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Abstract

ER-bound PTP1B is expressed in hippocampal neurons, and accumulates among neurite contacts. PTP1B dephosphorylates
ß-catenin in N-cadherin complexes ensuring cell-cell adhesion. Here we show that endogenous PTP1B, as well as expressed
GFP-PTP1B, are present in dendritic spines of hippocampal neurons in culture. GFP-PTP1B overexpression does not affect
filopodial density or length. In contrast, impairment of PTP1B function or genetic PTP1B-deficiency leads to increased
filopodia-like dendritic spines and a reduction in mushroom-like spines, while spine density is unaffected. These
morphological alterations are accompanied by a disorganization of pre- and post-synapses, as judged by decreased
clustering of synapsin-1 and PSD-95, and suggest a dynamic synaptic phenotype. Notably, levels of ß-catenin-Tyr-654
phosphorylation increased ,5-fold in the hippocampus of adult PTP1B2/2 (KO) mice compared to wild type (WT) mice and
this was accompanied by a reduction in the amount of ß-catenin associated with N-cadherin. To determine whether PTP1B-
deficiency alters learning and memory, we generated mice lacking PTP1B in the hippocampus and cortex (PTP1Bfl/fl–Emx1-
Cre). PTP1Bfl/fl–Emx1-Cre mice displayed improved performance in the Barnes maze (decreased time to find and enter target
hole), utilized a more efficient strategy (cued), and had better recall compared to WT controls. Our results implicate PTP1B in
structural plasticity within the hippocampus, likely through modulation of N-cadherin function by ensuring
dephosphorylation of ß-catenin on Tyr-654. Disruption of hippocampal PTP1B function or expression leads to elongation
of dendritic filopodia and improved learning and memory, demonstrating an exciting novel role for this phosphatase.
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Introduction

The hippocampus has been implicated in memory formation

and learning; both of these processes are accompanied by specific

modifications in the structure and function of the synapse [1–5].

The role of N-cadherin and the associated catenins in synapses has

been well documented both in vitro and in vivo [6–8]. For example,

impairment of N-cadherin function inhibits the induction of LTP

and structural plasticity [8–12]. Expression of a dominant negative

N-cadherin or deletion of a-catenin in cultured hippocampal

neurons leads to aberrant dendritic spines [13,14]. In vivo

conditional deletion of ß-catenin in newborn neurons of postnatal

dentate gyrus impairs the formation of branched dendrites [15].

N-cadherin function relies on dynamic interactions with the

actin cytoskeleton, in a process mediated by catenins and regulated

by tyrosine phosphorylation [16]. Binding of ß-catenin to the

cytoplasmic domain of N-cadherin is negatively regulated by the

phosphorylation of ß-catenin-Tyr-654 [17]. The role of N-

cadherin in memory formation and retrieval has recently been

evaluated in vivo. N-cadherin levels quickly rise in the hippocampus

after fear conditioning, and then decrease slowly [18]. Disruption

of hippocampal N-cadherin function impaired the consolidation

but not the retrieval of contextual fear memory [18]. Similarly,

another study showed that conditional deletion of ß-catenin in the

amygdala impairs consolidation but not acquisition of memory

[19]. This work also showed that total ß-catenin protein levels in

the basolateral amygdala do not change after fear conditioning;

however, phosphorylation of the ß-catenin-Tyr-654 residue and

subsequent N-cadherin/ß-catenin interactions are dynamically

regulated [19] highlighting the potential importance of Tyr-654

phosphorylation in learning.

PTP1B is an ER-anchored enzyme with the catalytic domain

facing the cytosol [20]. PTP1B dephosphorylates ß-catenin, and

positively regulates N-cadherin-mediated adhesion [21–23]. We

recently have shown that the dynamic distribution of ER-bound

PTP1B in hippocampal neurons depends on microtubules [24];

microtubules transiently invade dendritic spines, and neuronal

activity enhances this process [25,26]. A specific role for PTP1B

within hippocampal dendritic spines, however, has not been

explored.
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Here we show that PTP1B is dynamically present in dendritic

spines. Impairing PTP1B function by expression of a dominant

negative mutant or by genetic deletion reveals that it is required

for spine maturation and normal synapse formation. In vivo,

PTP1B regulates the dephosphorylation of ß-catenin on Tyr-654

in the hippocampus, and contributes to the formation of stable N-

cadherin/ß-catenin complexes. Finally, mice with PTP1B-defi-

ciency specifically in the hippocampus and cortex (PTP1Bfl/fl-

Emx1-Cre) display improved performance compared to WT

controls in the Barnes maze (a learning paradigm for mice). Thus,

we present biochemical, structural and behavioral data suggesting

an exciting role for PTP1B in hippocampal function and structural

plasticity.

Results

PTP1B Localizes Transiently in the Post-synaptic
Compartment

In situ hybridization of coronal rat brain reveals that PTP1B

mRNA is highly expressed in the pyramidal cell layer of

hippocampus [27], suggesting a potential role of PTP1B in this

plastic brain structure. We recently established that, at the

subcellular level, PTP1B protein localizes in dynamic regions of

rat hippocampal neurons in culture, such as in filopodia of growth

cones, and accumulates in inter-neuronal contacts, suggesting a

role in neuronal connectivity [24]. Synaptic connectivity among

hippocampal neurons involves interactions between axons and

dendrite protrusions called spines [3,7,28,29]. Dendritic spines

develop from dynamic filopodia-like protrusions, which are more

abundant in initial phases of synaptogenesis (as seen in 10 days in

vitro (DIV) cultures), while mature spines with morphologically

distinct heads and necks (also called ‘‘mushroom’’) are the

hallmark of later stages (e.g. DIV21 cultures). Here we sought to

determine whether PTP1B localizes in filopodia-like protrusions

and spines; both structures are rich in F-actin and can be easily

visualized by phalloidin staining. PTP1B, revealed by antibody

staining, is distributed in a punctate pattern in dendritic shafts,

filopodia-like protrusions and spines (Figure 1A–F’). PTP1B

puncta also showed a scattered distribution along the length of

axons which are abundant at this developmental stage

(Figure 1H, I). At DIV21, triple staining for PTP1B, synapsin-1

and F-actin, revealed that a small fraction of PTP1B puncta co-

localize with synapsin-1 in the head of dendritic spines (Figure 1G–

K’’). A quantitative analysis reveals that 15.461.6% of total

filopodia-like protrusions at DIV10, and 16.562.3% of total

mushroom-like spines at DIV21, contain PTP1B puncta (Table 1).

PTP1B was present in 13.061.2% of total synapsin-1 puncta, and

in 12.060.8% of the synapsin-1 puncta colocalizing with

mushroom-like spines (Table 1).

The scarce colocalization with synaptic markers and the low

frequency of localization in dendritic spines suggest that PTP1B

may be a transient component of this compartment. Likely,

PTP1B localization in spines depends on the ER association with

microtubules, as demonstrated by several groups including ours

[24,30,31]. Previous work showed that 1.6% of the total

mushroom spines in fixed hippocampal neurons at DIV21

contained microtubules [32]. Observation of living neurons

revealed that microtubules transiently invaded dendritic protru-

sions, including mushroom-like spines, and their presence in spines

was detected at a rate of 8.9% per hour [25]. Based on these

antecedents we sought to determine whether PTP1B localization

in dendritic protrusions was dynamic. Co-expression of GFP-

PTP1B and Lck-mCherry in hippocampal neurons of DIV21

revealed, under the channel of the Lck-mCherry fluorescence, the

morphology of dendrite shafts throughout and filopodia-like

protrusions (Figure 2A). We analyzed neurons expressing the

lowest levels of GFP-PTP1B that still can be recorded with our

imaging system. A gross estimation of the fluorescence signal after

PTP1B immunolabeling, reveals a 3–5-fold increase of the

antibody signal in the GFP-PTP1B transfected cells compared to

the non-transfected cells (data not shown). GFP-PTP1B distribu-

tion was observed as a continuous fluorescence in dendrite shafts

and protrusions (Figure 2B, C). This distribution, which differs

from the punctate distribution depicted by immunodetection of

endogenous PTP1B, is likely related to the higher levels of PTP1B

expression in transfected cells [24]. GFP-PTP1B is observed in

mushroom-like dendritic spines as fingerlike extensions from

dendritic shafts (Figure 2C). Quantitative analysis reveals that

GFP-PTP1B extensions are present in 11.462.5% of the dendritic

protrusions at DIV10 and in 13.562.4% at DIV21 (Table 2).

These extensions can be found protruding towards PSD-95

clusters detected by immunofluorescence (Figure 2F). Time-lapse

analysis revealed that the presence of GFP-PTP1B in the

protrusions is transient and frequently disappears within a few

minutes (Figure 2, Time-lapse, arrowheads).

PTP1B Regulates Spine Morphology
A well-established role of PTP1B is the stabilization of

intercellular unions mediated by N-cadherin [21,23,33]. Previous

studies have shown that blockade of this type of cell adhesion leads

to impaired spine morphology and function [10,11,13,34–37].

Taking this into account we reasoned that inhibition of PTP1B

activity might have consequences on dendritic spine morphology.

To assess the role of PTP1B in spine morphology, we co-

transfected primary rat hippocampal neurons with Lck-mCherry

and one of the following constructs: GFP-PTP1B, GFP-PTP1B(C/

S) or GFP. In PTP1B(C/S), the essential cysteine 215 at the active

site is replaced by serine; this results in a catalytically inactive

enzyme which retains the ability to bind substrate similarly to the

wild type enzyme, thereby protecting the substrate from dephos-

phorylation by endogenous PTPs [24,38,39,40]. Neurons were

transfected on DIV4 and analyzed 6 days later (DIV10). The

overall branching of the dendritic tree was unaffected by the

expression of any of these constructs (Figure S1). Quantification of

the length of dendritic protrusions revealed an increase of ,40%

in neurons expressing PTP1B(C/S), compared to the GFP

expressing control (Figure 3, A, A’, C, C’, D). In contrast,

expression of the wild type PTP1B did not significantly affect the

length of protrusions (Figure 3, B, B’, and D). The density of

dendritic protrusions per 10 mm was not affected by overexpres-

sion of WT or PTP1B(C/S) constructs (Figure 3E). These results

suggest that PTP1B may be involved in the maturation of

dendritic filopodia.

To examine the role of PTP1B in spine morphology further we

analyzed primary hippocampal neurons derived from wild type

(WT) and PTP1B-deficient (KO) mice [41]. Hippocampal neurons

were transfected with Lck-mCherry at DIV4 and fixed for analysis

at DIV14 when most neurons show full development of axon and

dendrites. Morphological differentiation of axon and dendrites was

indistinguishable among WT and KO neurons (Figure S1).

Quantification of dendritic protrusion length revealed an increase

of ,60% in KO neurons compared to WT neurons (Figure 3, F–

H). These results agree with those obtained in rat neurons

expressing the dominant negative PTP1B(C/S). We next exam-

ined whether differences in the length of protrusions among WT

and KO neurons reflected differences in the proportions of specific

morphological types. Dendritic protrusions were categorized

following the Spacek & Harris criteria [42]. Briefly, the length
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Figure 1. Distribution of endogenous PTP1B during dendrite maturation. Hippocampal neurons from rat embryos were cultured in serum-
free medium and fixed at DIV10 (A–C) and DIV21 (D–K). Neurons were processed for fluorescence detection of F-actin, using phalloidin-TMR (A, A’, D,
D’) or phalloidin-AMCA (G, K); PTP1B, using a specific mouse monoclonal antibody (B, B’, E, E’, H), and synapsin-1 using a rabbit polyclonal antibody
(J). (A–C) At DIV10 most dendritic protrusions display a filopodial shape. (D–F) At DIV21 mushroom-shaped spines prevails. PTP1B displays a punctate
distribution in dendritic shafts at both developmental stages (B, E, H, I, yellow arrowheads), and in thin axons (I, white arrowhead). Occasionally,
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and diameter of the protrusions were measured and grouped as

‘‘dendritic filopodia’’ if their length was greater than 2 mm, and

‘‘dendritic spines’’ if their length was less than 2 mm. Additionally,

spines were subcategorized as ‘‘thin spines’’ if the length was

greater than the diameter, and ‘‘mushroom + stubby spines’’ if

their largest diameter was greater than or equal to their length.

The latter two groups of spines were considered together because

of the difficulty in distinguishing them when they were oriented

along the z-axis [42,43]. We found that mushroom- and stubby-

type spines grouped together represented 59.262.9% of total

spines in WT neurons and 38.963.6% in KO neurons (Figure 3J).

Thin spines, defined as protrusions with a length/diameter ratio

.1, absence of a head at the tip and shorter than 2 mm [42],

represented 28.562.3% of total spines in WT neurons and

22.362.2% in KO neurons. Filopodia-like protrusions, with a

length greater than 2 mm, represented 11.161.9% of total spines

in WT neurons and increased ,4-fold to 39.364.1% in KO

neurons (Figure 3J). In agreement with the results obtained

expressing the dominant negative PTP1B in rat hippocampal

neurons, the density of protrusions in KO hippocampal neurons

did not differ with that of WT neurons (Figure 3I). Taken together,

these results suggest that PTP1B plays an important role in the

morphological maturation of dendritic spines.

PTP1B Regulates the Organization of Pre-and Post-
synaptic Compartments

The higher proportion of dendritic protrusions with filopodial

morphology in KO neurons predicts alterations in the organiza-

tion of synaptic elements. To assess synaptic organization, we

analyzed the distribution of the post- and pre-synaptic markers

PSD-95 and synapsin-1, respectively, in WT and KO neurons

expressing Lck-mCherry. PSD-95 is a well established post-

synaptic marker that accumulates in the head of mushroom or

stubby spines [44]. Dendritic spines with PSD-95 were found in

contact with axonal regions containing clusters of synaptic vesicles,

which can be visualized by staining synapsin-1, a protein

associated with synaptic vesicles [45]. Analysis of DIV14

hippocampal neurons revealed that 63.066.6% of total spines in

WT neurons, but only 3167.7% of total spines in KO neurons,

contained PSD-95 (Figure 4, A–F, M). Analysis of dendritic

protrusions making contact with synapsin-1 clusters were signif-

icantly reduced from 70.864.2% in WT neurons to 41.163.5% in

KO neurons (Figure 4, G–L, and N).

PTP1B Regulates Cadherin Complexes and Beta Catenin
Phosphorylation in vivo

PTP1B acts to stabilize the association between ß-catenin and

N-cadherin in adhesion complexes [21,23]. Expression of the

dominant negative PTP1BC/S in fibroblasts caused the dissoci-

ation of ß-catenin from N-cadherin complexes and an increase in

ß-catenin phosphotyrosine content [21]. Furthermore, the

incubation of cultured retina neurons with permeable peptides

that prevent PTP1B binding to N-cadherin produces a similar

effect, and is prevented if ß-catenin Tyr-654 is substituted with

phenylalanine [23,46]. These results suggest that PTP1B may be

implicated in the dephosphorylation of ß-catenin at Tyr-654. To

investigate this possibility in vivo, we used a phospho-specific

antibody to quantify ß-catenin phospho-Tyr-654 in protein

extracts of hippocampus isolated from WT and PTP1B KO

mice [41]. Beta-catenin phospho-Tyr-654 was barely detectable

in hippocampal lysates from WT mice (Figure 5A). In contrast,

ß-catenin from hippocampi of KO animals showed a significant

increase in phosphorylation of Tyr-654 (Figure 5A). In contrast,

levels of phospho-Erk decreased in KO animals consistent with

previous studies (Figure S2) [47–49]. It was previously shown

that phosphorylation of ß-catenin by pp60c-src significantly

decreased the affinity for E-cadherin, decreasing the association

constant by 5-fold [17]. Therefore, we predicted that in the

absence of PTP1B in vivo, ß-catenin would have a reduced ability

to form complexes with N-cadherin. We evaluated this possibility

by immunoprecipitating N-cadherin from hippocampi of WT

and KO mice and immunoblotting for b-catenin. In agreement

with our hypothesis, we found a modest (,30%), but consistent

decrease in the amount of ß-catenin in N-cadherin immunopre-

cipitates from KO mice when compared to WT mice (Figure 5B).

These results are the first to show the requirement of PTP1B to

maintain the ß-catenin Tyr-654 residue in a non-phosphorylated

state in vivo, which could be correlated with increased levels of ß-

catenin complexed to N-cadherin. For comparison, we also

analyzed complexes of N-cadherin with the AMPA receptor

subunit glutamate receptor 1 (GluR1), which is not dependent on

tyrosine phosphorylation [50]. Experiments from five indepen-

dent animals do not reveal statistically significant differences in

the amount of GluR1 co-immunoprecipitating with N-cadherin

between wild type and KO animals (Figure 5C).

PTP1B puncta locates in dendritic protrusions (white arrows in inset frames C’, F’). In neurons of DIV21, PTP1B puncta sometimes can be seen at the
heads of mushroom-like spines (F’), co-localizing with synapsin-1 puncta (boxes, K’, K’’, yellow arrowheads). Scale bar, 5 mm.
doi:10.1371/journal.pone.0041536.g001

Table 1. Quantification of the PTP1B presence in dendritic protrusions/spines, presynaptic puncta, and synapses.

PTP1B in post-synapses % 6 SEM N6 of neurons N6 of protrusions/spines

DIV10 15.461.6 16 976

DIV21 16.562.3 25 718

PTP1B in pre-synapses Nu of synapsin clusters

DIV21 13.061.1 10 2037

PTP1B in synapses Nu of synapsin clusters in spines

DIV21 12.060.8 10 608

Dendritic spines were morphologically visualized by F-actin staining with phalloidin and presynaptic puncta were recognized by synapsin-1 staining. Synapses were
defined as the overlap of synapsin-1 and spines. The percentage of PTP1B puncta in each condition was calculated.
doi:10.1371/journal.pone.0041536.t001
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Figure 2. Localization and dynamics of GFP-PTP1B in dendritic protrusions. Hippocampal neurons from rat embryos were co-transfected at
DIV4 with plasmids encoding GFP-PTP1B and Lck-mCherry. (B, E, H) GFP-PTP1B signal is relatively strong and uniform in dendritic shafts of neurons
imaged at DIV10 (H) and DIV21 (B, E, yellow arrowheads). In the DIV21 cultures, fingerlike protrusions of GFP-PTP1B emerge from dendrite shafts and
penetrate into mushroom-like spines detected with the Lck-mCherry (A, B, C, yellow arrows). Scale bar, 2 mm in A. Note that the tips of the GFP-PTP1B
protrusions co-localize with PSD-95 clusters detected by immunofluorescence (D, E, F, yellow arrows). Scale bar, 2 mm in D. (G–I) Time lapse studies in
DIV10 cultures reveal a dynamic behavior of GFP-PTP1B, entering transiently to preformed dendritic filopodia (yellow arrowheads). Images were
taken every 10 seconds during a 10 minute recording. Scale bar, 10 mm in G.
doi:10.1371/journal.pone.0041536.g002
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Table 2. Quantification of the GFP-PTP1B presence in dendritic protrusions/spines.

GFP-PTP1B in
post- synapses

Filopodia
(% 6 SEM)

Thin
(% 6 SEM)

Stubby + Mushroom (%
6 SEM) Total N6 of neurons

N6 of protrusions/
spines

DIV10 3.961.0 6.661.9 0.860.4 11.462.5 15 533

DIV21 3.061.0 4.461.1 6.061.5 13.562.4 17 506

Dendritic spines were morphologically visualized by F-actin staining with phalloidin. The percentage of GFP-PTP1B in each condition was calculated.
doi:10.1371/journal.pone.0041536.t002

Figure 3. Effect of PTP1B inhibition on dendritic protrusions. (A–E) Hippocampal neurons from rat embryos were co-transfected at DIV 4 with
plasmids encoding Lck-mCherry and GFP, GFP-PTP1Bwt or the dominant negative GFP-PTP1B(C/S). At DIV 10 neurons were fixed and imaged for the
fluorescent proteins. Expression of GFP-PTP1Bwt (wt) had no effect on filopodia length compared to GFP (B-B’ vs A–A’; scale bar, 5 mm in C). In
contrast, expression of GFP-PTP1B(C/S) leads to a significant increase of filopodia length (C–C’). (D) Plot showing the quantification of filopodia
length. (E) Plot showing the density of filopodia per 10 mm. (F–J) Hippocampal neurons from PTP1B KO and wild type (WT) newborn mice were
transfected at DIV4 with a plasmid encoding Lck-mCherry. At DIV14, neurons were fixed and observed in a fluorescence microscope. Note the
predominance of filopodia-like protrusions in the KO neurons (G) compared to WT neurons (F; Scale bar, 5 mm). (H) Quantification of the length of
dendritic protrusions shows a significant increase in KO neurons compared to WT neurons. (I) Density of spines does not differ significantly. (J)
Quantification of the different morphological types of spines reveals that KO neurons had a significantly reduced proportion of stubby and
mushroom spines, and a significantly increased proportion of filopodia-like protrusions, compared to WT neurons. ANOVA p,0.0001 followed by a
Dunnett’s post-test p,0.05.
doi:10.1371/journal.pone.0041536.g003
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Figure 4. Effect of PTP1B deficiency on the distribution of pre-and post-synaptic markers. Hippocampal neurons from WT (A–C, G–I) and
KO (D–F, J–L) newborn mice were transfected at DIV4 with Lck-mCherry to visualize dendritic spines. At DIV14 neurons were fixed and
immunostained to detect either the post-synaptic marker PSD-95 (B, E) or the pre-synaptic marker synapsin-1 (H, K). PSD-95 and synapsin-1 were
visualized using Alexa Fluor 488-conjugated secondary antibodies. Localization of PSD-95 in spine heads is obvious in WT neurons (A–C, white
arrows). In contrast, filopodia-like protrusions from KO neurons show no PSD-95 associated (D–F, yellow arrows). Instead, PSD-95 clusters were found
in dendritic shafts. Synapsin-1 clusters are also evident adjacent to spines heads in WT neurons (G–I, white arrows) but not to filopodia-like
protrusions in KO neurons (J–L, yellow arrows). Scale bar, 5 mm in A. Plots show the quantification of dendritic protrusions showing colocalization
with (M) PSD-95 (WT 6366.6% versus KO 3167.7%, p = 0.06) and (N) synapsin-1 puncta (WT 70.864.2% versus KO 41.163.5%, p = 0.01).
doi:10.1371/journal.pone.0041536.g004
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PTP1B is Required for Learning and Memory
Consolidation

Alteration of the phosphorylation balance in the synapse can

affect synaptic plasticity [51]. However, its impact on learning and

memory has been more difficult to evaluate. In mice lacking the

tyrosine kinase Fyn, or the receptor protein tyrosine phosphatase

RPTPa, the induction of LTP and spatial learning capabilities are

impaired, but these mice also show alterations in the development

and morphology of the hippocampus [52,53]. In order to assess

whether PTP1B-deficiency alters learning and memory, mice

lacking PTP1B specifically in the hippocampus and cortex

(PTP1Bfl/fl-Emx1-Cre) were generated (Figure S3). In the Barnes

maze, a paradigm requiring mice to learn, female PTP1Bfl/fl-

Emx1-Cre mice had improved performance compared to WT

(PTP1Bfl/fl) littermate controls (Figure 6A). Similar results were

seen in male mice (data not shown). Furthermore, PTP1Bfl/fl-

Emx1-Cre mice consistently utilized a more efficient strategy

(cued) and had a better overall success rate and 15 day recall

compared to WT controls (Figure 6, B–D). These results

demonstrate a novel role for forebrain PTP1B in learning and

memory, and are consistent with the elevated phospho-Tyr-654 ß-

catenin levels noted in hippocampal lysates.

Discussion

PTP1B Localization and Contribution to Dendritic Spine
Differentiation

PTP1B mRNA is highly expressed in the hippocampus [27]. In

addition, studies in cultured hippocampal neurons showed that

impairment of PTP1B function negatively affects axon and

dendrite growth, as well as growth cone dynamics [24,54]. These

results suggest that PTP1B may play a positive role in the

Figure 5. PTP1B controls ß-catenin phosphorylation and association with N-cadherin in vivo. Protein extracts from hippocampi of adult
WT and KO mice were prepared. (A) Western blots were first probed with a polyclonal antibody specific for ß-catenin-pTyr-654. Subsequently, the
membrane was stripped and re-probed with a monoclonal antibody against total ß-catenin. The normalized pY654/ß-catenin signal was calculated
from scanned bands. Note that KO mice show a significant increase of the normalized signal compared to the WT mice (KO: 380.56161.7% vs WT:
100.0611.6%). (B) N-cadherin was immunoprecipitated using a specific monoclonal antibody. Western blots of N-cadherin immunoprecipitates were
first probed to detect total ß-catenin and then re-probed to detect N-cadherin. Experiments from five animals show that normalized ratios of ß-
catenin/N-cadherin in KO mice are significantly reduced compared to those in WT mice (KO: 80.867% vs WT: 10063, p,0.05 one-tailed Mann-
Whitney test). (C) Amount of GluR1 co-immunoprecipitated with N-cadherin. Experiments from five animals show that normalized ratios of GluR1/N-
cadherin are not statistically different between WT and KO mice (KO: 112.1619.2% vs WT: 100.0616.8%. Asterisks indicate statistical differences for a
p#0.05, according to the one-tailed Mann-Whitney test.
doi:10.1371/journal.pone.0041536.g005
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development of productive synaptic contacts in the hippocampus.

Indeed, in this paper we show that PTP1B is present in dendritic

spines and co-localizes with the pre-synaptic marker synapsin-1.

Our studies using GFP-PTP1B suggest a transient localization of

PTP1B in dendritic spines, as it was recently observed for dynamic

microtubules [32,55]. We and others have shown a tight

association between the ER and microtubules in hippocampal

neurons [24,30,31]. The possibility that microtubules could

regulate the localization of ER-bound PTP1B in dendritic

protrusions remains to be determined. Also, whether the number

of spines invaded by PTP1B is enhanced by neuronal activity, as it

was found for microtubules [25], remains an interesting possibility

to be addressed.

Here we found that impairing the expression of PTP1B in

hippocampal neurons, by dominant negative or by gene targeting

approaches, increased the proportion of filopodia-like protrusions,

a hallmark of an immature stage of synaptogenesis, without

affecting the density of total protrusions. Since dendritic protru-

sions are continuously appearing and disappearing [29,56,57], this

result suggests that PTP1B is required for the normal maturation

of dendritic spines and likely does not inhibit the turnover and

genesis of protrusions. Furthermore, this result may at least partly

explain the reduction of synapsyn-1 and PSD-95 localization in

dendritic protrusions of neurons lacking the expression of PTP1B.

The molecular target(s) of PTP1B involved in the morphological

differentiation of spines are presently unclear although the

cadherin adaptor ß-catenin is a likely candidate [16,58].

Role of PTP1B in Regulating b-catenin Function
It is well-established that cadherin complexes contribute to spine

morphogenesis, plasticity and function [6–8,59]. Beta-catenin, a

major intracellular binding partner of cadherin, associates with the

cytoplasmic domain of cadherin and with a-catenin, mediating

interactions with the actin cytoskeleton [60]. Post-synaptic loss of

ß-catenin in hippocampal neurons using the cre/loxP technology

results in profound alterations in spine morphology, leading to

elongated spines and a reduced proportion of mushroom spines,

with no alterations in spine density [61]. These morphological

alterations are remarkably similar to the phenotype of PTP1B KO

neurons described in the present work (Figure 3). Another study

found that suppression of ß-catenin expression in hippocampal

neurons did not have an effect on the size of PSD-95-GFP puncta

[62]. In PTP1B KO neurons we also did not find an obvious

change in the size of PSD-95 clusters; rather, we observe a

redistribution of these clusters to the dendritic shafts (Figure 4).

Beta-catenin localization and function in dendritic spines is

dynamically regulated by its phosphorylation state [35,63].

Membrane depolarization induces a redistribution of ß-catenin

from dendritic shafts into spines, increasing its association with

cadherin and likely enhancing cadherin-mediated adhesion. This

process is enhanced in the presence of a non-phosphorylatable

Y654F-ß-catenin mutant, and is inhibited in the presence of a

phosphorylation-mimic Y654E mutant [35]. Thus, the non-

phosphorylated form of ß-catenin at the critical residue Tyr-654

seems to be required for proper organization of the post-synaptic

density and function.

PTP1B dephosphorylates ß-catenin in N-cadherin complexes

[16,33,64]. Inhibition of PTP1B in different cell types leads to loss

of N-cadherin-mediated adhesion, dissociation of ß-catenin from

N-cadherin and accumulation of phosphorylated ß-catenin in the

cytosol [21,23]. Since the affinity of ß-catenin for cadherin is

reduced by phosphorylation of Tyr-654 [17], a finding that is

supported by structural analysis of cadherin/ß-catenin co-crystals

[65], it is likely that PTP1B targets this residue. In fact, in this

paper we show for the first time that PTP1B is required for ß-

catenin-Tyr-654 dephosphorylation in vivo. As expected for a direct

enzyme/substrate relationship, ß-catenin phospho-Tyr-654 is

significantly elevated in hippocampi of PTP1B2/2 mice.

Importantly, this result correlates with a modest but consistent

reduction of ß-catenin association with N-cadherin, an event that

is crucial for cadherin function. Thus, lack of PTP1B would, to

some extent, mimic the depletion of ß-catenin expression, which in

concordance with our results, also results in an alteration of spine

morphology [61].

Role of PTP1B in Learning and Memory
The results of the present work add to a growing body of

empirical evidence highlighting a correlation between the struc-

ture and number of spines with the processes of learning and

memory; however, the underlying mechanisms remain enigmatic.

A network of regulatory proteins may impinge in the actin

cytoskeleton and cell adhesion complexes, underlying structural

and morphological changes that may affect learning and memory

[1,66]. Since a lack of PTP1B perturbs normal N-cadherin

function, it is conceivable that there is also an effect on filopodia

maturation to spines. Our hypothesis is that PTP1B modulates this

process but is not essential. Thus, neurons from PTP1B KO mice

may display morphological features characteristic of an ‘‘immature

brain’’, which are also more prone to learn. Our results are

consistent with a recent study which found that mice with

conditional ablation of the Dicer1 gene in the adult forebrain

outperform wild type animals in a variety of learning and memory

tests [67]. Lack of the Dicer1 gene increases post-tetanic

potentiation and the length of dendritic spines in CA1 hippocam-

pal neurons. The increase of long filopodia-like spines in dendrites

of the mutant neurons suggests an active remodeling of synapses

that could facilitate the improvement of memory. Another recent

study showed that mice deficient in expression of the receptor

protein tyrosine phosphatase sigma exhibit enhanced novel object

recognition memory and this correlates with increase in the length

of dendritic protrusions [68].

Along with cytoskeletal changes in dendritic spines, synaptic

plasticity during learning and memory also results in strengthening

and weakening of pre- and post-synaptic contacts, a process driven

by cell adhesion molecules such as cadherins. Beta-catenin is

highly expressed in the adult mouse amygdala and is dynamically

regulated at both the transcriptional and post-translational levels

with fear learning [19]. Pharmacological stabilization of ß-catenin

with lithium chloride resulted in enhanced learning, while genetic

Figure 6. PTP1B fl/fl-Emx1-Cre and littermate PTP1B fl/fl controls were subjected to the Barnes maze. (A) Mice were trained on the
maze 2 trials per day for 4 days and their performance plotted as time to enter the target escape hole (trials 1–8). A 24 hour recall (trial 9) and a 15 day
recall (trial 10) were performed to assess memory retention. n = 12 WT and n = 8 KO. Data are mean 6 SEM, asterisk indicates p,0.01 by 2-way
ANOVA. (B and C) Female PTP1B fl/fl (WT; n = 12) and PTP1B fl/fl-Emx1-Cre (KO; n = 8) littermate controls were scored for strategy used in the Barnes
maze and plotted as the percentage of mice using a random, serial, or cued strategy to locate the target hole. (D) The percentage of mice successfully
locating the target hole in each trial/recall is plotted. T1, trial 1; T5, trial 5; 24 hr, 24 hour recall; 15 day, 15 day recall. a, p,0.05; b, p,0.08; c, p = 0.06
by a nominal logistic followed by a Pearson’s Chi-square test comparing WT and KO for the indicated trial.
doi:10.1371/journal.pone.0041536.g006
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deletion of the gene that encodes ß-catenin in the amygdala

resulted in impaired learning. In both cases, the manipulation

affected the consolidation, but not acquisition, of the fear memory

[19,69]. Interestingly, the phosphorylation of ß-catenin-Tyr-654 in

amygdala significantly increased during the first 30 min after fear

training, and then follows a phase of decrease until 2 h where it

starts rising again [19]. Thus, the affinity of ß-catenin for cadherin

in the amygdala seems to be dynamically regulated during fear

consolidation. These changes in ß-catenin-Tyr-654 phosphoryla-

tion inversely correlate with the amount of ß-catenin complexed

with cadherin.

We found that mice with PTP1B deletion in the hippocampus

and cortex (PTP1Bfl/fl-Emx1-Cre) displayed significantly im-

proved performance compared to WT mice in the Barnes maze

(a paradigm requiring mice to learn). Furthermore, PTP1Bfl/fl-

Emx1-Cre mice utilized a more efficient strategy (cued) and had a

better overall success rate and recall compared to WT controls.

Although we did not determine the phosphorylation of ß-catenin-

Tyr-654 in the trained animals, we found that the phosphorylation

of this residue was already significantly increased in control

PTP1Bfl/fl-Emx1-Cre mice. Accordingly, we also detected a

reduction of ß-catenin/N-cadherin complexes in the hippocampus

(Figure 5). These results combined with the filopodia-like

phenotype of spines in PTP1B KO animals, suggest that lack of

PTP1B promotes molecular and cellular conditions that may

prime animals for enhanced learning. A possible scenario

including our present observations is shown in a model

(Figure 7). Importantly, the finding that mice with forebrain-

specific PTP1B-deficiency show improved spatial learning and

enhanced memory retention demonstrates a novel role for this

phosphatase.

Other protein tyrosine phosphatases have also been implicated

in learning and memory. The striatal-enriched protein tyrosine

phosphatase (STEP) KO mice show improved hippocampal

learning and memory; STEP is expressed in the hippocampus,

cortex and striatum, and the isoform STEP61, localizes in the ER

[70–72]. Furthermore, recent work showed that mice deficient in

expression of the receptor protein tyrosine phosphatase sigma

exhibit enhanced novel object recognition memory [68]. Thus, it is

likely that the combined activity of several tyrosine kinases/

phosphatases modulate learning and memory in a dynamic

fashion. An exciting challenge will be to identify novel targets of

these kinases and phosphatases and understand how their

spatiotemporal regulation can be causally related to these highly

integrated and complex brain processes.

Materials and Methods

Ethics Statement
All animal care protocols and procedures were approved by the

University of Pennsylvania Institutional Care and Use Committee.

Materials
DMEM, NeurobasalTM Medium, N2, B27, L-glutamine,

penicillin-streptomycin, trypsin, bovine fetal serum and horse

serum were from Invitrogen (Carlsbad, CA). Poly-L-lysine and

ovoalbumin were from Sigma-Aldrich (St. Louis, MO). Coverslips

were from Marienfeld GmbH & Co. (Lauda-Königshofen,

Germany). Fibrilar actin was detected using either phalloidin-

TRITC (1/1000), or phalloidin-AMCA (1/200), both from

Invitrogen.

Antibodies
The following antibodies were used for immunofluorescence:

mouse monoclonal antibody against PTP1B (1/200) from

Calbiochem (EMD Biosciences, San Diego, CA); mouse mono-

clonal antibody against PSD-95, clone 6G6-1C9 (1/500) form

Thermo Scientific Pierce Antibodies (Rockford, IL); rabbit

polyclonal antibody against synapsin-1 (1/1000) from Sigma-

Aldrich (St. Louis, MO). Primary antibodies in the epifluorescence

studies were detected using Alexa Fluor 488- and Alexa Fluor 546-

goat conjugated secondary antibodies (1/500) from Invitrogen. In

the preparations for confocal microscopy we used DyLight 488-

goat conjugated secondary antibodies from Jackson Immunor-

esearch (West Grove, PA). For Western blots and immunoprecip-

itation studies we used the following antibodies: rabbit polyclonal

antibody against the phosphorylated tyrosine 654 of ß-catenin (1/

100) from AbCam (Cambridge, MA); mouse monoclonal antibody

against ß-catenin, clone 14 (1/2000) from BD Biosciences

(Franklin Lakes, NJ); mouse monoclonal antibody against N-

cadherin, clone GC-4 (1/2500) from Sigma-Aldrich, rabbit

polyclonal antibody against glutamate receptor1, clone GluR1

(1/2500) from Millipore (Billerica, MA), rabbit anti-phospho-p44/

42 MAPK, clone #9101, rabbit anti-p44/42 MAPK, clone

#4695, both from Cell Signaling Technology (Danvers, MA).

Secondary antibodies used in blots (1/5000) were the HRP-

conjugated donkey anti-rabbit IgG and HRP-conjugated sheep

anti-mouse IgG from GE Healthcare Life Sciences (Pittsburgh,

PA).

Cell Culture Procedures
Dissociated hippocampal primary cultures were prepared from

rat embryos or newborn mice as described in Goslin and Banker,

1991 [73], with modifications (see below). Female pregnant

Sprague-Dawley rats were obtained from the Veterinary Faculty

of the University of Buenos Aires and the brains from 18-day-old

rat fetuses were used. PTP1B KO mice were generated previously

[41]. To obtain newborn pups from WT and PTP1B-KO

breeders, animals of 3 to 6 months old were mated. Animals

were genotyped before the crossings as described [74]. To obtain

single cell cultures, tissue was treated with 0.25% trypsin in

(HBSGK; 20 mM HEPES, 150 mM NaCl, 2 mM glucose,

Figure 7. Model representing the potential function of PTP1B
in the hippocampus. PTP1B dephosphorylates ß-catenin at the
residue Tyr-654, opposing the activity of protein tyrosine kinases. This
function of PTP1B ensures ß-catenin association with N-cadherin in
functional adhesion complexes, and is required for normal differenti-
ation of mushroom-like spines. Loss of PTP1B expression/function
would favor a stage characterized by morphologically immature (and
likely more dynamic) spines, which may positively modulate memory
and learning processes.
doi:10.1371/journal.pone.0041536.g007
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3 mM KCl, pH 7.4) for 15 min at 37uC. A single-cell suspension

was prepared in NeurobasalTM Medium containing 0.3 mg/ml

glutamine, 100 units/ml penicillin, 100 mg/ml streptomycin and

10% (v/v) horse serum. Cells were plated at desired concentrations

(ranging from 5,000 to 50,000 cells per cm2) on coverslips coated

with 0.8 mg/ml poly-L-lysine prepared in borate buffer 0.1 M

pH 8.5. After 2 h in a 5% CO2 humidified incubator (37uC),

medium was changed to serum free NeurobasalTM Medium

supplemented with 0.5 mg/ml ovalbumin, N2 and B27. Cells

were maintained in the incubator for 1 to 21 days before fixation

and imaging.

DNA Constructs and Transfection Procedures
Lck-mCherry was kindly provided by Steve Green (University

of Iowa). GFP-PTP1B and GFP-PTP1B-CS plasmids were

described previously [38]. Hippocampal neurons were transfected

in 35 mm dishes at DIV4 using the calcium phosphate method

[75]. Briefly, the conditioned neuronal culture medium was

aspirated and saved for subsequent use. The transfection medium

(Neurobasal with 15 mM HEPES, 0.3 mg/ml L-glutamine,

10 mM glucose, pH 7.5) was added and cells were incubated for

30 minutes before adding the CaCl2/plasmid complexes. These

complexes were prepared by mixing 3 mg DNA in 18.6 ml of a

solution of 250 mM of CaCl2. This solution was dropped to an

equal volume of transfection buffer (50 mM BES,

1.5 mM Na2HPO4, 280 mM NaCl, pH 7.1), then mixed by

bubbling 5 times with the pipette tip, and immediately added to

the neurons. After 3 hours of incubation, the transfection medium

with the precipitates was removed and cells were washed 3 times

with HBSGK. The saved conditioned neuronal culture medium

was added back to the dishes and cells were cultured until use. In

the case of double transfections the plasmids were mixed before

the addition of CaCl2.

Immunofluorescence
Dispersed single cells were fixed at indicated times with 4%

paraformaldehyde and 4% sucrose in PBS for 20 min, permea-

bilized with 0.5% Triton X-100 in PBS for 10 min at room

temperature, and blocked with 3% BSA in PBS overnight at 4uC.

Incubations with the primary and secondary antibodies were

carried out in a humid chamber for 1 h at 37uC. Samples were

mounted in PBS/glycerol (1:1, vol/vol) and observed through a

1006/1.4 NA objective in a Nikon E600 microscope (Melville,

NY) coupled to a Spot RT Slider CCD camera (Diagnostic

Instruments, Sterling Heights, MI). Red and green fluorescence

was detected using Nikon B-2E/C and G-2E/C filter sets,

respectively. For confocal imaging we used a Leica SP5 spectral

imaging confocal/multiphoton microscope with a HCX PLAPO

636/1.4 NA objective. For scanning of dendritic sections we did

z-stacks and the pinhole was set up to 1 Airy disk to get a step size

of 300 nm. Regions were zoomed to a pixel size of 63 nm.

Sequential line scanning was taken at a 100 Hz speed using

488 nm Argon and 543 nm HeNe lasers for excitation, detecting

the signal with a Hamamatsu R6357 PMT. For quantification,

maximum projection of the z-stacks was used. Wide-field and

confocal images were analyzed with the ImageJ software (Wayne

Rasband, NIH, Bethesda, MD, USA).

Image Analysis and Quantification
Quantifications were performed in segments of 20 mm length

defined from primary dendrite branches of neurons cultured for

DIV14 and DIV21. To quantify the proportion of dendritic

protrusions containing endogenous PTP1B, regions of interest

(ROIs) including the whole protrusion as detected by phalloidin

staining, were copied and pasted into the PTP1B stained images.

ROIs containing at least one fluorescent puncta of PTP1B were

counted as positives. Only PTP1B puncta with a brightness level of

at least twice the background signal in non cellular areas were

considered. For quantification of synapsin-1 clusters containing

PTP1B we created ROIs around the clusters and pasted them into

the PTP1B stained image, the same ROIs were also pasted in the

phalloidin image for determining the synapsin-1 clusters associated

with dendritic spines. Quantification of co-localization of the

protrusions with synaptic markers was performed in neurons

transfected with Lck-mCherry and processed for immunofluores-

cence of synapsin-1 or PSD-95. ROIs encircling protrusions were

obtained as described before and pasted on either PSD-95 or

synapsin-1 stained images. The presence of clusters inside the

mask was counted as a positive event.

To quantify the length and density of dendritic protrusions we

used neurons transfected with Lck-mCherry. To measure length, a

linescan was traced from the base to the distal tip of the protrusion

and the length value was obtained using ImageJ. Results were

expressed per 20 mm of dendritic segment. The effect of expressing

GFP, GFP-PTP1B-WT and GFP-PTP1B(C/S) in dendritic spines

was analyzed in rat hippocampal neurons displaying similar levels

of fluorescence of the GFP proteins, judged by the intensity levels

of images obtained with the same exposure and acquisition

conditions.

Dendritic Spine Categorization
Dendritic protrusions from DIV14 hippocampal cultures

obtained from WT and KO mice were categorized following the

Spacek & Harris criteria [42]. Briefly, the length and diameter of

the protrusions were measured and grouped as ‘‘dendritic

filopodia’’ if their length was greater than 2 mm, and ‘‘dendritic

spines’’ if their length was less than 2 mm. Additionally, spines

were subcategorized in ‘‘thin spines’’ if the length was greater than

the diameter, and ‘‘mushroom + stubby spines’’ if their diameters

were greater than or equal to their lengths. The latter two groups

of spines were considered together because of the difficulty to

distinguish among them when they appeared oriented in the z-axis

of the z-stack [42,43].

Time-lapse Imaging
Cells in glass-bottom dishes were placed on the stage of a Nikon

TE2000 inverted microscope enclosed within a microscope

incubator system (Solent Scientific Ltd, Fareham, UK) that

maintained the temperature at 37uC during the whole experiment.

Imaging medium was phenol red-free DMEM with high-glucose,

supplemented with 4 mM L-glutamine and 25 mM Hepes buffer,

10% fetal bovine serum, and antibiotics. The medium also

contained 0.5 U/ml oxyfluor (Oxyrase, Inc., Mansfield, OH) to

prevent photobleaching and photodamage. Hippocampal neurons

were imaged with a 606/1.4 NA Plan Apo objective. The

excitation light was attenuated using ND8 neutral density filters.

Images were captured with an Orca-AG cooled CCD camera

(Hamamatsu Photonics, Hamamatsu, Japan) using 262 binning

with exposure times of 200 milliseconds. EGFP and Lck-mCherry

were detected using filters (Chroma Technology Corp, Brattle-

boro, VT) placed in filter wheels; EGFP (excitation 470/20,

emission 525/40) and Lck-mCherry (excitation 565/25, emission

620/60), using a 86007bs multi-band dichroic mirror. Illumina-

tion was shuttered using SmartShutters coupled to a Lambda 10-B

controller (Sutter Instrument, Novato, CA). Under our experi-

mental conditions, we did not detect significant photobleaching.

All peripherals were controlled with Metamorph software (Mo-

lecular Devices, Downingtown, PA). For analysis of the GFP-
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PTP1B dynamics in dendrites, consecutive images of the red and

green channels were acquired every 10 seconds for at least 10

minutes, and stacks were built using the Metamorph software.

Western Blot and Immunoprecipitation
Mouse hippocampi were homogenized on ice in RIPA buffer

(10 mM Tris.HCl, pH 7.4; 150 mM NaCl; 0,1% SDS; 1% Triton

X-100; 1% deoxycholate; 5 mM EDTA), supplemented with a

cocktail of protease inhibitors and phosphatase inhibitors (2 mM

Na-orthovanadate, 10 mM sodium pyrophosphate, 10 mM ß-

glycerophosphate, 50 mM NaF), from Sigma-Aldrich. Homoge-

nates were incubated at 4uC for 30 minutes with rotation and

centrifuged at 120006g for 10 minutes. Protein concentration of

the supernatants was measured with the Thermo Scientific Pierce

BCA protein assay. Sample buffer with ß-mercaptoethanol (Fisher

Scientific) was added to the lysates, boiled for 10 minutes and

proteins were separated by SDS-PAGE and transferred to

polyvinyl difluoride (PVDF) membranes. Membranes were

blocked for 1 hour with 5% BSA in TBS (50 mM Tris.HCl

pH 7.8; 150 mM NaCl) and incubated over night at 4uC with

primary antibodies diluted in blocking solution. After three washes

with TBST (TBS with 0.1% Tween-20) membranes were

incubated with HRP-conjugated secondary antibodies and

revealed by ECL. For stripping, blots were incubated (30 min,

50uC) with TBS containing 100 mM ß-mercaptoethanol and 2%

SDS, blocked and re-probed. For immunoprecipitations, the

homogenates were prepared in mild lysis buffer (MLB: 20 mM

Tris.HCl pH 7.4; 150 mM NaCl) containing 1% NP40 and a

cocktail of proteases and phosphatases inhibitors (Sigma-Aldrich)

[76]. Lysates were centrifuged and 0.8 mg of protein from the

supernatant was incubated overnight at 4uC with 1 mg of anti- ß-

catenin antibody. Then, protein A conjugated to agarose beads

was added and incubated for 2 additional hours. Agarose beads

were washed twice with MLB followed by a final wash in buffer

without detergent. All incubations were conducted at 4uC.

Agarose beads were mixed with sample buffer and analyzed as

described above. Semi-quantitative analysis of the intensity of the

bands was performed using ImageJ software. Briefly, a ROI

encircling each band was created, and the average intensity of the

mask minus background was multiplied by the area. Values of

phospho-Tyr-654 b-catenin signals were divided by values of total

ß-catenin obtained after membrane stripping. For N-cadherin

immunoprecipitations, values for ß-catenin and GluR1 signals

were divided by values of total N-cadherin signal obtained after

membrane stripping. Data were expressed as percentage of every

individual band (WT or KO ratios) referred to the average of WT

ratios in the same membranes used.

Animal Care
All animal care protocols and procedures were approved by the

University of Pennsylvania Institutional Care and Use Committee.

We maintained mice on a 12-h light-dark cycle in a temperature-

controlled barrier facility, with free access to water and food

(standard chow autoclavable Lab Diet #5010). Age-matched

littermates were used for all experiments. All mice are on a mixed

Sv129/C57Bl6 background. PTP1B2/2 mice were generated by

crossing PTP1B fl/fl mice to a ‘‘deleter’’-Cre (CMV-Cre; JAX

stock #006054) to ultimately obtain mice with germline PTP1B-

deficiency. PTP1B+/+ and PTP1B2/2 mice were generated by

crossing PTP1B+/2 breeders. Mice with forebrain-specific

deletion were generated by crossing PTP1B fl/fl mice [77] with

Emx1-Cre mice (JAX stock #005628 [78]) to generate PTP1B +/

fl-Emx1-Cre breeders. PTP1B +/fl-Emx1-Cre mice were then

crossed with PTP1B fl/fl mice to generate PTP1B fl/fl (WT) and

PTP1B fl/fl-Emx1-Cre (KO) mice for experiments. Mice were

genotyped for the floxed Ptpn1 allele and Cre as described [74].

Modified Barnes Circular Maze
The Barnes maze is a useful test to examine learning behaviors

and strategies [79,80]. The maze consisted of a black circular disc

(90 cm in diameter) with 24 holes (5 cm in diameter) around the

perimeter and an escape box (15 cm68 cm67 cm) located under

one of the holes. The Barnes maze used in these experiments has

been described in detail elsewhere [80]. The disc was elevated

70 cm above the floor and situated in a room with white walls.

Visual cues were located on each of 3 separate walls consisting of a

black and white checkerboard, two red circles, and blue and white

stripes. All cues were (55.8671.1 cm). Each cue was positioned

80 cm above the floor and 15 cm from perimeter of maze. WT

(PTP1B fl/fl) and KO (PTP1B fl/fl-Emx-Cre) naı̈ve mice at 5

months of age were used for this study. Mice were trained in 2

trials per day for 4 days (Trials 1–8). Trials within each day were

separated by 4 h. A video camera was used to record the behavior

of mice during all trials and tests. The time to enter the escape box

was scored in each trial. To address the complex intersection

between learning and motivation that occurs in any repeated task,

a mild novel stimuli was introduced daily during training (a bright

light (400 l6), a fan on the medium setting, or a novel noise

(100 dB) were positioned 35 cm above center of maze). For each

trial, the mouse was placed under a glass beaker in the center of

the maze for 15 seconds prior to trial start. The mouse was allowed

4 minutes to find the escape box in each trial. The mouse was

allowed to remain in the escape box for 30 s prior to transfer back

to the home cage. The entire apparatus was thoroughly cleaned

with water and dried between each mouse. As previously

described, search strategies were classified as random, serial, or

cued [80,81]. To examine genotype differences on memory

performance, a recall trial was performed 24 hours (trial 9) and 15

days (trial 10) following the last exposure to the maze. Conditions

were identical to those of acquisition test exposure.

Data Analysis
Data are presented as mean 6 SEM. Length and density of

protrusions of neurons transfected with GFP, GFP-PTP1B-WT

and GFP-PTP1B(C/S) were compared using 1-way ANOVA.

Statistically significant differences between groups (p,0.05) were

further analyzed by a Dunnett’s post hoc test. Data relating to

length and density of neurons isolated from WT and KO mice

were compared using a two tailed Student’s t-test; p#0.05 was

considered to be significantly different. The predicted increase of

the pY654/ß-catenin signal and the decrease of ß-catenin

associated with N-cadherin were compared with one tailed

Mann-Whitney test with a significance cutoff of p#0.05. In the

Barnes maze, WT and PTP1B fl/fl-Emx (KO) curves were

compared by 2-way ANOVA and significance was set at p#0.05.

For strategy, a nominal logistic followed by a Pearson’s Chi-square

test was used to determine differences in WT vs. KO search

strategy (cued vs. non-cued). For success analysis, a nominal

logistic followed by a Pearson’s Chi-square test was used to

determine differences in WT vs. KO success in finding the escape

box.

Supporting Information

Figure S1 Dendritic trees of hippocampal neurons with
different PTP1B backgrounds. (A–C) Hippocampal neurons

from rat embryos were co-transfected at DIV 4 with plasmids

encoding Lck-mCherry and GFP (A), GFP-PTP1B (B) or the
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dominant negative GFP-PTP1B(C/S) (C). At DIV10 neurons were

fixed and imaged by wide-field fluorescence microscopy. Only

Lck-mCherry images are shown. Note the absence of gross

alterations in the overall dendritic tree by expression of wild type

and C/S PTP1B. (D, E) Hippocampal neurons from WT (D) and

KO (E) newborn mice were transfected at DIV4 with Lck-

mCherry to visualize the neuronal morphology at DIV14. Images

were taken using a fluorescence confocal microscope. Note that

the overall development of dendritic trees looks similar among

neurons from KO and WT mice. Scale bars, 40 mm.

(TIF)

Figure S2 Phosphorylation of Erk1/2 in hippocampi of
WT and KO mice. Protein extracts from hippocampi of adult

WT and KO mice were prepared. Western blots were first probed

with a polyclonal antibody specific for phospho-p44/42 (Erk1/2),

and subsequently, the membrane was stripped and re-probed with

a monoclonal antibody against total Erk1/2.

(TIF)

Figure S3 PTP1B protein levels are reduced in fore-
brain of PTP1Bfl/fl Emx1-cre mice. Protein was extracted

from different tissues and immunoblots were performed. Blots

were stripped and reprobed for SHP-2 to control for loading. Lv:

liver, Pt: pituitary, Hy: hypothalamus, Cb, Cerebellum, Hip:

hippocampus, Cx: cortex.

(TIF)
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