
Received: 4 August 2023 Revised: 10November 2023 Accepted: 27 December 2023

DOI: 10.1002/trc2.12445

R E S E A RCH ART I C L E

Baricitinib and tofacitinib off-target profile, with a focus on
Alzheimer’s disease

Maria L. Faquetti1 Laura Slappendel2 Hélène Bigonne2

Francesca Grisoni3,4 Petra Schneider1,5 Georg Aichinger2

Gisbert Schneider1,6 Shana J. Sturla2 AndreaM. Burden1

1Department of Chemistry and Applied

Biosciences, Institute of Pharmaceutical

Sciences, ETH Zurich, Zurich, Switzerland

2Department of Health Sciences and

Technology, Institute of Food, Nutrition and

Health, ETH Zurich, Zurich, Switzerland

3Department of Biomedical Engineering,

Institute for ComplexMolecular Systems,

Eindhoven University of Technology,

Eindhoven, the Netherlands

4Centre for Living Technologies, Alliance TU/e,

WUR, UU, UMCUtrecht, Utrecht, the

Netherlands

5inSili.com LLC, Zurich, Switzerland

6ETH Singapore SEC Ltd, Singapore, Singapore

Correspondence

AndreaM. Burden, Department of Chemistry

and Applied Biosciences, Institute for

Pharmaceutical Sciences, ETH Zurich, HCI H

407 Vladimir-Prelog-Weg 4, 8093 Zürich,

Switzerland.

Email: andrea.burden@pharma.ethz.ch

Abstract

INTRODUCTION: Janus kinase (JAK) inhibitors were recently identified as promising

drug candidates for repurposing in Alzheimer’s disease (AD) due to their capacity to

suppress inflammation via modulation of JAK/STAT signaling pathways. Besides inter-

action with primary therapeutic targets, JAK inhibitor drugs frequently interact with

unintended, often unknown, biological off-targets, leading to associated effects. Nev-

ertheless, the relevance of JAK inhibitors’ off-target interactions in the context of AD

remains unclear.

METHODS: Putative off-targets of baricitinib and tofacitinib were predicted using a

machine learning (ML) approach. After screening scientific literature, off-targets were

filtered based on their relevance to AD. Targets that had not been previously identified

as off-targets of baricitinib or tofacitinib were subsequently tested using biochemical

or cell-based assays. From those, active concentrations were compared to bioavailable

concentrations in thebrainpredictedbyphysiologically basedpharmacokinetic (PBPK)

modeling.

RESULTS:With the aid of ML and in vitro activity assays, we identified two enzymes

previously unknown to be inhibited by baricitinib, namely casein kinase 2 subunit alpha

2 (CK2-α2) and dual leucine zipper kinase (MAP3K12), bothwith binding constant (Kd)

values of 5.8 μM.Predictedmaximumconcentrations of baricitinib in brain tissue using

PBPK modeling range from 1.3 to 23 nM, which is two to three orders of magnitude

below the corresponding binding constant.

CONCLUSION: In this study, we extended the list of baricitinib off-targets that are

potentially relevant for AD progression and predicted drug distribution in the brain.

The results suggest a low likelihood of successful repurposing in AD due to low

brain permeability, even at the maximum recommended daily dose. While additional

research is needed to evaluate the potential impact of the off-target interaction on
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AD, the combined approach of ML-based target prediction, in vitro confirmation, and

PBPK modeling may help prioritize drugs with a high likelihood of being effectively

repurposed for AD.

KEYWORDS

Alzheimer’s disease, Janus kinase inhibitors, machine learning, off-target, physiological based
pharmacokinetic modeling, target prediction

Highlights

∙ This study explored JAK inhibitors’ off-targets in AD using a multidisciplinary

approach.

∙ We combined machine learning, in vitro tests, and PBPK modelling to predict and

validate new off-target interactions of tofacitinib and baricitinib in AD.

∙ Previously unknown inhibition of two enzymes (CK2-a2 and MAP3K12) by barici-

tinib were confirmed using in vitro experiments.

∙ Our PBPK model indicates that baricitinib low brain permeability limits AD repur-

posing.

∙ The proposed multidisciplinary approach optimizes drug repurposing efforts in AD

research.

1 INTRODUCTION

Repurposing Janus kinase (JAK) inhibitor drugs for Alzheimer’s disease

(AD) has received increasing attention.1,2 Members of this class were

designed to target the JAK family (JAK1, JAK2, JAK3, andnon-receptor

tyrosine-protein kinase TYK2) inhibiting the production of multiple

pro-inflammatory cytokines, such as interleukin (IL)-6, IL-10, and inter-

feron (IFN)-γ.3,4 As AD progression and severity are associated with

immune-driven neuroinflammation,5,6 the potential role of some JAK

inhibitors in treating AD is supported by their capacity to reduce

neuroinflammation andmodulate immunoregulatory processes.7,8

Two JAK inhibitors, baricitinib and tofacitinib, currently approved

to treat rheumatoid arthritis, were recently identified among poten-

tial drug candidates for repurposing in AD.1,2 Besides the potential

effects of baricitinib and tofacitinib in AD due to pharmacological inhi-

bition of one or more targets of the JAK family, these drugs are known

to have additional off-targets (i.e., protein targets different than the

primary therapeutic target).1,9,10 The unintended off-target activity

of JAK inhibitor drugs adds to the evidence that they may modulate

additional targets on specific pathways and cellular processes in other

diseases.

Previouswork has explored the association between JAK inhibitors’

target profile and AD in the context of potential repurposing using

a multi-step machine learning (ML) framework.1 The framework first

identified potential associations between a list of genes and AD sever-

ity and thenproduced a ranked list of possible repurposing drugs. Then,

the highly rated drugs were evaluated for common trends among their

targets (i.e., primary targets and additional drug–target interactions

previously identified). Therefore, although baricitinib and tofacitinib

were previously identified as promising candidates for repurposing

in AD, the potential influence of previously unknown targets in AD

progression remains unclear.

In this work, we aimed to identify previously unknown drug–target

interactions of baricitinib and tofacitinib that may be a factor in the

use of these drugs in the context of AD. We used a multidisciplinary

approach that combined experimental ligand-basedML for target pre-

diction (Target Inference Generator [TIGER]11), in vitro testing of

predicted targets, and physiologically based pharmacokinetic (PBPK)

modeling. A similar approach recently allowed us to profile tofacitinib

and baricitinib, focusing on targets related to thrombosis and viral

infections, and led to the identification of two previously unknown

off-targets.9

2 METHODS

2.1 Macromolecular target prediction and
selection

TIGER v. 19.0711,12 software was used for target activity prediction.

TIGER is a ligand-based target prediction approach that leverages the

chemical similarity principle — stating that molecules sharing similar

structural features (potential pharmacophore points) are likely to have

similar bioactivity13—to perform target prediction. Moreover, TIGER

benefits machine learning methodologies and cheminformatics.14,15

While cheminformatics plays a pivotal role in handling and structur-
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TABLE 1 Target predictions for potential baricitinib and
tofacitinib drug–target interactions suggested by TIGER relevant for
Alzheimer’s disease (AD).

Drug Predicted targets associatedwith AD

baricitinib Metabotropic glutamate receptor 1 (MGlu1)

Dual leucine zipper kinase (MAP3K12)

Casein kinase II subunit β (CK2-β)

Carbonic anhydrase II (CA2)

PI3-kinase P110 subunit α (PIK3CA)

Ras-related protein Rab-7a (RAB7a)

tofacitinib Phosphodiesterase 8B (PDE8A)

Glutaminyl cyclase (GC)

Inducible nitric oxide synthase (iNOS)

Abbreviation: AD, Alzheimer’s disease.

ing chemical data by calculating molecular descriptors and assessing

chemical similarity between ligands,machine learning is used formodel

training, feature selection, and making predictions regarding potential

ligand–target interactions.

Baricitinib and tofacitinib were provided as simplified molecu-

lar input line entry system (SMILES)16 strings and pre-processed

in KNIME v3.7.2,17 using the MOE v.2019.010218 “wash” function

for structure standardization (using the following options: “discon-

nect salts,” “remove lone pairs,” “deprotonate strong acids,” “remove

minor component,” “protonate strong bases,” and “add hydrogen”).

Chemically advanced template search version 2 (CATS2)19 descriptors

and two-dimensional MOE descriptors (“QSAR descriptors” node of

KNIME; “Forcefield” = MMFF94*) were calculated for all generated

molecules and used as input for target prediction. Targets with TIGER

score> 1were retained for follow-up analysis. The cut-off value on the

TIGER score was chosen based on recent prospective studies in which

predicted targets were successfully confirmed experimentally.11,20,21

Targets were further filtered based on their relevance on AD after

screening scientific literature. Finally, targets that were not previously

identified as off-targets of baricitinib or tofacitinib were selected for in

vitro testing.

2.2 In vitro characterization

Baricitinib (99.97% purity) and tofacitinib (99.96% purity) were pur-

chased from MedChem Express LLC22 and Biosynth Carbosynth.23

Both drugs were tested in vitro on a selection of protein targets

associated with AD. The protein targets (Table 1) were chosen using

the TIGER target prediction. Glutaminyl cyclase and Ras-related pro-

tein RAB-7 experiments were conducted by directly visualizing pro-

tein inhibition. The concentrations of baricitinib and tofacitinib were

increased incrementally, up to a maximum concentration of 200 μM
(seeTableS1 in supporting information).Other targetswereperformed

on a fee-for-service basis at Eurofins.24 In these in vitro biochemical

assays, if the drug showed inhibition or stimulation exceeding 25% at

RESEARCH INCONTEXT

1. Systematic review: We searched the literature for

reports investigating the repurposing of Janus kinase

(JAK) inhibitors for Alzheimer’s disease (AD), particularly

due to activity on unintended off-targets. Much remains

to be identified on the potential effects of JAK inhibitors

in AD.

2. Interpretation: To explore the potential AD progression

associated with off-targets of baricitinib and tofacitinib,

we used a machine learning-based target prediction tool.

Additionally, we conducted in vitro experimental char-

acterization of the predicted targets and used physi-

ologically based pharmacokinetic (PBPK) modeling for

estimating drug concentration in the brain. Our approach

led to the identification of previously unknown putative

drug–target interactions of baricitinib. However, target

affinities appear to be low compared to anticipated drug

bioavailability at the target, suggesting a low likelihood of

successfully repurposing baricitinib in AD.

3. Future directions: The combination of multiple

approaches can identify and characterize previously

unknown drug–target interactions of other approved

drugs potentially relevant for AD progression.

a concentration of 30 μM in two separate measurements, binding con-

stants (Kd) were determined. Assay details are included in supporting

information.

2.3 Brain concentration prediction

Due to the lack of existing information on baricitinib’s potential to

cross the blood–brain barrier in humans, a permeation assay was per-

formed by Eurofins in the MDCKII cell line. The mean permeability of

baricitinib from the apical to the basolateral side (A to B) was 4.5 ×

10−6 cm/s, and theB toAwas5.5×10−6 cm/s. According toPalmer and

Alavijeh,25 thismoderate permeability value fallswithin the acceptable

range for a desired target profile of a central nervous system (CNS)

drug candidate.

A PBPK model, with seven compartments, among them brain vas-

culature and brain tissue, for baricitinib was developed in Berkeley

Madonna 10.26 The PBPK model structure is presented in Figure S1

in supporting information, and the modeling script, including annota-

tions of parameters, is provided as supporting information (Modelling

Script). Physiological parameters included organ volumes and blood

flow rates for a standard human male.27–30 Blood-to-tissue parti-

tion coefficients were estimated in silico from Rodger & Rowland’s

algorithm based on log K, pKa, and molecular weight.31 Absorption

rates and clearance values were from a previous baricitinib model.32
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Administration was modeled as a single oral dose of 4 mg (maximum

recommended daily dose) baricitinib. From the gut, uptake to the liver

was modeled with a first-order rate constant determined in a pre-

vious study,28 then distributed to systemic circulation. Estimates of

baricitinib concentrations in blood plasma over time were validated

with a previousmodel.32 Other organswere categorized as slowly per-

fused (i.e., muscles, adipose, bone, skin) or rapidly perfused (i.e., heart,

lung, spleen, kidneys) tissue. Urinary excretion was modeled based on

previously established clearance values.32

Concentrations of baricitinib in the brain were computed by dif-

ferent approaches (Figure S1). First, it was estimated to be 0.91%

of blood concentration, as suggested by the Quantitative Structure–

Activity Relationship (QSAR) tool of the PreADMET webserver).33,34

This estimation is further referred to as “Prediction 1 [QSAR].” The

second approach, “Prediction 2 [Mouse exp.]”, relied on a brain-to-

plasmaconcentration ratio of 20%,whichwasexperimentally observed

in mice.35 Finally, the third approach involved modeling of the blood–

brain barrier (BBB) permeation using the quantitative in vitro–in vivo

scaling methodology developed by Ball et al.30 This last estimation

of baricitinib concentration in the brain tissue is herein mentioned as

“Prediction 3 [QIVIVE BBB].”

The impact of parameter deviation on the model’s predictions was

assessed by a sensitivity analysis based on the method by Evans and

Andersen36 (see Table S2 in supporting information). For this, each

model parameter was individually increased by 5% and the asso-

ciated impact on maximal brain tissue concentrations (Prediction 1

[QSAR], Prediction 2 [Mouse exp.], and Prediction 3 [QIVIVE BBB])

was computed. Oral administered dose was maintained at 4 mg.

Normalized sensitivity coefficients (SC) were determined by using

Equation 1:

SC =
(C′ − C)
(P′ − P)

×
P
C

(1)

C and C’ refer to the maximal concentration of baricitinib in brain tis-

sue (Prediction 1 [QSAR], Prediction 2 [Mouse exp.], or Prediction 3

[QIVIVE BBB]) with unchanged parameters or one elevated parame-

ter, respectively, P and P’ to the value of the unchanged or elevated

parameter of interest.

To address the impact of parameter uncertainty on these predicted

concentrations of baricitinib in the brain, their calculation has been

iteratively repeated 1000 times, with the most sensitive parameters

(having the greatest influence on the results) being re-sampled in

each iteration. Monte Carlo simulations were performed with Berke-

leyMadonna 10 associated functions for all the parameters foundwith

an absolute value of normalized sensitivity coefficient> 0.1 for at least

one brain concentration (Prediction 1 [QSAR], Prediction 2 [Mouse

exp.], orPrediction3 [QIVIVEBBB]). Parameter simulateddistributions

were determined according to literature.32,37,38 One thousand simu-

lations were performed, and results were analyzed by comparing first

quartile, median, and third quartile values for each time point for each

of the brain concentrations (Prediction 1 [QSAR], Prediction 2 [Mouse

exp.], and Prediction 3 [QIVIVE BBB]).

3 RESULTS

The list of 78 potential drug–target interactions predicted with TIGER

score > 1 (baricitinib [n = 31]; tofacitinib [n = 47]) was published

elsewhere.9 Of those 78, we selected 9 potential drug–target inter-

actions which are known to be relevant for AD (Table 1, [baricitinib

[n = 6]; tofacitinib [n = 3])39–44 and experimentally validated these 9

predictions using biochemical or cell-based assays.

Of the nine drug–target interactions tested, CK2-α2 and dual

leucine zipper kinase (MAP3K12) were inhibited by > 25% and were

characterized further by quantification of Kd (Table 2). The Kd values

were in the micromolar range (two-point measurements, CK2-α2-
baricitinib Kd = 5.8 μM [5.4 μM; 6.1 μM]; MAP3K12-baricitinib Kd =

5.8 μM [5.5 μM; 6.1 μM], in, respectively, Table S4 and S5 in supporting

information). Concentration-dependent inhibition profiles for CK2-

α2-baricitinib and MAP3K12-baricitinib are shown in, respectively,

Figure S2 and Figure S3 in supporting information.

Among estimations of the concentration of baricitinib available in

the brain, Predictions 2 [Mouse exp.] and 3 [QIVIVE BBB] were similar

(see concentration vs. time profiles in Figure S4 in supporting informa-

tion). The distribution of maximal brain concentrations predicted by

Monte Carlo simulations of the PBPK model is presented in Table 3.

Median Cmax values range from 1.3 nM (for Prediction 1 [QSAR]) to

23 nM (for Prediction 2 [Mouse exp.] and Prediction 3 [QIVIVE BBB]),

which is, respectively, > 4000 times and 200 times lower than the

minimum Kd value from in vitro experiments (Table 2).

4 DISCUSSION

In this work, we used a multidisciplinary approach to explore the off-

target effects of JAK inhibitors in the context of AD. We combined

ligand- andmachine learning–based target prediction to identify previ-

ously unknown drug–target interactions of baricitinib and tofacitinib.

We subsequently conducted in vitro experiments to confirm the pre-

dicted drug–target interactions. This led to the identification of two

enzymes previously unknown to be inhibited by baricitinib (CK2-α2
[Kd = 5.8 μM]; MAP3K12 [Kd = 5.8 μM]). Additionally, we predicted

concentrations of baricitinib in brain tissue using PBPK modeling. The

predictedmaximum concentrations were found to be between 1.3 and

23 nM, which is two to three orders of magnitude below the corre-

sponding binding constant. The putative off-target effect of baricitinib

adds to the evidence that the drug potentially modulates the activ-

ity of additional proteins on pathways and cellular processes involved

in the pathogenesis of AD. Nevertheless, target affinities are too low

compared to anticipated drug bioavailability at the target.

CK2 is an active serine–threonine protein kinase that modulates

multiple signaling pathways.45,46 Abnormal CK2 signaling is associated

with several diseases, including numerous neurological conditions.47

The high activation of CK2 inAD is associatedwith abnormal phospho-

rylation of tau protein.48 This abnormal phosphorylation contributes

to the formation of neurofibrillary tangles, which are linked to the



FAQUETTI ET AL. 5 of 8

TABLE 2 In vitro characterization of baricitinib and tofacitinib for inhibiting the selectedmacromolecular targets.

Drug Predicted target Assay type Kd (µM)

baricitinib Casein kinase II subunit α2 (CK2-α2)a,b binding 5.4, 6.1c

Carbonic anhydrase II (CA2)d binding inactive

PI3-kinase P110-𝛼 subunit (PIK3CA)d binding inactive

Metabotropic glutamate receptor 1 (MGlu1)a,b cell-based inactive

Dual leucine zipper kinase (MAP3K12)b binding 5.5, 6.1c

Ras-related protein rab-7a (RAB7a) binding inactive

tofacitinib Glutaminyl cyclase (GC) binding inactive

Inducible nitric oxide synthase (iNOS)d binding inactive

Phosphodiesterase 8A (PDE8A)d binding inactive

Abbreviation: Kd, binding constant.
aAntagonistic effect.
bThe drug was tested inmultiple concentrations (top concentration of 100 μM).
cKd determinationwithN= 2. No averaging wasmade, and both values were presented.
dThe drug was tested at a concentration of 30 μM.

TABLE 3 Predictions of maximal baricitinib concentrations in the brain by 1000Monte Carlo simulations of the PBPKmodel after 4mg oral
intake.

Model brain tissue concentrations

Prediction

1[QSAR]

Prediction 2 [Mouse

exp.]

Prediction 3

[QIVIVE BBB]

Cmax (nM) First quartile 1.1 19 18

Median 1.3 23 23

Third quartile 1.6 27 29

Abbreviations: Cmax, maximum concentration of baricitinib in the brain; Mouse exp, experimentally observed in mouse; QIVIVE BBB, quantitative in vitro-in

vivo extrapolation of blood-brain barrier permeation; QSAR, quantitative structure–activity relationship.

progression of the disease. In addition, elevated CK2 activity may

also enhance β-secretase (BACE1) transcription, which is the first and
rate-limiting step in the production of amyloid beta (Aβ), the main

constituent of amyloid plaques.42,43

While inhibition of BACE1 cleavage of amyloid precursor protein

(APP) seemed to be an attractive approach to treat AD, potent BACE1

inhibitors, such as atabecestat, verubecestat, and lanabecestat, were

developed and tested regarding efficacy and safety during clinical stud-

ies in patients with AD.49–52 However, these compounds failed later

phases of randomized clinical trials due to the lack of efficacy or safety

reasons. Although the complete pharmacological inhibition of BACE1

activity leads to detrimental adverse events in the randomized con-

trolled trials, it remains to be established if only a low degree of BACE1

inhibition levels (as a result of the off-target inhibition of CK2 activity

by baricitinib, for example) may be needed to decrease Aβ production.
Another critical signaling pathway in neurological disorders is the

c-Jun N-terminal kinase (JNK). This family of protein kinases plays a

crucial role in neuronal plasticity, regeneration, cell death, and regula-

tion of cellular senescence.37 MAP3K12works as an injury sensor that

initiates the JNK-dependent stress response in neurons to mediate

context-dependent axon re- and degeneration.38 Notably, inhibition

of MAP3K12 is suggested to selectively regulate a JNK pathway that

mediates neuronal degeneration and apoptosis. Therefore, there is

considerable interest in identifying MAP3K12 inhibitors for use in

chronic neurodegenerative indications.27,39–41

Moving forward, to further investigate baricitinib as a potential

treatment in AD, we predicted its brain concentration using a sim-

ple PBPK model. Implementing PBPK models is a key aspect of drug

development to predict in vivo absorption, distribution, metabolism,

and excretion (ADME) processes, for a large variety of applications

while reducing costs, time, and ethical issues associated with animal

experimentation.58 Due to the difficulty in measuring in vivo human

BBB permeability, this effort is especially relevant for CNS drug

candidates, which have a higher failure rate.59,60

The binding affinities between baricitinib and each target (CK2-α2
and MAP3K12) were measured and reported as Kd values, represent-

ing its half saturation/occupancybinding concentration for theputative

target. For CK2-α2 and MAP3K12, Kd values were in the micromo-

lar range (Table 2), suggesting that to achieve sufficient binding of the

ligand to the target to trigger a biological effect, the concentration of

baricitinib in the brain would be around or above the Kd value. To esti-

mate the anticipated concentration that could be reached in the brain,

we used PBPK modeling to perform quantitative in vitro to in vivo

extrapolation (QIVIVE). These results suggested a maximal concentra-
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tion of baricitinib in the brain in the nanomolar range (1.3 to 23 nM),

≈ 4000 times and 200 times lower than the Kd value for CK2-α2 and

MAP3K12, respectively. Because the ligand concentration in the brain

is anticipated to be orders of magnitude lower than the Kd, binding of

baricitinib with either target after a 4mg oral dose would be limited or

even negligible, and thus, a pharmacological effect is unlikely to occur.

Furthermore, although both CK2-α2 and MAP3K12 are expressed in

different tissues,46,61 with the lowplasmaconcentrationof97nMmea-

sured in clinical studies,27 off-target effects outside the brain are also

not likely.

While the evidence is limited, our findings align with the existing

real-world evidence, which has failed to identify a significant associa-

tion between the use of JAK inhibitors and AD. An observational study

using electronic health records (EHRs) was recently conducted to test

whether the use of JAK inhibitors was associatedwith the risk of AD in

a large population. The study found no differences in the risk of AD in

patients treated with tofacitinib compared to those treated with abat-

acept, a tumor necrosis factor (TNF)-α inhibitor drug.62 However, it is
worth noting that the mean follow-up duration was relatively short,

only 6 months. As AD is a slow, progressive disease, it is likely that the

short follow-up period resulted in limited statistical power to detect

smaller differences in magnitude and was not able to detect delayed

treatment outcomes. While the authors of the study suggest the null

finding could be due to the short follow-up duration in their study,

thereby limiting the statistical power and ability to detect delayed

treatment outcomes, the findings are in line with our experimental

evidence.

While our findings reveal a low likelihood of successfully repurpos-

ing tofacitinib and baricitinib in AD due to off-target effects, recent

studies suggest that tofacitinib and baricitinib may modulate neuroin-

flammation and neurodegeneration processes due to on-target effects

(i.e., via modulation of JAK-STAT pathways).1,63 The use of baricitinib

in patients with neurodegenerative diseases, including AD, is currently

under clinical investigation (NCT05189106) to assesswhether the JAK

inhibitor reaches therapeutic levels in the CNS and may suppress neu-

roinflammation. Therefore, potential repurposing of baricitinib to treat

neurodegeneration-related conditions should not be ruled out.

Although the combined use of computational and experimen-

tal approaches allowed us to identify and characterize previously

unknown off-target interactions for baricitinib (CK2-α2 and

MAP3K12), adding to the known target space of baricitinib, there are a

few limitations in our approach. First, theremight be additional targets

of relevance that were not predicted by the TIGER computational tool.

Moreover, although TIGER encompasses multiple protein families, it is

limited by the manual annotation of the molecules’ target information

in the collection of biologically active reference molecules.64 Second,

we acknowledge that the activity of small-molecule drugs using in

vitro assays does not always translate into activity in the cellular

environment. Thus, the results should still be interpreted cautiously

and treated as preliminary evidence for the off-target binding of

baricitinib and tofacitinib. Third, as the predictive accuracy of the

PBPKmodel is highly dependent on available pharmacokinetic data for

baricitinib, the computation of drug concentration in the brain could

be improved if information related to the unbound fraction in the brain

or intrinsic transcellular permeability were available.60 Moreover, the

PBPKmodel prediction only addresses the concentration of baricitinib

in a compartment of interest, not its pharmacological effect. A phar-

macodynamic model capable of integrating ligand-binding interactions

would provide additional justification for predicting drug effects.65

Finding potential drug candidates among already approved medi-

cation for other indications to address the urgent need for disease-

modifying pharmacological treatments for AD remains an important

goal. By synergistically integrating multiple approaches used in drug

development, we have successfully identified previously unknown

drug–target interactions for baricitinib. We further assessed the brain

distribution of baricitinib and found that its low permeability consid-

erably reduces its suitability for repurposing in AD. While additional

research is needed to evaluate the implications of potential barici-

tinib off-target in the context of AD, this comprehensive approach can

help optimize drug repurposing efforts by increasing the chances of

successful potential candidates for repurposing in AD.

5 CONCLUSION

Due to recent interest in JAK inhibitors as promising drug candidates

for treatment ofAD,wedesigned amultidisciplinary approach to inves-

tigate this potential effect for baricitinib and tofacitinib. Usingmachine

learning, we predicted newoff-targets of baricitinib related toAD. Pre-

viously unknown inhibition of two enzymes (CK2-α2 and MAP3K12)

by baricitinib was confirmed using in vitro experiments. While our

PBPKmodel suggesteda low likelihoodof successfully repurposing this

drug in AD due to low brain permeability even at the maximum rec-

ommended daily dose, we have demonstrated the added benefit of a

multidisciplinary approach that combinesML target prediction, in vitro

confirmation, and PBPK modeling that may optimize efforts in drug

repurposing in AD.
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