fat is present in females than  
in males, although these results are more likely to reflect the  
greater sensitivity to cold by females6.

The practical and health limitations of using PET-CT, which 
involves significant exposure to radiation, prevent its widespread 
use on healthy populations, meaning other methods of assessing 
brown fat function in vivo are required. These include thermal 
imaging for which a close correlation between brown fat  
function, as measured with PET-CT, has been established25. 
Furthermore, there are currently no reports of any individuals  
undergoing thermal imaging who do not have a hot spot that  
co-locates with the supraclavicular depot (that then increases in 
temperature with mild hand cooling)17. Thermal imaging has also 
demonstrated a marked responsiveness of supraclavicular brown 
fat to diet26 and its contribution to dietary-induced thermogen-
esis. It is therefore able to provide novel insights into the impact  
of diet on brown fat that cannot be readily obtained from PET-CT 
studies.

Primary activators of brown fat
Reduced ambient temperature in humans remains the most 
potent stimulator of brown fat27 and is not unexpected given that 
cold exposure to the extra-uterine environment is the primary  
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catalyst for the onset of non-shivering thermogenesis at birth8. 
This adaptation is accompanied by a rapid rise in a range of  
metabolic hormones, including catecholamines, thyroid hormones, 
cortisol, and leptin7, with leptin co-locating onto the nucleus  
during cold induction of beige adipocytes28. The extent to which  
repeated cold challenges can be used to enhance brown fat  
function in adults remains an important milestone for current 
research.

Importantly, glucose uptake in supraclavicular brown fat increases 
substantially with cold exposure and is positively correlated with 
the magnitude of cold-induced thermogenesis23. Even in subjects 
who are classified as BAT−ve, an increase in mean glucose 
uptake is seen with cooling, although it is about 50% less than 
in those participants who are BAT+ve24. A comparable adap-
tation has been observed in individuals who are diabetic, in 
whom the only study conducted to date indicates an improve-
ment in glucose homeostasis29. This was not fully explained,  
however, by the increase in glucose uptake within brown fat as 
measured by PET-CT29. These findings are important given the 

potentially large amounts of brownable fat (up to 1,500 mL) as 
indicated in young healthy obese adults30.

The exact amount of glucose oxidised by brown fat remains 
to be fully established, and it has been conservatively calcu-
lated that 300 mL of brown fat could dispose of at least 9 g of 
glucose per day20. This value could be much greater on the basis 
of the threefold to fivefold increase in glucose uptake recently 
measured in supraclavicular fat with moderate cold exposure23. 
With the innovative developments in studying brown fat mito-
chondria, further refinements in these calculations are likely.  
This is because two types of mitochondria have now been iden-
tified within rodent interscapular brown fat—the peridroplet and 
cytoplasmic domains—the latter of which regulates lipid supply, 
whereas the cytoplasmic domain could be more important in  
regulating glucose oxidation31. Further adaptations as shown in 
beige fat of mice following cold exposure include the appearance of 
dense intra-adipose sympathetic arborisations32, but have yet to be 
confirmed in humans. The capacity to predict which experimental 
models of browning are most relevant to humans could be further 

Figure 1. Summary of the impact of obesity on brown adipose tissue function and regulation in adult humans and the potential benefits 
of chronic cold exposure. ATGL, adipose triglyceride lipase; BAT, brown adipose tissue; FFA, free fatty acid; HSL, hormone-sensitive lipase; 
MGL, monoglyceride lipase; NEFA, non-esterified fatty acid; SNS, sympathetic nervous system; T, temperature; TG, triglyceride; WAT, white 
adipose tissue.
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enhanced by the systematic integration of transcriptional profiles  
using online resources that are now being developed33. The full 
extent to which changes in brown fat function can contribute to 
inadequate glucose homeostasis remains to be fully explored. 
It is noteworthy, however, that two recent studies have indi-
cated that raised temperature is associated with increased risk of  
diabetes, either during pregnancy in Canada34 or in all adults 
across the United States35. Taken together, these findings  
emphasise the impact of climate change on human health and the 
extent to which adverse effects may be dependent on the body’s  
natural heat generator (that is, brown fat)5.

Other targeted approaches to stimulate brown fat in humans 
have included the use of the β3-adrenoreceptor antagonist 
mirabegron (at a relatively high dose of 200 mg). Mirabegron  
promotes glucose uptake in a wide range of brown fat depots36, 
as determined with PET-CT, as well as stimulating metabolic 
rate, although these two measures were not well correlated. Thus, 
it is possible that the effects of mirabegron are related more to 
effects on glucose metabolism in brown fat37 rather than to heat 
production per se, but this needs further studying. Surprisingly, 
despite being published nearly 4 years ago, this study remains 
the only one of its kind. Both acute and chronic stimulation of 
the stress-sympathetic nervous system would appear to offer a 
route by which brown fat activity can be enhanced. For example,  
24-hour infusion of hydrocortisone in adult males increases the 
temperature of the supraclavicular depot that co-locates with 
brown fat26. In children, the stress associated with severe burn 
injury promotes the appearance of UCP1 in subcutaneous fat  
after 4 weeks38.

Limitation on our understanding of regulation of 
brown fat metabolism from rodent studies
The past 5 years have seen a prolific amount of research into 
brown fat, which suggests that it may have the capacity to improve 
metabolic homeostasis in adults, but such a goal will not be a 
straightforward outcome to achieve. This is, in part, because of 
the very different metabolic roles for brown fat in rodents and 
humans together with the divergence in experimental protocols 
used in animal studies39 that do not readily compare with the 
human situation5. However, the potential for UCP1 to generate 
heat appears to be similar between species40, although the  
exact range of mechanisms involved remains to be fully  
established13. It should be noted that laboratory rodents are  
typically maintained within a highly artificial environment, are 
usually fed a highly processed diet that is the same each day, 
experience no change in photoperiod (that is, fixed 12-hour day 
and 12-hour night) or ambient temperature, and have limited 
(if any) exposure to pathogens41. Furthermore, the main brown 
(or beige) fat depot in adult humans is located within the supra-
clavicular region42, and although this is also present in rodents43, 
it has seldom been examined, as the interscapular and inguinal  
depots are primarily investigated.

Thus, it is important that the results from the plethora of 
rodent-based investigations are considered in light of the depot 

examined and the relevance to human adipose tissue of the  
identified pathways.

Although the focus of most rodent studies has been on identify-
ing novel pathways that could be targeted to promote brown fat 
function, these have had relatively little impact on enabling 
sustainable interventions in adult humans. This could be for a 
number of reasons that now are starting to gain more consid-
eration across the scientific community. The main concern is the  
thermal environment in which rodents are maintained when 
brown fat is examined, as it is clear that 20–21 °C represents a 
substantial thermal stress and that thermoneutrality is approxi-
mately 28–30 °C39. Moreover, many rodent studies go on to  
examine the effect of further exposure to what, for laboratory 
mice, would be extreme cold (that is, about 6 °C), which results 
in maximal brown fat activation. This is rather an abrupt chal-
lenge and without a gradual decline in temperature, as would 
occur in the wild, is an unphysiological adaptation. In terms of 
susceptibility to metabolic-related disease, this is best illustrated 
in a mouse model of non-alcoholic fatty liver disease (NAFLD). 
Housing at thermoneutrality exacerbates the magnitude of 
NAFLD as well as removing any difference between sexes44.  
Not surprisingly, those mice housed at 30 °C are characterised as 
possessing less brown fat and have lower plasma corticosterone 
concentrations which, in humans, are known to positively 
impact on brown fat function in some26,45 but not all46 studies.  
Furthermore, thermoneutral housing accelerates atherosclerosis 
through increased metabolic inflammation, which surpris-
ingly is uncoupled from insulin resistance47. The link among  
inflammation, obesity-induced insulin resistance, and athero-
sclerosis has been clear for decades48. It is likely, therefore, 
that these results in rodents have been confounded by chronic  
mild-cold stress and that better modelling of human physiology, 
especially with regard to the role of brown fat in meta-
bolic disease, will be needed in future. The critical role of 
temperature has been highlighted in vitro49, under which  
conditions the appearance of UCP1 also appears to be dependent  
on reduced ambient temperature28.

Conclusions
The re-discovery of BAT in adults has led to the recognition 
that promoting its activity could be an effective new strategy 
to improve metabolic homeostasis in a sedentary world where  
obesity and diabetes are prevalent. Although to date most studies 
in humans have focused on promoting heat production in brown 
fat, given the recent findings on increased glucose metabolism,  
this could be a more promising area in future research.
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