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Abstract: A plasmonic material-coated circular-shaped photonic crystal fiber (C-PCF) sensor based
on surface plasmon resonance (SPR) is proposed to explore the optical guiding performance of the re-
fractive index (RI) sensing at 1.7–3.7 µm. A twin resonance coupling profile is observed by selectively
infiltrating liquid using finite element method (FEM). A nano-ring gold layer with a magnesium
fluoride (MgF2) coating and fused silica are used as plasmonic and base material, respectively, that
help to achieve maximum sensing performance. RI analytes are highly sensitive to SPR and are
injected into the outmost air holes of the cladding. The highest sensitivity of 27,958.49 nm/RIU,
birefringence of 3.9 × 10−4, resolution of 3.70094 × 10−5 RIU, and transmittance dip of −34 dB are
achieved. The proposed work is a purely numerical simulation with proper optimization. The value
of optimization has been referred to with an experimental tolerance value, but at the same time it
has been ensured that it is not fabricated and tested. In summary, the explored C-PCF can widely
be eligible for RI-based sensing applications for its excellent performance, which makes it a solid
candidate for next generation biosensing applications.

Keywords: birefringence; PCF; refractive index sensor; surface plasmon resonance; sensitivity

1. Introduction

PCF has gained widespread attention among scientists and researchers because of
its exceptional amenities facilities over conventional fibers, such as high birefringence [1],
broad modal area [2], tunable nonlinearity [3], endless single mode [4], very low con-
finement loss [5], and tunable dispersion [6,7]. In recent years, SPR is one of the distin-
guished sensing technology that is applied in the large border area of sensing application
fields [8–11]. In metal-coated PCF, SPR is formed when the phase-matching condition is
fulfilled, which means that the surface plasmon polarization (SPP) mode and fundamental
mode belong to the same propagation constant at a specific wavelength [12–15]. The surface
plasmon effect is one of the excellent characteristics of metal-coated PCF, which is broadly
used for chemical sensing [16], gas sensing [17], bio-sensing [18], pressure sensing [19,20],
metamaterial absorption [21–23], biochemical reaction measuring [24], and solar energy
absorption [25,26].
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In recent years, various materials, such as gold, copper, silver, zinc, and aluminum,
have been used in PCF structures to generate a plasmonic effect, which plays a significant
role in RI sensing applications [27,28]. In 2016, Gangwar et al. described an SPR RI sensor
based on PCF and attained a sensitivity response of 7700 nm/RIU and amplitude resolution
of 1.3 × 10−5 [29]. Though they obtained high amplitude resolution, the sensitivity response
was very low in the small RI analyte range. In the next year, an SPR sensor is displayed
by An et al. to improve the sensitivity response of 10,493 nm/RIU at 1.38 using a gold
layer [30]. They improved the sensitivity, but the operating RI analyte range (1.33–1.38)
was not high enough. In 2018, Rifat et al. explored a plasmonic sensor with a sensitivity
response of 11,000 nm/RIU and amplitude resolution of 9.1 × 10−6, but the wavelength
at which they operated was very low [31]. In 2020, Nan Chen et al. proposed a D-shaped
gold layer-based PCF for the detection RI ranges from 1.36 to 1.37 within the wavelength
rages from 2.9 µm to 3.6 µm where this structure achieved a maximum sensitivity of
11,500 nm/RIU [32]. Their obtained sensitivity response and RI range were not good
enough. In the same year, Yongbo et al. proposed an SPR-based gold-coated PCF with a
sensitivity resolution of 2.12 × 104 nm/RIU and 4.72 × 10−6, respectively [33]. Despite
this improved sensitivity response, the RI range was very low. Earlier in 2020, a D-shaped
double loss peak-based SPR sensor is proposed and achieved maximum sensitivity of
18,900 nm/RIU [34]. From the background studies, it is clear that twin-resonance-based RI
sensors with high sensitivity performance are very limited. Although the researchers have
obtained good sensitivity, it can be said from the literature studies that there are numerous
opportunities to design a biosensor to gain a good sensitivity profile with a border RI range
of analytes.

In this work, a twin-resonance RI sensor based on SPR is proposed using the FEM
method. A nanofilm gold–MgF2 composite layer is used as a plasmonic material to obtain
maximum sensing performance. A simple PCF structure is designed that provides better
sensing performance than the previous reports. The background material is fused silica
and highly SPR-sensitive RI analytes are injected into the outmost air holes of the cladding.
The proposed C-PCF exhibition may be broadly favorable for RI sensing areas due to its
prominent sensing profile.

2. Structural Design and Methodology

A schematic diagram, cross-sectional view, and mesh analysis of the proposed C-
PCF are demonstrated in Figure 1. In the simulation process, a circular perfectly match
layer (C-PML) is used as boundary condition with thickness of 10% of the radius of the
proposed sensor for efficient calculation of loss profile. In this structure, the finite element
mesh (FEM) and scattering boundary condition are used in the calculation process to
discover the modal properties. The FEM divides the proposed sensor into homogeneous
subspaces which are either triangular or quadrilateral in shape. The neighboring subspaces
promote solving Maxwell’s equations using FEM. This FEM also helps obtaining the mode
field pattern and effective index with more accurate results. Furthermore, the number of
elements, boundary elements, and vertex elements as 27,978, 4071, and 578, respectively,
are founded applying FEM. In addition, the FEM boosts receiving the minimum element
quality of about 0.8127. For the SPR excitation, a gold layer and MgF2 layer were used in
the structure. As a dielectric, MgF2 is thoroughly used for its high stability and metallic
purities. The dielectric layer on the metal film can prevent corrosion. The gold layer is
represented in red, and the MgF2 layer in dark blue. One-layer circular air holes, indicated
in white, are circularly inside the gold layer ring, with diameter d1 = 1 µm and lattice
pitch Λ1 = 3.950 µm. The analyte, indicated in purple, is injected into the holes outside the
MgF2 layer ring with diameter d2 = 1 µm and lattice pitch Λ2 = 6.050 µm. The thickness
of gold and MgF2 layers are 50 nm and 40 nm, respectively [35]. For optimization, the
following procedures are maintained step by step. First, we have tuned the inner air hole
diameter and outer analyte hole diameter to gain high sensitivity response. After that, we
have tuned the gold layer to optimize the gold layer thickness. Last, we have tuned the
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MgF2 layer to receive high sensitivity response and optimize the layer thickness. MgF2 is
naturally birefringent, and it is used in the proposed PCF structure as a buffer which works
for the betterment of sensitivity response. The RI of the background material is obtained
using the Sellmeier equation [35]:

n2(λ, T) = (6.90754 × 10−6T + 1.31552) +
A
B
+

λ2(0.548368 × 10−6T + 0.91316)
λ2 − 100

(1)

where A = λ2(23.5835 × 10−6T + 0.788404); B = λ2 − (0.584758 × 10−6T + 0.0110199);
and effective RI, temperature, and wavelength are represented by n, T, and λ, respectively.

(a) 

Analyte 

Gold layer 

Air hole 

Silica 

Ʌ1 

Ʌ2 

(b) 

d1 

d2 

MgF2 layer 

OTS

OSA

SM-Fiber 1

In

Proposed PCF

Out

SM-Fiber 2

Computer

(c)

L
o
ss

(d
B

/m
)

Wavelength (µm)

Blue shift
Blue shift
Reference
Red shift
Red shift

Biological factor aqueous

Polarizer

Controller

Figure 1. The (a) cross-sectional area, (b) mesh diagram and (c) schematic model of the proposed
C-PCF.

The dielectric constant of gold is defined by the Drude–Lorentz model [36]:

εg = εα −
ω2

d
ω(ω + jΥd)

−
(∆ε × Ω2

l )

(ω2 − Ω2
l )− JΓlω

(2)

The dielectric constant of gold, angular frequency, damping frequency, permittivity,
plasmon frequency, and the weighting factor are represented by εg, ω, Υd, εα, ωd, and ∆ε,
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respectively. The constant values of spectral width, Γl ; plasmon frequency, ωd; permitivity,
εα; damping frequency, Υd; and resonant frequency, Ω2

l are taken following the work in [36].
The RI of MgF2 has been chosen from reference [37].

A schematic diagram of the explored C-PCF based sensor is shown in Figure 1c. This
setup included the polarization controller, optical tunable source (OTS), optical spectrum
analyzer (OSA), and single-mode (SM) fiber.

3. Result Analysis and Discussion

SPP is a specialized term in the metal surface field. An SPP mode is an electromag-
netic excitation that exists at the metal surface. Figure 2 shows the resonance points of
fundamental modes and SPP modes at 3 µm when RI of analyte equals to 1.33. Five SPP
modes such as 1st, 2nd, 3rd, 4th, and 5th SPP modes are demonstrated in Figure 2a–e,
sequentially. Additionally, two X and Y fundamental modes are displayed in Figure 2f–g.

R
ef

ra
ct

iv
e 

In
d
ex

 (
R

I)
 

1.35

1.36

1.37

1.38

1.39

1.4

1.41

1.42

1.43

1.44

1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7

Core Mode 

SPP Mode 

Wavelength (μm) 

(a) (b) (c) 

(d) 

(e) 

(f) (g) 

1st Resonance Point 
2nd Resonance Point 

Figure 2. The representation resonance peak points for analyte 1.33 with SPP modes (a–e) first–fifth SPP modes; fundamental
modes (f) X-polarization and (g) Y-polarization.

3.1. Birefringence

Birefringence (Bi) is the RI difference between X polarization and Y polarization,
which is measured using Equation (3) [38]:

Bi = nx − ny (3)

where nx and ny are the RI of fundamental mode at X and Y polarizations, respectively. In
the whole operation, the wavelength varies from 1.7 to 3.7 µm with the increase of RI of
analyte from 1.32 to 1.38. The birefringence variation of C-PCF structure with respect to
wavelength is illustrated in Figure 3. The RI difference increases gradually with the increase
of wavelength which is clearly noticeable in Figure 3. At the same time, there exists another
correlation among the analytes, with higher RI of analytes exhibiting a higher birefringence.
The highest birefringence of 3.9 × 10−4 is achieved when the RI of the analyte reaches
1.38. The sensing signals can easily be separated for higher birefringence, which makes the
explored C-PCF an exalted candidate for sensing applications.
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Figure 3. The birefringence curve of the proposed C-PCF structure versus wavelength.

3.2. Coupling Length

Coupling length is another important parameter in measuring the performance of
sensor, which is related to birefringence. After measuring the birefringence, coupling
length can easily be calculated, as it has a inverse relationship with birefringence, using
Equation (4) [12]:

Lc (µm) =
λ

2 × Bi
(4)

The coupling length (Lc in µm) of the explored C-PCF for analytes 1.32 to 1.38 is
shown in Figure 4. Following the inverse relationship, the coupling length decreases with
the increase of wavelength. Additionally, the downward curve decreases very rapidly from
1.7 µm to 2.4 µm, but, after that, it decreases very slowly. At the same time, there exists
another correlation among the analytes: a higher RI of analyte exhibits a shorter coupling
length. This happened because of lower birefringence and higher loss peak response of
lower analytes. The higher coupling length ensures long filling length, long filling time, and
large volumes of analytes [39]. The explored C-PCF exhibits 60 mm and 30 mm coupling
lengths at 1st and 2nd resonance points, respectively, for analyte n = 1.32.
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Figure 4. The coupling length of the proposed C−PCF versus wavelength.

3.3. Output Power Spectrum

The output power spectrum is related to birefringence and can be defined by its
coupling length. The power spectrum ensures fiber efficiency, which is calculated using
the Equation (5) [12]:

Powerout (dB/m) = sin2((Biπl)/λ) (5)

where l is the acting fiber length. Figure 5. displays the transmission spectrum of the
explored C-PCF for RI = 1.32–1.38. The power ranged from 1 to 0 following the sinusoidal
curve. The higher RI of analyte has a denser curve than that of the lower RI of analyte. As
a result, the output spectrum of analyte 1.38 was the most lagged, while RI of analyte 1.32
was the most forward.
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3.4. Transmission Spectrum

The transmission spectrum is used to calculate transmittance, which is a significant
parameter in measuring the performance of the PCF. Transmittance is evaluated using
Equation (6) [12]:

T (dB) = 10log10(Pout/Pin) (6)

Here, T is the transmittance in dB, and Pout and Pin are the maximum output and input
powers, respectively. The transmittance spectrum is shown in Figure 6 for RI = 1.32–1.38.
The maximum transmittance of −34 dB is achieved for RI = 1.38. The other calculated
transmittance profiles are −26 dB, −23 dB, −20 dB, −26 dB, −25 dB, and −30 dB for
RI = 1.32–1.37, respectively. The higher RI of analyte had a denser curve than that of the
lower RI analyte with a sharp downward peak. As a result, higher RI of analytes 1.38 and
1.37 exhibited two sharp downward peaks, respectively, while the rest exhibited one sharp
downward peak. Moreover, the transmittance profile of analyte with n = 1.38 was the most
lagged, while n = 1.32 was the most forward.
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Figure 6. Transmittance variations in dB scale of the proposed C−PCF versus wavelength.

3.5. Loss Spectrum

The loss spectrum of light confinement (CL) is a crucial parameter to calculate the
sensor response, which is calculated using Equation (7) [40]:

α (dB/m) = 8.686 × (2π/λ)× Im[ne f f ]× 106 (7)

where Im[ne f f ] stands for the imaginary part of the RI and proportional to loss profile.
Besides, CL is inversely proportional to the operating wavelength.

MgF2 is naturally birefringent, an ideal material that applied in the models as a buffer
for the betterment of sensitivity. The wavelength sensitivity is measured by taking the
value of the RI difference and peak wavelength variation from the loss curve using the
Equation (8) [41,42]:

Sw (nm/RIU) = ∆λp/∆n (8)

where ∆n and ∆λp are the effective RI and the peak wavelength difference, respectively.
The wavelength sensitivity is proportional to the peak wavelength variation and inversely
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proportional to the effective RI difference. Therefore, the entire performance of the C-PCF
structure can easily be measured based on resolution profile, which is calculated using the
following equation [41]:

R (RIU) = (λmin × ∆n)/λp (9)

where ∆n is the effective RI variation, λp is the peak wavelength difference, and λmin is the
minimum spectral resolution.

Figure 7a shows the CL spectrum of the proposed C-PCF structure for X polarization.
Only two peaks are chosen to calculate the confinement loss spectrum. There exists a
different relationship in the first peak and second peak among the RI analytes. In the first
peak, the amplitude of the loss curve increases with the decrease of the RI of analytes.
On the other hand, the amplitude of the loss curve increases with the increase of the RI
of analytes in the 2nd peak. The wavelength sensitivity of 27,958.49, 27,935.93, 27,916.89,
27,900.32, 27,883.93, 27,850.92, and 27,797.29 nm/RIU were obtained for RI = 1.32–1.38, re-
spectively. However, the calculated resolution profiles were 3.57673 × 10−5, 3.57962 × 10−5,
3.58206× 10−5, 3.58419 × 10−5, 3.58629 × 10−5, 3.58411 × 10−5, and 3.59747 × 10−5 RIU,
correspondingly.
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In Figure 7b, for Y polarization there exists the same relationship among the RI analytes
like X polarization, which means the amplitude of the loss curve increases with the decrease
of the RI analytes in the 1st peak, and the amplitude of the loss curve increases with the
increase of the RI analytes in the 2nd peak. The sensitivity of 27,020.16, 27,049.15, 27,085.31,
27,128.00, 27,177.32, 27,226.43, and 27,237.45 nm/RIU were gained for RI analyte 1.32–1.38,
respectively. Moreover, the measured resolutions were 3.70094 × 10−5, 3.69697 × 10−5,
3.69204 × 10−5, 3.68623 × 10−5, 3.67954 × 10−5, 3.6729 × 10−5, and 3.67142 × 10−5 RIU,
correspondingly.

Figure 8 describes the wavelength sensitivity with respect to the RI of analyte for both
polarizations. The sensitivity increases or decreases depending on the peak wavelength
variations and RI variations. It is clear from Equation (9) that the sensitivity increases
if the peak wavelength variation increases or the RI analyte variation decreases, and
vice versa. The utmost sensitivity of 27,958.49 nm/RIU was gained for X polarization
at RI = 1.32, where the other calculated sensitivity were 27,935.93, 27,916.89, 27,900.32,
27,883.93, 27,850.92, and 27,797.29 nm/RIU for RI = 1.33–1.38, respectively. In Figure 8,
the sensitivity decreases with the increase of RI of analyte, and, as a result, the highest
sensitivity is gained at the lowest RI of analyte for the X polarization. This happens because
the RI difference increases with the increase of RI of analyte. On the other hand, the
sensitivity increases with the increase of RI of analyte. As a result, the maximum sensitivity
of 27,237.45 nm/RIU was gained for the Y polarization at the highest RI = 1.38. The other
sensitivity of 27,020.16, 27,049.15, 27,085.31, 27,128.00, 27,177.32, and 27,226.43 nm/RIU
were obtained for RI = 1.32–1.37, respectively. This occurs because the RI difference decrease
with the increase of RI of analyte for the Y polarization. Table 1 shows a comparative
analysis of the sensitivity and resolution between the existing PCF sensors and C-PCF
sensor. From Table 1, it is clear that the proposed sensor has achieved a better sensitivity
and resolution compared to existing PCF sensors.
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Table 1. Performance comparison between previously published paper and C-PCF structure.

Structures Sw (nm/RIU) R (RIU) Publication Year Reference

SPR based D-shaped sensor 7700 1.30 × 10−5 2017 [29]

Dual-core PCF based RI sensor 9000 1.10 × 10−5 2018 [43]

PCF based D-shaped RI sensor 10,493 9.53 × 10−6 2017 [30]

No-core multimode SPR sensor 11,792 2.04 × 10−5 2019 [44]

Selectively coated PCF sensor 11,000 9.10 × 10−6 2018 [31]

D-shaped SPR based PCF sensor 11,500 8.70 × 10−6 2020 [32]

Gold-and MgF2-Coated RI sensor 27,959 3.70 × 10−5 - Proposed Work

4. Fabrication Possibility and Application Area

The fabrication process of the microstructure-based PCF sensor is more complex com-
pared to the conventional optical fiber. Some fabrication methods like wheel polishing
method (WPM) [45], sol–gel [46], chemical vapor deposition (CVD) [47], atomic layer
deposition (ALD) [48], stack-and-drilling, stack-and-draw [49,50], 3D printing, injection
modeling, capillary stacking, and extrusion techniques [51] are very well known. Applying
the drilling technique, a computer-controlled mill has been used to drill air holes in the
solid rode and solid tube, and draws them to the inner and outer air structure fibers, respec-
tively [52]. Using the chemical vapor deposition (CVD) method, gold has been deposited
at the outer side of the microfiber [53,54]. In the same way, MgF2 has been deposited
at the inner side of the fiber. For example, a Au–MgF2-coated nanostructure is briefly
described experimentally in [55] by varying the layer size and parameters. Additionally in
the case of fabrication, some SPR-based optical fiber sensors with Ag–Tio2-coated [56], Au-
coated [57–59], and MgF2/TiO2-coated optical filter [60] are experimentally demonstrated.
In fabrication summary, a long period of operating wavelength makes the proposed sensor
more attractive for both sensing and telecommunications applications owing to their low
losses profile, compact sizes, ease of fabrication, and low levels of back-reflection [61,62].

In the application area, SPR-based sensors can be applied for bioimaging, medical di-
agnostics, organic chemical sensing, liquid sensing, disease detection, gas sensing, glucose
monitoring in urine, tuberculosis detection, pregnancy testing, environment monitor-
ing, etc. [63]. The proposed sensor can be applied as a biosensor because the operating
analyte range is 1.32 to 1.38. A large number of biological analytes’ refractive indexes
lie in the range of 1.32 to 1.38, for example, tuberculosis cells sensing (1.345–1.349) [64],
pregnancy testing (1.335–1.343) [35], cancer cell detection (1.36–1.38) [65], alcohol sensing
(1.333–1.3611), different blood components sensing (1.33–1.40) [66], etc. Therefore, the large
range of analytes and high sensing performance of the proposed sensor make it an efficient
candidate in the vast numbers of SPR-based biosensor application areas.

5. Conclusions

A twin resonance peak-based RI sensor is explored and numerically demonstrated
using the FEM method. To gain maximum sensing performance of 27,958.49 nm/RIU,
a nano-film gold layer and a MgF2 layer were used as a plasmonic material. Besides,
high birefringence, resolution, and transmittance of 3.9 × 10−4, 3.70094 × 10−5 RIU, and
−34 dB were obtained, respectively. In conclusion, the displayed C-PCF will be a potential
candidate in twin resonance peak-based sensing areas for its excellent sensing performance.
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