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Observation of an exceptional point 
in a two-dimensional ultrasonic 
cavity of concentric circular shells
Younghoon Shin1, Hojeong Kwak1,2, Songky Moon1, Sang-Bum Lee3, Juhee Yang4 & 
Kyungwon An1

We report observation of an exceptional point in circular shell ultrasonic cavities in both theory and 
experiment. In our theoretical analysis we first observe two interacting mode groups, fluid- and solid-
based modes, in the acoustic cavities and then show the existence of an EP of these mode groups 
exhibiting a branch-point topological structure of eigenfrequencies around the EP. We then confirm 
the mode patterns as well as eigenfrequency structure around the EP in experiments employing the 
schlieren method, thereby demonstrating utility of ultrasound cavities as experimental platform for 
investigating non-Hermitian physics.

A physical system can be described by a non-Hermitian Hamiltonian if the system is open or it has either absorp-
tive loss or amplifying gain. One of the important properties of the non-Hermitian Hamiltonian is the existence 
of an exceptional point (EP), whose condition is satisfied when the coupling between interacting eigenstates is the 
same as their differential loss. At an EP, the eigenstates are degenerate in both eigenvalue and eigenfunction1–3. 
Consequently, it exhibits unusual properties such as branch-point topology, eigenstate exchange when encircled 
parametrically and breakdown of adiabaticity when encircled dynamically4–6.

EP’s have been observed in various physical systems such as microwave billiards7,8, deformed microcavities9, 
acoustic waves propagating in media of anisotropic thermoelasticity10, an atom-cavity quantum composite11, 
coupled-disk lasers12 and exciton-polariton billiards13. In particular, it is known that EP’s in optical systems show 
many interesting features such as divergent Petermann factor14,15, reversal of the pump dependence in lasing16 
and enhanced detection sensitivity17.

Even though the optical microcavities have been widely used in studying EP’s as well as other non-Hermitian 
properties, they have some weak points. For example, spatial mode patterns in an optical microcavity would show 
many interesting features related to quantum chaos and intermode interactions18–21. However, it is almost impos-
sible to visualize the mode patterns experimentally in optical microcavities without introducing scatterers, which 
inevitably disturb the system. For this reason, the mode characteristics have been studied mostly in terms of the 
far-field patterns and emission spectra.

To supplement this limitation, we propose to exploit an ultrasonic cavity, in which the ultrasonic field can 
be easily measured by using the schlieren method22,23. This technique has been widely used in visualizing fluid 
motion around objects such as bullet bow shockwave and thermal flume from a thermal source. Likewise, with 
the schlieren method we can visualize the refractive index modulation caused by ultrasonic waves in a transparent 
medium.

Previously, Chinnery and Humphrey studied the resonance properties of a stadium-shaped ultrasonic cavity 
by using the schlieren method, presenting various modes patterns and their statistical properties24. They also 
reported mode overlapping in a fluid-filled cavity25 as well as shape-dependence of modes in elliptical cavities26. 
Quite recently, multiple EP’s in air-filled four coupled acoustic cavities have been investigated with wall-mounted 
microphones27 without observing mode patterns. However, both mode patterns and resonance spectrum around 
an EP have not been studied in acoustic cavities so far.

In this paper, we investigate resonance properties – mode patterns and resonance spectrum – of concentric 
ultrasonic shell cavities in both theory and experiment. By carrying out theoretical calculations, we show that 
there exist two interacting mode groups, fluid- and solid-based modes. We then explicitly show the existence of 
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an EP exhibiting a complex-square-root-like topological structure of eigenfrequencies around it. Moreover, we 
present the experimental results obtained with the schlieren method and confirm our theoretical predictions, 
thereby demonstrating the utility of ultrasonic cavities for studying the physics of non-Hermitian systems.

Let us first consider a 2D ultrasonic cavity with concentric circular shells as depicted in Fig. 1. The shell 
cavity has three sub-regions: inner fluid, a solid shell, and outer fluid. This cavity is one of the simplest coupled 
ultrasonic cavities which allow ease in both theoretical analysis and experimental realization. Because of the 
rotational symmetry, resonant modes of the cavity can be easily found analytically. In the frequency domain, the 
harmonic ultrasound fields are described by the Helmholtz equation in the fluid and by Cauchy-Navier equation 
in the solid. Resonant normal modes of the shell cavity are then given by nontrivial solutions of a matrix equation 
det[M(ωres)] =  0 derived from the wave equations as explained in detail in Methods. The complex frequencies 
ωres =  ωr +  iωi (ωr >  0, ωi <  0) satisfying det [M(ωres)] =  0 are the resonant frequencies of the normal modes.

Results
We have solved the matrix equation near kfRa =  20 and obtained several resonant frequencies as well as the wave-
functions of the modes. Here kf is the wavenumber of the sound wave in the fluid and Ra is the inner radius of the 
shell as defined in Fig. 1. We selected aluminum as the solid material and water as the fluid. The characteristic 
constants used in the calculation are listed in Table 1. In this calculation we find that two groups of modes exist in 
the shell cavity. One group, called fluid-based mode (FBM), is mostly localized in the internal fluid region and the 
other group, called solid-based mode (SBM), is mostly localized within the solid shell.

An example of decomposing the modes into FBM and SBM is shown in Fig. 2. The shell cavity modes are 
presented in the first row of Fig. 2, where we plotted the pressure field intensity |P|2 inside the fluid and the stress 
tensor |σrr|2 in the radial direction in the solid shell. It is found that modes with Re[kfRa] =  15.480, 18.060, 20.229 
are localized within the shell, while the other modes are localized inside the internal fluid. As a consequence, we 
can consider the FBM’s as the modes of a separate cavity whose external fluid is replaced by infinite solid. In a 
similar way, SBM’s can be considered as the modes of another cavity whose internal fluid is replaced by solid. The 
adequacy of the above mode decomposition is evidently seen in Fig. 2(b) and (c).

Figure 1. Structure of our 2D shell cavity. It consists of three sub-regions: inner fluid, a solid shell, and outer 
fluid. Ultrasound fields are described in terms of pressure Pin and Pout inside the inner and outer fluid and 
displacement u inside the solid.

λ (N/m2) μ (N/m2) ρ (kg/m3) vl (m/s) vs (m/s)

water 2.201 ×  109 0 998 1485 NA

aluminium 5.494 ×  1010 2.645 ×  1010 2700 6320 3130

Table 1.  Characteristic constants of the materials used in our calculation. Here λ and μ are the Lamé’s first 
and second parameters of the solid, respectively, and they are derived from the longitudinal velocity vl and shear 
velocity vs in the solid by using the relation λ µ ρ= +v ( 2 )/l  and µ ρ=v /s  with ρ the density of the solid. 
Parameter values of ρ, vl and vs are from ref. 37.
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We investigated the mode interactions based on the decomposition of shell modes into FBM’s and SBM’s. If we 
vary the outer radius Rb with the inner radius Ra fixed, the resonance frequencies of FBM’s are almost invariant. It 
is because the modes localized in the internal fluid are hardly affected by the changes of the outer shell boundary. 
On the other hand, the frequencies of SBM’s are inversely proportional to the outer radius Rb of the shell because 
the size parameter (kfRb for SBM) is a constant for a mode regardless of the system size. Accordingly, FBM’s and 
SBM’s can move closer to or move away from each other with varying Rb, allowing interactions between two 
groups of modes across the inner boundary.

This behavior is shown in Fig. 3. As mentioned above, FBM’s are not affected by the change of Rb/Ra with Ra 
fixed. When the two mode groups are far apart, Re[kfRa] values of the FBM’s more or less follow a constant hori-
zontal line, which is often called the diabatic transition line. Similarly, Re[kfRa] values of SBM’s follow another 
diabatic transition line with the inverse dependence on Rb. As the ratio Rb/Ra is varied for different angular quan-
tum numbers m’s, FBM’s and SBM’s repel (avoided crossing, AC) or cross (mode crossing, MC) each other near 
the crossing point of the diabatic lines. Here, the angular quantum number m equals a half of the number of 
anti-nodes of the wavefunction in the direction of the azimuthal angle. It is also proportional to the angular 
momentum χ= =L m kR sin   of a fictitious particle associated with the wave solution in the semi-classical 
limit with χ the incident angle of the particle on the circular boundary of radius R. Note that the angular quantum 
number m was used as an internal system parameter in the previous studies9,28. In the case of MC, FBM’s and 
SBM’s just follow their diabatic lines. In the case of AC, however, FBM’s and SBM’s do not follow their diabatic 
lines but follow the paths of instantaneous solutions accompanying a mode gap which is approximately propor-
tional to the strength of the interaction between two groups. By following these paths, spatial mode patterns 
change from FBM to SBM or vice versa. Such mode pattern exchange has been experimentally observed in other 
systems such as in microwave billiards7 and in exciton-polariton billiards13.

Exceptional point. Exceptional point (EP) is a singular point in parametric space where two interact-
ing modes coalesce into one mode. EP condition is satisfied when the coupling equals their differential loss. 
Occurrence of an EP can be easily understood in a simple 2 ×  2 matrix model. Let us consider a non-Hermitian 
Hamiltonian given by

γ
γ

=





−

−






H
E i C

C E i
,

(1)
1 1

2 2

where unperturbed modes have real energy E1, E2 and decay rates γ1, γ2 (γ1 >  γ2). The coupling C between the 
modes is assumed to be real. After diagonalization of the Hamiltonian, we get eigenvalues 

Figure 2. Decomposition of the shell-cavity modes into FBM and SBM. The white circles indicate the shell 
boundaries. Distributions |P|2 inside the fluid and |σrr|2 inside the shell are plotted for modes with Rb =  3Ra and 
m =  15. The values in the parentheses are the imaginary parts of the size parameters kfRa.



www.nature.com/scientificreports/

4Scientific RepoRts | 6:38826 | DOI: 10.1038/srep38826

γ γ= − ± − +± + + − −E i E i C( )2 2 , where E± =  (E1 ±  E2)/2 and γ± =  (γ1 ±  γ2)/2. When E1 =  E2 (i.e., E− =  0), 
  ∆ = −+ − depends on the coupling C and the differential decay rate γ−. If γ− >  C, then the energy difference 

is given by  γ∆ = −−i C2 2 2. Therefore, when we vary the detuning E− across zero, the real parts of the energy 
cross but the imaginary parts repel each other. If γ− <  C, on the other hand, we get γ∆ = − −C2 2 2 , which 
means avoided crossing in real parts and crossing in imaginary parts as the detuning E− is varied. Lastly, if γ− =  C, 
the real and imaginary parts of two modes have the same values. Moreover, two eigenfunctions become the same 
in this case, differently from the usual energy degeneracy. This coalesced mode is called an EP mode.

In Fig. 4(a) and (b), the resonance modes of the shell cavity are plotted as Rb/Ra is varied. Solid (open) sym-
bols represent the modes followed from FBM’s (SBM’s) in the lower (Rb/Ra) range. In Fig. 4(a), real eigenvalues 
Re[kfRa] are plotted whereas in Fig. 4(b) the imaginary parts are plotted. In these plots, we observe a transition 
between MC and AC. When m =  17, 18, FBM’s and SBM’s are undergoing MC (AC) in real (imaginary) parts. For 
the smaller m values, the modes are undergoing AC (MC) in real (imaginary) parts. In Fig. 5(a–d), the trajectories 
of the complex eigenvalues are plotted as Rb/Ra value is increased. Blue (red) dots are followed from the FBM’s 
(SBM’s) in the lower Rb/Ra range.

It is evident that an EP exists somewhere between m =  16 and 17 when .R R/ 2 75b a  in the parameter space. 
Note the internal parameter m controlling E−(detuning) is an integer and thus discrete. For this reason it is diffi-
cult to hit the exact position of an EP in the (m, Rb/Ra) parameter space. However, it is in principle possible to 
reach the EP by changing a continuous system parameter such as density of fluid, instead of m, which is accessible 
by mixing two different types of fluids. For example, in Fig. 6, complex eigenvalues at crossing points of the dia-
batic lines for Re[kfRa] are displayed. Figure 6(a) is the results for the parameters in Table 1. As we mention above, 
it is impossible to reach an EP with only varying the discrete parameter m. If we slightly change the sound velocity 
in the fluid – by changing the Lamé’s parameters – as in Fig. 6(b), however, we can hit the EP accurately. In this 
case, m =  17 modes become an EP mode. Another way to reach an EP is to include additional loss in the fluid, 
which can be simulated by introducing a complex sound velocity.

Experiment. We now present our experimental results to verify our theoretical predictions. Frequencies and 
mode patterns of resonance modes obtained with the schlieren method are shown in Fig. 7, where experimen-
tal data are marked by black dots. Blue and red lines are the theoretical paths of instantaneous solutions, fol-
lowed from FBM and SBM in the lower Rb/Ra region, respectively. We observe a good agreement between theory 
and experiment. Mode patterns visualized by the schlieren method are displayed below the mode spectrum. As 
already shown in the theoretical analysis or in Fig. 3(a), we observe AC in the spectrum as well as the mode pat-
tern exchange in Fig. 7(a). Note that the intensity of the mode pattern in the fluid is gradually reduced if we follow 

Figure 3. Avoided crossing and mode crossing. Dotted lines are diabatic lines. The distribution |P|2 inside 
the fluid, and |σrr|2 inside the shell are plotted as in Fig. 2. The outer boundary of the shell is colored in white 
whereas the inner boundary is colored in red in order to facilitate direct comparison with the experimental 
results in Fig. 7. (a) For m =  13, one can observe mode pattern exchange and mode mixing by following the path 
of instantaneous solutions. (b) For m =  18, however, FBM and SBM cross each other and no mode exchange and 
mode mixing observed.
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the path (iii) →  (ii) →  (i) or (iv) →  (v) →  (vi). This is because unperturbed SBM’s do not have any spatial distri-
butions in the fluid. In Fig. 7(b), however, we observe FBM’s with a constant Re[kfRa]. In this MC case, there is 
neither mode splitting nor noticeable spatial mode pattern mixing. As a result, mode patterns of the SBM’s could 
not be visualized because they have negligible spatial distribution in the inner fluid. In addition, the mode pat-
terns of the FBM’s are hardly affected by the change of Rb/Ra as expected in the theoretical analysis or in Fig. 3(b).

In Fig. 8, the experimentally observed resonances (symbols) supporting the existence of an EP are shown with 
the theoretical expectations (lines). For theoretical calculation, we used a complex sound velocity 
vf =  (1485 −  i0.22)m/s in the fluid in order to account for the scattering and absorption loss present in the 

Figure 4. Transition between MC and AC. (a) Real parts Re[kfRa] and (b) imaginary parts Im[kfRa] of the 
eigenvalues and for m =  15, … , 18. Solid (open) symbols represent the modes followed from FBM’s (SBM’s) in 
the lower (Rb/Ra) range. FBM’s and SBM’s with m =  17, 18 cross each other in real parts but repel in imaginary 
parts. For smaller m’s, FBM’s and SBM’s repel each other in real parts showing AC, but the imaginary parts cross 
each other.

Figure 5. Trajectories of the complex eigenvalues as Rb/Ra is varied. (a) m =  13, (b) m =  16, (c) m =  17 and 
(d) m =  19. The arrows indicate the direction of the trajectories as Rb/Ra is increased from 2.60 to 2.95.
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experiment. This small imaginary component corresponds to a medium-loss quality factor Q 3400loss , consist-
ent with the loss-broadened linewidths of otherwise high-Q modes in the experiment. It is seen that AC (MC) 
occurs for m ≤  16 while MC (AC) occurs for m ≥  17 in the real (imaginary) parts of resonance frequencies. 
Although we can measure only modes with spatial distribution in the fluid by the schlieren method, the transition 
from AC to MC can be clearly seen in Fig. 8 as m is increased. This observation implies the existence of an EP with 
16 <  m <  17 and .R R/ 2 76b a .

Figure 6. Complex eigenvalues at the crossing points of the diabatic lines of Re[kfRa] for various m’s. 
Horizontal axes represent the relative Re[kfRa] values of the interacting modes. (a) Results for the parameters 
in Table 1. (b) Results for a slightly different sound velocity vl =  1518.03 m/s in fluid. Arrows in (a) indicate the 
moving directions of the eigenvalues as we increase vl, indicating m =  17 modes become the EP mode in (b).

Figure 7. Experimentally observed resonances and their mode patterns. Black dots are the experimental 
data. Blue and red lines represent the theoretical expectations. In the schlieren images, red circles indicate the 
inner boundary of the shell. (a) Avoided crossing between FBM and SBM. Due to the limitation of the schlieren 
method, mode pattern in the solid shell could not be visualized. However, one can still observe mode pattern 
exchange by noticing the reduction of mode intensity following path (iii) →  (ii) →  (i) or (iv) →  (v) →  (vi).  
(b) Mode crossing result. Unperturbed SBM’s could not be visualized because there is little mode mixing 
between FBM’s and SBM’s. Measurement error bars are smaller than the dot size in (a) and (b).
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Discussion
In both theory and experiment, we have observed the transition from AC to MC by increasing angular quantum 
number m. This transition is due to the reduced C compared to γ−. The transition can be analyzed in more details 
as follows.

If m is increased with the radial quantum number l fixed, the size parameter Re[kfRa] of both FBM and SBM 
increases since the size parameter is approximately equal to the number of wavelengths fitting the inner circum-
ference of the shell. Moreover, the distributions of FBM and SBM are shifted to the internal and external bound-
aries, respectively, corresponding to an increased incident angle of waves on the boundaries (recall m =  kRsinχ). 
As a result, the loss of FBM is reduced whereas that of SBM is increased. The coupling decreases much more 
than the loss of FBM. The reason is as follows. As m is increased, the distribution of FBM in the solid region is 
reduced because of the decreased loss of FBM, and at the same time the distribution of SBM further shifts to the 
external boundary. Therefore, the wavefunction overlap between FBM and SBM is greatly reduced, resulting in 
the coupling much more decreased than the loss of FBM. Therefore, we can induce a transition from AC to MC 
by increasing the angular quantum number m.

It is apparent that the schlieren method cannot visualize the mode patterns inside the opaque shell (alumin-
ium). As shown for m ≥  17 in Fig. 8, this limitation is pronounced in the weak-coupling regime. However, with 
smaller m values, for which the coupling is strong, it was possible to measure the SBM-like modes partially even 
quite away from the Rb/Ra point where the diabatic lines cross. It is because the SMB-like modes still have some 
distribution in the internal fluid due to the mode mixing arising from the intermode interaction between SBM 

Figure 8. Experimental observation of an EP. Blue (red) lines are theoretically expected resonances followed 
from FBM’s (SBM’s) in the lower Rb/Ra range. Solid dots are experimental observations. (a–d) and (i–k): Real 
parts of the resonance frequencies. Error bars are smaller than the size of the symbols. (e–h) and (l–n): 
Imaginary parts of the resonance frequencies extracted from the linewidths of the observed spectra. An EP 
exists between m =  16 and m =  17 with .R R/ 2 76b a . As shown in the theoretical analysis, one can reach an EP 
by adjusting the sound velocity or the medium loss continuously.
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and FBM. As a result, we could observe AC in real eigenvalues despite the limitation of the schlieren method. 
Note it is still impossible to visualize unperturbed SBM’s in the opaque solid with the schlieren method since 
little mode-mixing exists with FBM’s. This limitation, however, can be easily overcome by adopting transparent 
solid such as glass or acrylic. Ultrasound cavities made of fluid enclosed in transparent solid would thus be a 
promising platform for studying intermode interactions in non-Hermitian systems. In particular, there are many 
interesting phenomena expected to occur near EP’s such as adiabaticity breaking when an EP is dynamically 
encircled4,5,6,29,30, chirality of EP modes31 and mode evolution near a triple EP32. We expect these phenomena can 
be effectively investigated without disturbing the system by using our approach in terms of both eigenvalues and 
eigenfunctions.

Methods
Solving wave equations numerically. The shell cavity has three sub-regions: inner fluid, a solid shell, and 
outer fluid (see Fig. 1). In the frequency domain, the harmonic ultrasound fields are described by the Helmholtz 
equation in the fluid and by Cauchy-Navier equation in the solid:

∇ + =k P( ) 0, (2)f
2 2

λ µ µ ρω+ ∇ ∇ ⋅ − ∇ × ∇ × =− .u u u( 2 ) ( ) ( ) (3)2

Here P is the pressure field in the fluid and u is the displacement vector in the solid. The wavenumber kf of sound 
wave in the fluid is defined as kf =  ω/vf where ω and vf are the angular frequency and the sound velocity in the 
fluid. In addition, λ and μ are the Lamé’s first and second parameters of the solid, respectively, and ρ is the density 
of the solid.

Inside the fluid surrounded by the solid shell, two-dimensional solution for P is given by a simple form 
φ= ΣP A J k r m( )cos( )in m m f , where Jm is the Bessel function of order m. In the solid shell, it is conventional to 

introduce scalar and vector potential ϕ and ψ
��

, from which u is given by ϕ ψ= + = ∇ + ∇ ×
��

u u ul t . Obviously 
ψ
��

 has only z component in a 2D system described in x and y coordinates. By substituting the potential form of u 
in Eq. (3) and after rearranging terms according to their polarization, we obtain two Helmholtz equations for ϕ 
and y as

ϕ∇ + =k( ) 0, (4)l
2 2

ψ∇ + =k( ) 0, (5)s
2 2

where kl and ks are the longitudinal and shear wavenumbers which are defined as ω ω= =ρ
λ µ+

k v/l l2
 and 

ω ω= =ρ
µ

k v/s s with vl the longitudinal and vs the shear velocity. Therefore, the solutions for the Eqs (4) and 
(5) are of the form

∑ϕ φ= +B J k r C N k r m[ ( ) ( )]cos( ), (6)m m l m m l

∑ψ φ= +D J k r E N k r m[ ( ) ( )]sin( ), (7)m m s m m s

where Nm is the Neumann function of order m. Outside the shell, the pressure field is also found from Eq. (2), but 
in order to satisfy the outgoing wave condition we take the first kind Hankel function instead of the Bessel func-
tion: φ= ∑P F H k r m( )cos( )out m m f

(1) .
Our goal now is to find the resonant frequencies of the normal modes. To do this, we need six boundary con-

ditions for the six unknowns {Am, Bm, … , Fm} for a given m. The boundary conditions are as follows. The first is 
the continuity of normal components of the stress, which is just the equilibrium of surface normal forces to main-
tain the interface. Next is the continuity of the displacement, i.e., the solid and the fluid should contact each other 
all the time. The last is that the tangential stress at the inner (r =  Ra) and outer (r =  Rb) interfaces should vanish 
because there cannot be shear stress in the fluid. These conditions are explicitly given by (1) σrr(Ra) =  − Pin(Ra), 
σrr(Rb) =  − Pout(Rb), (2) =u R u R( ) ( )r

f
a r

s
a , =u R u R( ) ( )r

f
b r

s
b , (3) σrφ(Ra) =  σrφ(Rb) =  0, respectively, where σij is the 

stress tensor within the shell defined as

σ λ δ µ= ∇ ⋅ + ∇ + ∇ .u u u( ) [( ) ( ) ] (8)ij ij ij ji

The superscripts f and s in the displacement u refer to fluid and solid. Indices i, j in the stress tensor σ denote 
orthogonal coordinates r and φ.

After substituting the expressions for u and P into the boundary conditions, one finds six linear equations 
for six unknowns which depend on the complex frequency ω. Accordingly, those equations can be written in the 
6 ×  6 matrix form M(ω)b =  0 for a given m, where b consists of the field coefficients {Am, … , Fm}.

In the cylindrical coordinates, the surface-normal displacements and the components of the stress tensor are 
easily found to be as follows.

ρ ω
=

∂
∂

u P
r

1

(9)
r
f

f
2
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By substituting P, ϕ, ψ for the boundary conditions given in the main text and after some algebra, we get six 
homogeneous linear equations for the coefficients {Am, … , Fm} of the field.
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The equations are summarized to a simple matrix form M(ω)b =  0, where b is a column vector consisting of 
the field coefficients {Am, … , Fm}. As mentioned in the main text, to find nontrivial solutions one need to search 
complex ω’s such that det(M(w)) =  0. These ω’s can be found by using the Newton-Raphson method in complex 
space, as in an optical microcavity33. Because we take the convention that the fields have the form of ei(k·r−wt), ω is 
obviously expressed by ω =  ωr +  iωi =  ωr −  i|ωi| (ωi is negative), where ωr mainly determines the spatial distribu-
tion of the field and (− ωi) gives the decay rate of the resonant mode. Then the quality factor Q of a mode is given 
by Q =  − ωr/2ωi.

Experimental setup. We fabricated aluminium shells with Ra =  5 mm and Rb ranging from 2.65Ra to 3.0Ra 
in total of 11 steps. The surface roughness is about 10μm, which is negligible compared to the sound wavelength 
of interest (order of 1 mm). The cavity is immersed in distilled water. The water is first heated to the boiling tem-
perature to remove dissolved air. It is then rapidly cooled down to the room temperature by a immersion chiller 
in order to avoid re-dissolving of air. In addition, we cover the surface of water with polyethylene spheres for the 
same reason. With this procedure, small air bubbles which act as scatterers of the sound waves are mostly elimi-
nated, allowing high-Q modes with Q ~ 104.

The cavity modes are excited by an immersion ultrasonic transducer which is driven by a function generator 
with an RF amplifier (Fig. 9). The driving sine wave frequency is scanned in the range of 800 kHz–1.3 MHz. 
Spatial intensity patterns are measured by using the schlieren method, which is widely used to visualize the refrac-
tive index modulations in transparent media. It is well established that the schlieren image represents the sonic 
pressure intensity |P|2 at low pressure34. When the driving frequency is on resonance with a FBM, one can observe 
a bright image of the pressure field in the internal fluid. In addition, the spectrum of FBM’s can be obtained by 
integrating the pressure field distribution seen in the schlieren image as a function of the excitation frequency. 
Therefore, with our setup, we are able to measure the mode patterns as well as the mode spectrum simultaneously. 
Spatial mode patterns around an EP have been observed in microwave billiards before by scanning a perturbative 

Figure 9. Schematic of the experimental setup. The schlieren method is used to visualize resonant modes 
patterns. Observed mode patterns of some modes with radial quantum number 2 are shown as examples. 
Bright regions in the mode patterns represent the anti-nodes of the eigenfunctions. Bright circles are the inner 
boundaries of the shell cavity.
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probe35. Our setup does not need such a physical probe, which is known to introduce unwanted perturbation to 
the system36.

Inclusion of medium loss. In actual experiments, scattering and absorption loss inevitably occurs in media, 
mostly in the fluid in our experiment. The loss in the fluid can be included in our theoretical calculation by intro-
ducing an imaginary component vi(< 0) in the longitudinal sound velocity vf in the fluid. Note kf in Eqs (14), (16), 
(17) and (19) are replaced with

ω
ω ω

= =
+
+

.k v i
v iv

/
(20)f f

r i

r i

The new matrix equation M(ω)b =  0 is solved for complex frequency ω, which is now given by

ω ω ω
ω
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= + = + + + +
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(21)

r i r i r i r r i r r i
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r

i

r

i

r k v

where ki, vi <  0 is assumed. This equation indicates that the total loss 1/Q is composed of 1/Qk =  − 2ki/kr account-
ing for the wave-tunneling loss and 1/Qv =  − 2vi/vr for absorption and scattering loss in the medium. The quality 
factor Qv corresponding to the medium loss has been estimated to be approximately 3400 from the observed 
linewidth of otherwise high-Q mode (Qk ~ 105) in our experiment. The estimated medium loss is found to be 
consistent with our choice of vi =  − 0.22 m/s.
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