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Abstract

Transcranial brain stimulation and evidence of ephaptic coupling have sparked strong inter-

ests in understanding the effects of weak electric fields on the dynamics of neuronal popula-

tions. While their influence on the subthreshold membrane voltage can be biophysically well

explained using spatially extended neuron models, mechanistic analyses of neuronal spik-

ing and network activity have remained a methodological challenge. More generally, this

challenge applies to phenomena for which single-compartment (point) neuron models are

oversimplified. Here we employ a pyramidal neuron model that comprises two compart-

ments, allowing to distinguish basal-somatic from apical dendritic inputs and accounting for

an extracellular field in a biophysically minimalistic way. Using an analytical approach we fit

its parameters to reproduce the response properties of a canonical, spatial model neuron

and dissect the stochastic spiking dynamics of single cells and large networks. We show

that oscillatory weak fields effectively mimic anti-correlated inputs at the soma and dendrite

and strongly modulate neuronal spiking activity in a rather narrow frequency band. This

effect carries over to coupled populations of pyramidal cells and inhibitory interneurons,

boosting network-induced resonance in the beta and gamma frequency bands. Our work

contributes a useful theoretical framework for mechanistic analyses of population dynamics

going beyond point neuron models, and provides insights on modulation effects of extracel-

lular fields due to the morphology of pyramidal cells.

Author summary

The elongated spatial structure of pyramidal neurons, which possess large apical den-

drites, plays an important role for the integration of synaptic inputs and mediates sensitiv-

ity to weak extracellular electric fields. Modeling studies at the population level greatly

contribute to our mechanistic understanding but face a methodological challenge because
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morphologically detailed neuron models are too complex for use in noisy, in-vivo like

conditions and large networks in particular. Here we present an analytical approach based

on a two-compartment spiking neuron model that can distinguish synaptic inputs at the

apical dendrite from those at the somatic region and accounts for an extracellular field

in a biophysically minimalistic way. We devised efficient methods to approximate the

responses of a spatially more detailed pyramidal neuron model, and to study the spiking

dynamics of single neurons and sparsely coupled large networks in the presence of fluctu-

ating inputs. Using these methods we focused on how responses are affected by oscillatory

weak fields. Our results suggest that ephaptic coupling may play a mechanistic role for

oscillations of population activity and indicate the potential to entrain networks by weak

electric stimulation.

Introduction

The interaction between weak electric fields and neuronal activity in the brain has gained

increased attention over the past decade [1–3]. These weak fields can be generated endoge-

nously by populations of neurons [4–7] or through transcranial electrical stimulation [3, 8–

10], and they can modify neural activity in various ways [4, 11–15]. Although the electric fields

caused by this type of noninvasive intervention exhibit low magnitudes (� 1-2 V/m [8, 9, 16])

they can modulate neuronal spiking activity [3, 4, 17, 18] and lead to changes in cognitive

processing [19, 20], offering a number of possible clinical benefits [21, 22]. The influence

of extracellular fields on the subthreshold membrane voltage of single cells has been thor-

oughly studied and biophysically explained [17, 23–26]. How weak electric fields affect

neuronal spiking activity and interact with network dynamics, however, is currently not well

understood [3].

Multi-compartment models are useful tools to dissect effects in single neurons in the

absence of input fluctuations [27–29], but they are not well suited to study neuronal and net-

work spiking activity in noisy, in-vivo like conditions, because of their large complexity. Sin-

gle-compartment (point) neuron models, on the other hand, allow for mechanistic analyses at

the network level (see, e.g. [30–32]), but they lack the spatial structure that is required to bio-

physically describe the direct effect of an electric field on the membrane voltage [25]. Extracel-

lular fields can only be effectively incorporated either in simplified, phenomenological ways

[12, 14, 33] or by elaborate model extensions to accurately reproduce the effects on spatially

elongated neurons [25] at the cost of an increased complexity of the system (and its analysis).

Two-compartment neuron models feature a suitable compromise between biological rigor and

analytical tractability in this regard, with minimal level of spatial detail necessary to biophysi-

cally take into account an extracellular electric field. Models of this type have proven useful to

study the effects of constant fields on the activity of single neurons and synchronization of

neuronal pairs [34–36]. Irrespective of extracellular fields simplified two-compartment neuron

models have also been successfully applied, for example, to dissect neural coding of high-fre-

quency signals [37, 38] or neurocircuit mechanisms [39]. However, powerful methods to study

the spiking dynamics of these model neurons, at the levels of single cells and populations in a

noisy, cortical setting, have been lacking.

Here we employ this model class to describe the activity of pyramidal (PY) neurons receiv-

ing in-vivo like fluctuating inputs in the presence and absence of an oscillatory extracellular

field. The neuron model consists of a compartment for the soma and one for the apical den-

drite, allowing to differentiate between synaptic inputs at the soma (including basal dendrite)
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and those at the distal (apical) dendrite. We first determine the model parameters semi-analyt-

ically to reproduce the behavior of a more sophisticated, spatially extended neuron model

which involves the cable equation. We then develop an analytical method to effectively charac-

terize the stochastic spiking dynamics of single neurons and sparsely coupled large populations

of PY neurons and inhibitory (IN) interneurons. The method exploits the Fokker-Planck

equation and a moment closure approximation technique.

We apply these tools to study (i) how a weak oscillatory field affects the spiking activity of

neurons exposed to fluctuating synaptic inputs, (ii) how these effects compare to those of weak

oscillatory inputs in the absence of an electric field, and (iii) how weak applied fields modulate

network-induced oscillations. Our contribution sheds some light on the effects of extracellular

fields at the population level. Furthermore, it provides useful methods for mechanistic studies

on the dynamics of coupled compartmentalized spiking neurons that allow to broadly distin-

guish inputs according to the location of the synapses. Such a distinction is important, for

example, in circuit models which involve different types of (inhibitory) neurons.

Results

Modeling approach

Pyramidal neuron model. The PY model neurons consist of two compartments, one for

the soma and one for the (apical) dendrite, for which we consider trans-membrane capacitive

currents, ionic leak currents, an approximation of the somatic Na+ current at spike initiation,

an internal current, synaptic input currents and an extracellular electric field. The latter is

defined as EðtÞ≔ ½Ve
s ðtÞ � Ve

dðtÞ�=D, where Ve
s , V

e
d are the extracellular membrane potentials

for the somatic and dendritic compartments, whose centers are separated with distance Δ. The

dynamics of action potentials are simplified by a reset mechanism of the integrate-and-fire

type at the soma. Fluctuating input currents at the soma and the dendrite, Is and Id, that mimic

the compound effect of synaptic bombardment in vivo, are described by stochastic processes

with means �I s, �Id and standard deviations σs, σd. In this model the dynamics of the somatic

and the dendritic membrane voltage, Vs and Vd, respectively, are thus governed by two cou-

pled differential equations together with a reset condition for spikes (for details see Methods

section 1). A schematic circuit diagram of the model is depicted in Fig 1A.

Model parametrization. To determine the parameter values of the two-compartment

model and assess whether its spatial complexity is adequate we semi-analytically fit the model

to a biophysically more sophisticated, spatially elongated ball-and-stick neuron model (Fig

1B). That model involves the cable equation, an integrate-and-fire spike mechanism at the

soma and an extracellular field which is assumed spatially homogeneous (see Methods section

4). Due to its mathematical complexity this model is not well suited for analyses of spiking

dynamics and application in networks. The fitting method approximates the somatic responses

of the ball-and-stick model in an efficient way without knowledge about the input or the elec-

tric field. In brief, for both models we analytically calculate the somatic subthreshold responses

for small amplitude variations of the inputs and the electric field as well as the transient

somatic voltage responses after a spike for threshold inputs, and subsequently apply a least-

squares fit (Fig 1C–1E). Note that the membrane voltage dynamics at the soma directly affect

spike timing and are therefore the most relevant (axon initial segments are absorbed by the

somatic compartments and not separately included in the models). In this way we rapidly

obtain an accurate reproduction of the relevant response properties of the ball-and-stick

model (Fig 1C–1H). Specifically, the subthreshold responses, in terms of somatic impedances

for inputs at the soma and dendrite (Fig 1C) and the somatic voltage response for an oscil-

latory applied field (Fig 1D), are well approximated, and spiking activity, in terms of spike
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Fig 1. PY neuron model: Parameter fitting and response properties. A: schematic circuit diagram for the membrane voltage dynamics of the

two-compartment (2C) model. B: visualization of a spatial ball-and-stick (BS) model neuron (black) whose somatic voltage dynamics are

approximated by the 2C model (green). Is, Id denote the input currents at the soma and dendrite, E is the extracellular electric field, Vs is the

somatic membrane voltage of the 2C model neuron and V is the membrane voltage of the BS model. C-H: responses of a BS neuron

parametrized to model a typical PY cell and of the fitted 2C model (for parameter values see Table 1). C: amplitude of subthreshold somatic

impedances for inputs at the soma Ẑ Is and dendrite Ẑ Id as a function of input frequency (using Eqs (11), (12) and (67)–(69)). D: amplitude of

subthreshold somatic voltage responses to a sinusoidal electric field with amplitude E1 = 1 V/m (and E0 = 0) as a function of field frequency

(using Eqs (10)–(12) and (66)–(69)). E: somatic voltage transients after a spike for constant threshold inputs at the soma (left) and dendrite

(right) of the BS model (black) and 2C model (green); for details see Methods section 4. F: example time series of the somatic voltage in response

to fluctuating inputs, with spike times indicated, as well as voltage histograms of both models (right) and voltage density ps (green line;

analytically calculated). Note that although ps appears Gaussian this is not an assumption of our method. G: spike coincidence measure Γ
between the spike trains of both models for �I d ¼ 3 pA, sd ¼ 5 pA

ffiffiffiffiffiffi
ms
p

ðleftÞ and �I s ¼ 3 pA, ss ¼ 15 pA
ffiffiffiffiffiffi
ms
p

ðrightÞ. Γ = 1 indicates an

optimal match with precision Δc = 5 ms, Γ = 0 indicates chance (for details see Methods section 5). H: spike rates from numerical simulation

(symbols) and analytical calculation (green lines; cf. Methods section 3) for input parameter values as in G. The grey square marks the

parameter values from F. All curves in C-E and H represent analytical results.

https://doi.org/10.1371/journal.pcbi.1006974.g001
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coincidences (Fig 1F and 1G, see Methods section 5) and the spike rate (Fig 1H), are accurately

predicted. Note that the accuracy in Fig 1F–1H results from the approximation quality for sub-

threshold responses (Fig 1C) and post-spike transients (Fig 1E). This quality of our fitting

method is not restricted to the selected ball-and-stick morphology but extends to a range of

plausible shapes (S1 Fig).

Characterization of spiking dynamics. We focus on spiking activity, in particular the

dynamics of the (instantaneous) spike rate r. This quantity can be calculated exactly using the

Fokker-Planck equation that governs the evolution of the joint probability density for the

somatic and dendritic membrane voltage p(Vs, Vd, t), describing the stochastic dynamics in

deterministic form (see Methods section 3). Since a numerical solution of this partial differen-

tial equation is very demanding in terms of implementation and especially computational

effort we employ a moment closure approximation method. Specifically, we use p(Vs, Vd, t) =

ps(Vs, t)pd(Vd|Vs, t), where ps is the marginal probability density for the somatic voltage and pd

the probability density for the dendritic voltage conditioned on Vs, and approximate pd by a

conditioned Gaussian probability density. The resulting system allows for convenient and effi-

cient calculation of the spike rate responses for constant input statistics as well as weak sinusoi-

dal variations of the input moments or the applied field. To this end only ordinary differential

equations need to be solved. An evaluation of this method in comparison to numerical simula-

tion for constant input moments is shown in Fig 1H. Spike rates from simulations are well

matched for a range of plausible input moments. Moreover, this quality of agreement extends

to different parametrizations of the two-compartment model that correspond to various ball-

and-stick morphologies (S2A Fig).

Modulation of neuronal spiking activity

We first consider a PY neuron exposed to fluctuating inputs at the soma and the dendrite and

a weak sinusoidal applied field. The noisy inputs drive the neuron to stochastic spiking activity

that is influenced by the field. This effect can be quantified by the instantaneous spike rate

across a large number of trials (obtained from numerical simulations with different realiza-

tions of the input), which is equivalent to the population-averaged spike rate for a large num-

ber of uncoupled PY neurons receiving independent inputs. The field leads to an oscillatory

modulation of the spike rate that is accurately reproduced by our analytical calculation method

(Fig 2A).

By measuring these spike rate responses over a range of field frequencies we observe a clear

resonance in a biologically relevant, relatively narrow frequency band (Fig 2B). In other words,

the spike rate oscillations are strongest for field oscillations in that frequency range. This reso-

nance behavior is not shown by the subthreshold membrane voltage response to the field in

the absence of suprathreshold fluctuating inputs. Interestingly, spike rate responses to weak

sinusoidal modulations of the mean input at the soma or dendrite instead of an applied field

do not exhibit such a resonance (Fig 2C and 2D). Response amplitudes typically decrease as

the frequency of the input modulations increases, although spike rate responses remain ele-

vated for somatic modulations of up to about 100 Hz. This behavior is robustly shown for vari-

ous neuronal morphologies (S2B Fig). The overall response amplitudes, especially for input

modulations at the dendrite, however, are strongly affected by the ratio between dendritic and

somatic membrane surface. An increased ratio appears to cause increased spike rate responses.

Notably, the analytical results are in good agreement with those of numerical simulations (Fig

2 and S2 Fig). This justifies the extensive application of our analytical method in the subse-

quent analyses.
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Next, we assess the resonance behavior caused by the applied field for a range of biologically

plausible input statistics (see Fig 3). Intriguingly, resonance robustly appears across these

input conditions; that is, a resonance peak occurs for very different spiking statistics, including

low rate, high variability (due to small input means �I s, �I d and large variances s2
s , s

2
d) as well as

high rate, low variability (due to large �I s, �Id and small s2
s , s

2
d; cf. Figs 3 and 1H). Resonance fre-

quency (Fig 3A) and strength (Fig 3B and 3C) increase with increasing input mean, but not

necessarily with increasing input variance. For mean-dominated input (that is, large input

mean and small input variance) the resonance frequency is similar to the baseline spike rate

(compare the dashed curves for large input mean in Fig 3A with Fig 1H). In this case an

Fig 2. Neuronal responses to an applied electric field and to input modulations. A: spike times and spike rate

(histogram: grey, analytical result: green line; cf. Methods section 3) of a PY model neuron in response to a sinusoidal

electric field, E(t) = E1 sin(ωt) with angular frequency ω (here: ω/(2π) = 12.6 Hz), in the presence of noisy background

input. B: amplitude of spike rate responses to a field with amplitude E1 = 1 V/m as a function of field frequency for

input statistics �I s ¼ 10 pA, ss ¼ 15 pA
ffiffiffiffiffiffi
ms
p

, �I d ¼ 3 pA, sd ¼ 5 pA
ffiffiffiffiffiffi
ms
p

(green squares) and �I s ¼ 3 pA,

ss ¼ 15 pA
ffiffiffiffiffiffi
ms
p

, �I d ¼ 7 pA, sd ¼ 60 pA
ffiffiffiffiffiffi
ms
p

(green circles), as well as amplitude of normalized subthreshold

somatic voltage responses (magenta dashed line). C and D: amplitude of spike rate responses (green) and of

normalized subthreshold somatic voltage responses (impedances; magenta dashed lines) to sinusoidal modulations

of the mean input at the soma, �I sðtÞ ¼ �I 0
s þ

�I 1
s sinðotÞ, with amplitude �I 1

s ¼ 0:5 pA (C) or at the dendrite,
�I dðtÞ ¼ �I 0

d þ
�I 1
d sinðotÞ, with amplitude �I 1

d ¼ 1 pA (D) as a function of modulation frequency in the absence of an

extracellular field. Baseline (constant) input statistics in C and D correspond to those in B. Remark: the spike rate

responses to the field and those to modulations of the mean input are mathematically linked (by Eq (57)) such that the

former can be calculated from responses to modulations at the soma and dendrite, respectively, using response

amplitude and phase information.

https://doi.org/10.1371/journal.pcbi.1006974.g002
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increase in input variance interestingly leads to a decrease in resonance frequency and

strength. For fluctuation-dominated input the resonance frequency is restricted to the the beta

and low gamma frequency bands (�15-40 Hz), and peak amplitudes vary between about 1-2

spikes/s.

How does the external field promote this resonance behavior? From the definition of the

extracellular field and the circuit diagram in Fig 1A it becomes evident that the trans-mem-

brane currents caused by the field at the soma and dendrite are opposed (using Kirchhoff’s

law, that all incoming currents at a point of the circuit must sum to zero; see Eqs (1) and (2),

where E(t) affects Vs and Vd with opposite sign). This indicates that the electric field effectively

reflects anti-correlated inputs at the soma and dendrite. To examine the influence of input cor-

relations more closely we applied sinusoidal modulations of the mean input at the soma and

dendrite with a phase shift (Fig 4A). A resonance peak emerges as the phase shift increases

from 0 (synchronized modulations / strong correlation) towards 180˚ (anti-synchronized

Fig 3. Spike rate resonance caused by an applied field. Resonance frequency (argmaxω r1(ω)/(2π); A), amplitude

(max r1(ω); B) and strength (max r1(ω)/r1(0); C) of the oscillatory spike rate with amplitude r1 (cf. Methods section 3)

in response to a sinusoidal applied field with E1 = 1 V/m and angular frequency ω for a range of input statistics. Left:

ss ¼ 15 pA
ffiffiffiffiffiffi
ms
p

(dashed lines), ss ¼ 25 pA
ffiffiffiffiffiffi
ms
p

(solid lines), �I d ¼ 3 pA and sd ¼ 5 pA
ffiffiffiffiffiffi
ms
p

; right: sd ¼

5 pA
ffiffiffiffiffiffi
ms
p

(dashed lines), sd ¼ 60 pA
ffiffiffiffiffiffi
ms
p

(solid lines), �I s ¼ 3 pA and ss ¼ 15 pA
ffiffiffiffiffiffi
ms
p

.

https://doi.org/10.1371/journal.pcbi.1006974.g003
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modulations / negative correlation) and becomes most pronounced at that value. We further

considered a time lag instead of a phase shift between the two mean input modulations (Fig

4B). The lag effectively reflects a difference in delays with which an oscillatory signal arrives at

the two neuronal locations, for example, due to a relay population. Lags that are sufficiently

large cause multiple resonance peaks. The frequency that corresponds to the most dominant

peak (with positive frequency) decreases with increasing time lag, but is otherwise largely inde-

pendent of the baseline input statistics (Fig 4C).

Fig 4. Spike rate responses to input modulations at soma and dendrite. A: amplitude of normalized rate responses

to sinusoidal modulations of the mean input at the soma, �I 0
s þ

�I 1 sinðotÞ, and dendrite, �I 0
d þ

�I 1 sinðot þ �Þ, with phase

shift ϕ as a function of modulation frequency, for the baseline input statistics �I 0
s ¼ 10 pA, ss ¼ 15 pA

ffiffiffiffiffiffi
ms
p

,
�I 0
d ¼ 3 pA, sd ¼ 5 pA

ffiffiffiffiffiffi
ms
p

(left) and �I 0
s ¼ 3 pA, ss ¼ 15 pA

ffiffiffiffiffiffi
ms
p

, �I 0
d ¼ 7 pA, sd ¼ 60 pA

ffiffiffiffiffiffi
ms
p

(right). ϕ = π
corresponds to negatively correlated (anti-synchronous) modulations. B: amplitude of normalized rate responses to

mean input modulations �I 0
s þ

�I 1 sinðotÞ and �I 0
d þ

�I 1 sinðo½t þ DT�Þ with time lag ΔT. Baseline input statistics as in A.

C: frequency (left) and normalized amplitude (resonance strength, using the amplitude at frequency 0; right) of the

most dominant peak at a positive frequency>1 Hz as a function of time lag ΔT for baseline input statistics as in A.

https://doi.org/10.1371/journal.pcbi.1006974.g004
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Modulation of network dynamics

To examine how an applied field interacts with network mechanisms to shape population

dynamics we derived a mean-field network model from large populations of sparsely coupled

PY neurons and IN neurons exposed to fluctuating background inputs and a spatially homoge-

neous (with respect to neuronal orientation) weak electric field. PY neurons are described by

the two-compartment model and IN neurons by an established single-compartment spiking

model (exponential integrate-and-fire), because IN neurons are spatially more compact and

therefore the direct effect of the electric field on them is negligible [24]. Synaptic coupling is

incorporated by delayed current pulses which cause post-synaptic potentials of reasonably

small magnitude with distributed delays. In the derivation we apply a diffusion approximation

and a moment closure method to transform the original network model into a manageable sys-

tem of two Fokker-Planck equations—one for each population—coupled via synaptic input

moments. This system describes the collective stochastic dynamics in a way that allows for

convenient dissection of the network activity in terms of population-averaged instantaneous

spike rates (see Methods section 6).

The network is parametrized to exhibit a baseline state of asynchronous (irregular) spiking

activity that depends on the strength of the external drive. Network-induced resonance

emerges for weak sinusoidal input modulations at the soma of PY neurons with strongest

responses in the beta and gamma frequency bands (�15-55 Hz, Fig 5). Depending on whether

IN neurons target PY neurons only at the soma (Fig 5B, 5E and 5H) or only at the dendrite

(Fig 5C, 5F and 5I) the resonance peak occurs at a higher or lower frequency compared to the

mixed setup (Fig 5A, 5D, and 5G). This resonance behavior is more pronounced in a baseline

state of increased activity (Fig 5A–5F) where the activity level of PY neurons seems more deci-

sive than that of IN neurons (Fig 5G–5I). Interestingly, for input modulations at the dendrite

of PY neurons such a clear resonance behavior does not appear.

When we consider a weak sinusoidal field instead of input modulations we observe a

strongly amplified resonance of the population activity in the same frequency band. The prom-

inent effect of an applied field in single cells thus carries over to PY-IN networks, boosting net-

work-based oscillations that are mediated by an excitation-inhibition loop (as studied, for

example, in [40]). Notably, the analytical results from the mean-field network are quantita-

tively validated by numerical simulations of networks with 10,000 neurons. The agreement is

quite remarkable considering that the mean-field derivation requires additional approxima-

tions compared to the single cell setting. In sum these results indicate that an oscillatory elec-

tric field as generated, for example, by transcranial stimulation should be most effective to

induce or maintain rhythmic network dynamics in the beta-gamma frequency range.

Discussion

Methodological aspects

Neuron model. Model-based investigations on how extracellular electric fields impact

neuronal spiking activity face a methodological challenge: the neuronal spatial extent plays an

important biophysical role, however, morphologically detailed neuron models are exceedingly

complex for use in noisy, in-vivo like conditions, especially in large networks. Two-compart-

ment neuron models feature the minimal level of spatial detail required to biophysically

account for the direct polarization effects caused by the field. At the same, simplified models of

this type retain the computational efficiency and, in part, the analytical tractability of point

neurons that are widely used to study network dynamics. Our approach is based on a two-

compartment spiking PY neuron model which accounts for an external electric field and
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includes fluctuating synaptic input at the soma and/or (apical) dendrite. Using semi-analytical

techniques this model was rapidly calibrated to accurately approximate the (subthreshold

somatic and spiking) response properties of a morphologically more plausible ball-and-stick

model neuron.

Fig 5. Resonance in PY-IN networks. Amplitude r1
PY of oscillatory spike rate of the PY neuron population for networks of sparsely coupled PY and IN

neurons exposed to external drives of different strengths and an applied field (solid lines, dots) or weak modulations of the mean input at the soma

(dashed lines, squares) and dendrite (dotted lines, diamonds) of PY neurons, as a function of field/modulation frequency. Insets: baseline spike rates for

the PY and IN populations (r0
PY, r0

IN). Each PY neuron receives inputs from 100 IN neurons both at soma and dendrite (A,D,G-I) or from 200 IN

neurons only at the soma (B,E) or dendrite (C,F), each IN neuron receives inputs from 200 PY neurons; random connectivity, excitatory/inhibitory

coupling strengths ±0.1 mV and distributed delays with bi-exponential delay density (rise time constant 0.5 ms, decay time constant 2 ms/5 ms for

excitatory/inhibitory connections; for details see Methods section 6). Baseline mean of the external input for PY neurons (at soma and dendrite): 6 pA

(A-C), 9 pA (D-I), for IN neurons: 0 pA (A-F), 0.05 nA (G), 0.1 nA (H), 0.15 nA (I); input standard deviation: 20 pA
ffiffiffiffiffiffi
ms
p

for PY neurons, 0:5 nA
ffiffiffiffiffiffi
ms
p

for IN neurons. Field amplitude was E1 = 1 V/m, input modulation amplitudes were chosen to yield equal response amplitude at the lowest frequency.

Symbols: results from network simulations (10,000 neurons), lines: analytical results from derived mean-field system.

https://doi.org/10.1371/journal.pcbi.1006974.g005
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Based on that spatially elongated model we have recently developed an extension for point

neuron models to match the subthreshold somatic responses to synaptic inputs and an applied

weak electric field [25]. The methodology presented here entails several advantages compared

to our previous work: the fitted two-compartment model involves a low-dimensional differen-

tial equation in contrast to an integro-differential equation (in case of the extended point

model to account for dendritic filtering effects), allowing for faster numerical simulation,

straightforward implementation of networks, and a natural way to account for an extracellular

field. Notably, the last feature highlights a benefit over networks of point model neurons for

which field effects were previously implemented in a simplified, phenomenological way [12,

14, 33]. Importantly, the two-compartment model further allowed for the application of ana-

lytical methods to study spiking dynamics.

Spike rate dynamics. We devised a method to efficiently study the spike rate dynamics of

these two-compartment neurons and the population activity of sparsely coupled large net-

works. It employs the Fokker-Planck partial differential equation and a moment closure

technique for dimension reduction which allows to numerically solve the resulting system in

reasonable time. These solutions yielded an accurate and efficient approximation of the instan-

taneous (population-averaged) spike rate (cf. Figs 1H, 2 and 5 and S2 Fig).

Similar moment closure methods were previously applied in different contexts, such as

integrate-and-fire point model neurons with synaptic dynamics (see, e.g. [41, 42] and refer-

ences therein). In Ref. [41] the issue was raised that moment closure may not be applicable

for certain ranges of parameter values. For the setting and regions of parameter space consid-

ered throughout the present study the approximation method was well suited. This might

not be the case for very small or large values of the input parameters (causing unphysiological

behavior).

We approximated the conditional probability density pd(Vd|Vs, t) by a conditioned Gauss-

ian, thereby closing the system of lower dimensional equations at the 3rd central moment of Vd

(assuming the 3rd and higher cumulants are zero). Closure at lower order moments lead to

markedly less accurate results due to similar timescales for the somatic and dendritic voltage

and strong coupling between those variables. On the other hand, the room for improvement

is vanishingly small such that closure at higher order moments does not justify its increased

implementation complexity and computational demands.

Notably, moment closure at order 1 is equivalent to the adiabatic approximation frequently

applied for adaptive integrate-and-fire neurons in the presence of noise [32, 43–45]. In that

case the conditional first centered moment (of the adaptation variable given membrane volt-

age) is approximated by the corresponding unconditioned moment. This usually leads to an

accurate reproduction of the spike rate dynamics due to the circumstance that the timescales

of the two variables are separated. Such an adiabatic approximation has also been applied

for two-compartment Purkinje model neurons [37] which possess large dendritic trees. A

substantial difference in somatic and overall dendritic capacitance justifies the assumption

of separated timescales for those models. Our approach, in contrast, is also valid for model

parametrizations that yield rather similar timescales for soma and dendrite, and therefore suit-

able for pyramidal cells.

It is worth noting that our analytical techniques also allow for correlated somatic and den-

dritic input fluctuations (cf. Methods section 3); an investigation into such input correlations,

however, is beyond the scope of the present study. The methodological results presented here

may further be used to derive a simple spike rate model in form of a low-dimensional differen-

tial equation from two-compartment model neurons. This may be achieved by adapting avail-

able approximation methods [32] to our reduced description based on the Fokker-Planck

equation.
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Described phenomena

In our modeling study we focused on pyramidal neurons from cortex in a spontaneous state,

in which the neural membrane potentials typically fluctuate close to the threshold for most of

the time and spikes are emitted at irregular intervals. For a single neuron an oscillatory electric

field with an amplitude of 1 V/m caused a small polarization effect that leads to a modulation

of the spiking probability. At the level of a local population of similarly oriented neurons these

small effects became apparent in the collective activity (population spike rate) which exhibited

a modulation of a few spikes/s per neuron on average. This type of stochastic resonance is a

hypothesized mechanism, perhaps the principle one, by which transcranial electrical stimula-

tion causes immediate functional effects [3].

We found that spiking activity is most strongly modulated in a rather narrow frequency

band. This resonance robustly emerged for a range of plausible input statistics. The resonance

frequency varied depending on the inputs; for the biologically relevant regime of strong input

fluctuations, however, the resonance peak was constrained to the beta and gamma frequency

bands (�15-45 Hz for single neurons and�15-55 Hz for networks). The phenomenon clearly

differs from the spike rate resonance for oscillatory input modulations shown in integrate-

and-fire point neurons (see, e.g. [46] or Fig 7C in [32]), which only occurs for mean-domi-

nated inputs (hence, fairly regular spiking) and where the resonance frequency rapidly

increases as the input increases.

Recent modeling results suggest that this resonance frequency may be largely determined

by the location of background input (soma vs. distal dendrite) [25]. Our results confirm

that resonance frequencies are higher for mainly dendritic background inputs compared to

mainly somatic background inputs (cf. Fig 3A). However, unless the input at one location is

completely extinguished (as in [25]) the statistics of background inputs at either location

appear to play the dominant role in determining this frequency. It may also be noted at this

point that spike rate resonance frequencies are lower for model neurons that include an expo-

nential nonlinearity (at the soma) compared to purely leaky integrate-and-fire neurons [25].

To date, experimental evidence for frequency-dependent modulation of neuronal activity

by extracellular fields is very sparse (see [47] for a review). Weak electric fields alternating at

30 Hz have been shown to increase spiking coherence of pyramidal cells in rat hippocampal

slices [18], and fields with high-frequency components have been evidenced to entrain spiking

activity in ferret primary visual cortex more effectively than fields that only contain low-fre-

quency components [4]. To the best of our knowledge, the effects of multiple field frequencies

have not yet been experimentally assessed. Therefore, most of our results on spike rate reso-

nance are currently not confirmed and may be regarded as predictions.

Interestingly, these resonance effects at the suprathreshold level were not shown by the sub-

threshold membrane voltage, whose amplitude monotonically decreased with increasing field

frequency (cf. Figs 1D and 2B). The latter phenomenon is in accordance with electrophysiolog-

ical observations: the subthreshold response amplitude (which scales linearly with the field

amplitude [23]) is of the same order of magnitude as that measured in pyramidal cells and

decreases with increasing field frequency [17]. Note that the parameter values of our model

were not optimized to reproduce this behavior quantitatively but can be adjusted accordingly

in a straightforward way (cf. S1 Fig) [25].

The two-compartment model naturally accounts for input filtering caused by the dendrite

(for example, as described in [25]). Notably, the somatic impedance and spike rate response

for input modulations at the soma exhibited rather distinct dependencies on input frequency

(compare Figs 1C and 2C), which may be attributed to the nonlinearity caused by spiking.

The presence of the dendrite lead to increased spike rate responses to weak oscillatory input
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modulations with high frequency at the soma, also for strongly fluctuating background inputs.

This is consistent with previous findings for Purkinje neurons in vitro and using a two-com-

partment model similar to the one used here [37] despite marked differences in the morphol-

ogy between Purkinje and pyramidal cells. Specifically, the ratio between dendritic and

somatic membrane surface (hence, capacitance) are quite distinct for these two types of neu-

rons, which explains certain differences in the results.

Methods

Python code for the models and methods presented below is freely available at GitHub:

https://github.com/neuromethods/two-compartment-models-and-weak-electric-fields.

1. Two-compartment neuron model

The two-compartment neuron model consists of two differential equations for the dynamics

of the somatic and the dendritic membrane voltage, Vs and Vd, respectively, together with a

reset condition of the integrate-and-fire type (for similar models with and without an extracel-

lular field see [35, 37, 38, 48]),

Cs
dVs

dt
þ Iion;sðVsÞ ¼ GiðVd � Vs � DEðtÞÞ þ IsðtÞ; ð1Þ

Cd
dVd

dt
þ GdVd ¼ GiðVs � Vd þ DEðtÞÞ þ IdðtÞ; ð2Þ

Iion;sðVsÞ≔ GsVs � GeDTe
Vs � VT
DT ; ð3Þ

if VsðtÞ � Vth then VsðtÞ  Vr; ð4Þ

where Vs, Vd are defined by the difference between the deviations V i
s, V

i
d of the intracellular

membrane potentials from the leak reversal potential (assumed identical for soma and den-

drite) and the extracellular membrane potentials Ve
s , V

e
d for the somatic and dendritic com-

partment, respectively,

VsðtÞ≔ V i
sðtÞ � Ve

s ðtÞ; VdðtÞ≔ V i
dðtÞ � Ve

dðtÞ: ð5Þ

Cs, Cd and Gs, Gd denote the capacitances and leak conductances of the somatic and den-

dritic membranes. The exponential term with conductance Ge, threshold slope factor ΔT and

effective threshold voltage VT approximates the rapidly increasing Na+ current at spike initia-

tion [49]. Gi is the internal conductance between the somatic and the dendritic compartment,

Δ is the spatial distance between their centers, and E denotes the extracellular electric field,

defined by

EðtÞ≔
Ve
s ðtÞ � Ve

dðtÞ
D

: ð6Þ

Is and Id are the synaptic input currents at the soma and dendrite, respectively. When Vs

increases beyond VT, it diverges to infinity in finite time due to the exponential term, which

defines a spike. In practice, however, the spike is said to occur when Vs reaches a given thresh-

old value Vth > VT. The downswing of the spike is not explicitly modeled; instead, when Vs

passes Vth (from below), the somatic membrane voltage is instantaneously reset to a lower

value Vr, cf. (4).
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Eqs (1) and (2) are the current balance equations for the center points of the two compart-

ments according to the electrical circuit diagram in Fig 1A. This can be seen by using Kirchh-

off’s law, that all incoming currents at a circuit point must sum to zero, and the definitions (5)

and (6) which imply V i
d � V i

s ¼ Vd � Vs � DE. We consider an applied weak sinusoidal field,

EðtÞ ¼ E0 þ E1 sin ðotÞ; ð7Þ

with offset E0 = 0, amplitude E1 = 1 V/m and angular frequency ω, unless stated otherwise.

The synaptic inputs are fluctuating currents that mimic the compound effect of synaptic

bombardment in-vivo, described by

IsðtÞ≔ �I sðtÞ þ ssðtÞ xsðtÞ; ð8Þ

IdðtÞ≔ �IdðtÞ þ sdðtÞ xdðtÞ ð9Þ

with time-varying moments �I s, �Id and σs, σd, and uncorrelated unit Gaussian white noise pro-

cesses ξs, ξd, i.e., hξs(t)ξd(t + τ)i = d(τ)dsd, where h � i denotes expectation (with respect to the

ensemble of noise realizations at times t and t + τ) and dsd is the Kronecker delta.

2. Calculation of subthreshold responses

We analytically calculate the somatic membrane voltage response for small amplitude varia-

tions of the synaptic inputs Is(t), Id(t) and a weak oscillatory field E(t), which do not elicit

spikes. Considering that the somatic voltage evolves sufficiently below the effective threshold

value VT allows us to neglect the exponential term in Eq (1) (i.e., the somatic membrane is

purely leaky and capacitive). Using the Fourier transform of Eqs (1) and (2) we then obtain:

V̂ sðoÞ ¼ Î sðoÞẐ
Is
2CðoÞ þ ÎdðoÞẐ

Id
2CðoÞ þ GiDÊðoÞ

h
ẐId

2CðoÞ � Ẑ Is
2CðoÞ

i
; ð10Þ

where

Ẑ Is
2CðoÞ ¼ 1=½ðCsioþ Gs þ GiÞ � G2

i =ðCdioþ Gd þ GiÞ�; ð11Þ

Ẑ Id
2CðoÞ ¼ Ẑ Is

2CðoÞGi=ðCdioþ Gd þ GiÞ ð12Þ

are the somatic impedances for inputs at the soma and at the dendrite, respectively. :̂ indicates

a Fourier transformed variable and ω denotes angular frequency.

3. Calculation of spike rate responses

To assess spiking activity we solved the stochastic differential equations Eqs (1)–(4), (7)–(9)

numerically using the Euler-Maruyama integration scheme with time steps between 0.01 ms

and 0.05 ms. In addition, we employed analytical calculations as described in the following.

Fokker-Planck system. For improved readability we rewrite Eqs (1)–(3) with extracellular

field according to Eq (7) and synaptic input given by Eqs (8) and (9) in compact form:

dVs

dt
¼ f ðVsÞ þ aVd þ msðtÞ þ sssðtÞxsðtÞ þ ssdðtÞxdðtÞ; ð13Þ

dVd

dt
¼ bVs þ cVd þ mdðtÞ þ sdsðtÞxsðtÞ þ sddðtÞxdðtÞ; ð14Þ

where the coefficients on the right hand side depend on the parameters of the system described

in Methods section 1. Note that here σsd = σds = 0, since the input fluctuations at the soma and
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dendrite are uncorrelated; however, the methods in this section may also be applied in scenar-

ios where any of these parameters is nonzero and varies over time.

The dynamics of the joint membrane voltage probability density p(Vs, Vd, t) for this system

plus reset condition (4) are governed by the Fokker-Planck equation (see, e.g. [32, 44, 50])

@p
@t
þ
@qs
@Vs
þ
@qd
@Vd
¼ 0; ð15Þ

where qs and qd are the probability fluxes for the somatic and dendritic membrane voltage,

respectively, given by

qs ≔ ½f ðVsÞ þ aVd þ msðtÞ�p �
s2
ssðtÞ
2

@p
@Vs
�

~sðtÞ
2

@p
@Vd

; ð16Þ

qd ≔ ½bVs þ cVd þ mdðtÞ�p �
s2
ddðtÞ
2

@p
@Vd
�

~sðtÞ
2

@p
@Vs

ð17Þ

with ~sðtÞ≔ sssðtÞsdsðtÞ þ ssdðtÞsddðtÞ, subject to the boundary conditions:

pðVth;Vd; tÞ ¼ 0 ðabsorbing boundaryÞ ð18Þ

lim
Vs!� 1

qsðVs;Vd; tÞ ¼ 0 ðreflecting boundaryÞ ð19Þ

lim
Vd!�1

qdðVs;Vd; tÞ ¼ 0 ðreflecting boundariesÞ ð20Þ

lim
Vs&Vr

qsðVs;Vd; tÞ � lim
Vs%Vr

qsðVs;Vd; tÞ ¼ qsðVth;Vd; tÞ ðre‐injectionÞ: ð21Þ

The last condition, a re-injection of probability flux, accounts for the voltage reset in the

neuron model. We obtain the instantaneous spike rate as

rðtÞ ¼
Z 1

� 1

qsðVth;Vd; tÞ dVd: ð22Þ

Dimension reduction. Solving the 2+1 dimensional Fokker-Planck partial differential

equation (PDE) system (15)–(21) numerically is possible in principle, but computationally

demanding. Here we reduce the dimension of this PDE system, which greatly reduces the

effort to calculate a) the steady-state spike rate, and b) spike rate responses to weak sinusoidal

variations of the input moments or the applied field. For that purpose only ordinary differen-

tial equation (ODE) systems need to be solved (see further below). This advantage in terms of

implementation and particularly computation becomes crucial for derived mean-field models

of multiple neuronal populations (see Methods section 6).

To reduce the dimension of the PDE system we utilize a moment closure approximation

method. The (full) probability density p can be expressed in terms of the marginal probability

density for the somatic voltage, ps, and the conditional probability density for the dendritic

voltage, pd, as p(Vs, Vd, t) = ps(Vs, t) pd(Vd|Vs, t). Note that pd is characterized by a (potentially)

infinite number of conditioned moments {ηd,1(Vs, t), ηd,2(Vs, t), . . .}. The method approxi-

mates pd by considering only the first k moments as described below (see [41] for the applica-

tion of such a method in a different setting). We transform the PDE system (15)–(21) into a
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system of 1+1-dimensional PDEs

@ps
@t
¼ L0ðZd;1Þ½ps�

@psZd;1
@t

¼ L1ðZd;1; Zd;2Þ½ps�

@psZd;2
@t

¼ L2ðZd;1; Zd;2; Zd;3Þ½ps�

. . .

ð23Þ

together with the associated boundary conditions by multiplying Eqs (15)–(21) with Vl
d for

l 2 {0, 1, 2, . . .} and integrating over Vd assuming that p and qd tend sufficiently fast to zero for

Vd! ±1, i.e., lim
Vd!�1

Vl
d pðVs;Vd; tÞ ¼ 0, lim

Vd!�1
Vl
d qdðVs;Vd; tÞ ¼ 0. Each linear operator Ll in

(23) depends on the next higher conditioned moment ηd,l+1 as indicated, hence the system is

(potentially) infinitely large. Note that we have omitted the obvious arguments Vs, t for ps, ηd,l

for improved readability, the linear operators are specified further below.

We close the system (23) at k = 3 by setting the 3rd central moment of Vd (as well as higher

cumulants) to zero, such that Zd;3 ¼ 3Zd;1Zd;2 � 2Z3
d;1, thereby assuming that pd can be suffi-

ciently well approximated by a conditioned Gaussian probability density,

pdðVdjVs; tÞ / exp �
½Vd � Zd;1ðVs; tÞ�

2

2½Zd;2ðVs; tÞ � Z2
d;1ðVs; tÞ�

( )

: ð24Þ

For a motivation of this assumption see the remark below Eq (38). In the following we spec-

ify the system of 3 coupled 1+1-dimensional PDEs we obtain in this way. Using the definitions

ps,1 ≔ psηd,1 and ps,2 ≔ psηd,2 the system is given by:

@ps
@t
þ
@us
@Vs
¼ 0 ð25Þ

@ps;1
@t
þ
@us;1
@Vs
� ½bVs þ mdðtÞ�ps � cps;1 þ

~sðtÞ
2

@ps
@Vs
¼ 0 ð26Þ

@ps;2
@t
þ
@us;2
@Vs
� 2½bVs þ mdðtÞ�ps;1 � 2cps;2 � ½s

2

dsðtÞ þ s
2

ddðtÞ�ps þ ~sðtÞ
@ps;1
@Vs
¼ 0 ð27Þ

with

us ¼
Z 1

� 1

qsdVd ¼ ½f ðVsÞ þ msðtÞ�ps þ aps;1 �
s2
ssðtÞ þ s

2
sdðtÞ

2

@ps
@Vs

ð28Þ

us;1 ¼
Z 1

� 1

VdqsdVd ¼ ½f ðVsÞ þ msðtÞ�ps;1 þ aps;2 �
s2
ssðtÞ þ s

2
sdðtÞ

2

@ps;1
@Vs
þ

~sðtÞ
2

ps ð29Þ

us;2 ¼
Z 1

� 1

V2

dqsdVd ¼ ½f ðVsÞ þ msðtÞ�ps;2 þ ahs �
s2
ssðtÞ þ s

2
sdðtÞ

2

@ps;2
@Vs
þ ~sðtÞps;1 ð30Þ
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and

hs ¼ 3
ps;1ps;2
ps
� 2

p3
s;1

ps
ð31Þ

subject to the conditions

psðVth; tÞ ¼ 0 ð32Þ

lim
Vs!� 1

usðVs; tÞ ¼ lim
Vs!� 1

us;1ðVs; tÞ ¼ lim
Vs!� 1

us;2ðVs; tÞ ¼ 0 ð33Þ

lim
Vs&Vr

usðVs; tÞ � lim
Vs%Vr

usðVs; tÞ ¼ usðVth; tÞ ð34Þ

lim
Vs&Vr

us;1ðVs; tÞ � lim
Vs%Vr

us;1ðVs; tÞ ¼ us;1ðVth; tÞ ð35Þ

lim
Vs&Vr

us;2ðVs; tÞ � lim
Vs%Vr

us;2ðVs; tÞ ¼ us;2ðVth; tÞ ð36Þ

and requiring that ps is initialized such that
R Vth
� 1

psðVs; 0ÞdVs ¼ 1. The spike rate is then

obtained by

rðtÞ ¼ usðVth; tÞ: ð37Þ

Note that ps(Vth, t) = 0 implies ps,1(Vth, t) = ps,2(Vth, t) = 0. The conditions (33) follow from

condition (19) and a self-consistency requirement with respect to the dynamics of the uncon-

ditioned moments Zd;1ðtÞ ¼
R Vth
� 1

ps;1ðVs; tÞdVs and Zd;2ðtÞ ¼
R Vth
� 1

ps;2ðVs; tÞdVs. The latter can

be seen by integration of Eqs (26) and (27) over Vs and comparison with the moment equa-

tions obtained by successive integration of Eq (15) over Vs, multiplication by Vd or V2
d , respec-

tively, and integration over Vd. Conditions (34)–(36) follow from (21). Note also that

us;1ðVth; tÞ ¼ rðtÞZd;1ðVth; tÞ; us;2ðVth; tÞ ¼ rðtÞZd;2ðVth; tÞ: ð38Þ

Remark: The assumption that pd can be sufficiently well approximated by a conditioned

Gaussian is supported by the circumstance that for subthreshold inputs and an electric field

which keep the somatic voltage (sufficiently) below the spike threshold the approximation

is excellent. In that case pd(Vd|Vs, t) is indeed a conditioned Gaussian probability density

(because the exponential term in Eq (1) as well as conditions (18) and (21) are negligible).

Since this is not the case for stronger inputs (that cause spiking) the reproduction performance

of this approximation needs to be evaluated (cf. Figs 1E, 1G and 2 and Discussion).

Steady state. For the steady state (in case of constant parameters μs, μd, σss, σds, σsd, σdd)

we obtain, by setting the time derivatives in Eqs (25)–(27) to zero, the 6-dimensional ODE

Modeling spiking neurons and networks in the presence of weak electric fields

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006974 April 22, 2019 17 / 30

https://doi.org/10.1371/journal.pcbi.1006974


system

dus
dVs
¼ 0

dps
dVs
¼

2½ðf ðVsÞ þ msÞps þ aps;1 � us�
s2
ss þ s

2
sd

ð39Þ

dus;1
dVs
¼ ðbVs þ mdÞps þ cps;1 �

~s

2

dps
dVs

ð40Þ

dps;1
dVs
¼

2½ðf ðVsÞ þ msÞps;1 þ aps;2 þ ~sps=2 � us;1�
s2
ss þ s

2
sd

ð41Þ

dus;2
dVs
¼ 2ðbVs þ mdÞps;1 þ 2cps;2 þ ðs

2

ds þ s
2

ddÞps � ~s
dps;1
dVs

ð42Þ

dps;2
dVs
¼

2½ðf ðVsÞ þ msÞps;2 þ ahs þ ~sps;1 � us;2�
s2
ss þ s

2
sd

ð43Þ

subject to the conditions (32)–(36) (with time dependence omitted).

We solve this nonlinear ODE system (nonlinearity due to hs, cf. Eq (31)) with variable coef-

ficients numerically by integrating Eqs (39)–(43) backwards from Vth with ps(Vth) = ps,1(Vth) =

ps,2(Vth) = 0, us(Vth) = 1, us,1(Vth) = ηd,1(Vth), us,2(Vth) = ηd,2(Vth) to a sufficiently small

(lower bound) voltage value Vlb, taking into account the “jump” conditions (34)–(36), and

determine ηd,1(Vth) and ηd,2(Vth) such that us,1(Vlb) = us,2(Vlb) = 0, cf. condition (33), is ful-

filled. Then, the scaling factor r (the spike rate) of the obtained solution is determined such

that
R Vth
Vlb

psðVsÞdVs ¼ 1 holds. The solution was achieved by means of a Python implementa-

tion using a root finding algorithm provided by the package Scipy [51] (optimize.root,

modification of the Powell hybrid method [52]) and low-level virtual machine acceleration

through the package Numba [53].

Response to modulations. In order to characterize the spike rate dynamics we calculate

the response to small-amplitude sinusoidal variations of the mean input around a baseline,

�I sðtÞ ¼ �I 0
s þ

�I 1
s sin ðotÞ, �IdðtÞ ¼ �I 0

d þ
�I 1
d sin ðotÞ, or to a weak sinusoidal field, cf. Eq (7). These

modulations translate to sinusoidal modulations of μs(t) and μd(t) in the system (25)–(36). The

parameters σss, σds, σsd and σdd remain constant.

For mathematical convenience we write the modulations in complex form

msðtÞ ¼ m0
s þ m

1
s e

iot mdðtÞ ¼ m0
d þ m

1
de

iot; ð44Þ

with small m1
s > 0 and m1

d > 0 (thereby introducing a companion system) and approximate the

solution to first order, rðtÞ ¼ r0 þ r̂1ðoÞeiot , where r̂1 is a complex variable from which the

response amplitude r1 and phase shift ψ of the oscillatory spike rate r0 + r1(ω)sin(ωt+ ψ(ω))

can be extracted in a straightforward way: r1 ¼ jr̂1j, c ¼ arg ðr̂1Þ (see, e.g. [46] for a similar

type of analysis in a different setting). Note that also the state variables of this solution take the

form psðVs; tÞ ¼ p0
s ðVsÞ þ p̂1

s ðVs;oÞeiot (analogously for ps,1, ps,2, us, us,1, us,2). For fixed (angu-

lar) frequency ω we obtain the following ODE system (neglecting terms of second and higher
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order in m1
s ; m

1
d):

dû1
s

dVs
¼ � iop̂1

s

dp̂1
s

dVs
¼

2½ðf ðVsÞ þ m
0
s Þp̂

1
s þ m

1
sp

0
s þ ap̂1

s;1 � û1
s �

s2
ss þ s

2
sd

ð45Þ

dû1
s;1

dVs
¼ � iop̂1

s;1 þ ðbVs þ m
0

dÞp̂
1

s þ m
1

dp
0

s þ cp̂1

s;1 �
~s

2

dp̂1
s

dVs

ð46Þ

dp̂1
s;1

dVs
¼

2½ðf ðVsÞ þ m
0
s Þp̂

1
s;1 þ m

1
sp

0
s;1 þ ap̂1

s;2 þ ~sp̂1
s=2 � û1

s;1�

s2
ss þ s

2
sd

ð47Þ

dû1
s;2

dVs
¼ 2ðbVs þ m

0

dÞp̂
1

s;1 þ 2m1

dp
0

s;1 þ 2cp̂1

s;2 þ ðs
2

ds þ s
2

ddÞp̂
1

s � ~s
dp̂1

s;1

dVs

ð48Þ

dp̂1
s;2

dVs
¼

2½ðf ðVsÞ þ m
0
s Þp̂

1
s;2 þ m

1
sp

0
s;2 þ aĥ1

s þ ~sp̂1
s;1 � û1

s;2�

s2
ss þ s

2
sd

ð49Þ

with

ĥ1
s ¼ 4

ðp0
s;1Þ

3

ðp0
s Þ

3
� 3

p0
s;1p

0
s;2

ðp0
s Þ

2

" #

p1
s þ 3

p0
s;2

p0
s

� 6
ðp0

s;1Þ
2

ðp0
s Þ

2

" #

p1
s;1 þ 3

p0
s;1

p0
s

p1

s;2 ð50Þ

subject to the conditions

p̂1
s ðVth;oÞ ¼ 0 ð51Þ

lim
Vs!� 1

û1

s ðVs;oÞ ¼ lim
Vs!� 1

û1

s;1ðVs;oÞ ¼ lim
Vs!� 1

û1

s;2ðVs;oÞ ¼ 0 ð52Þ

lim
Vs&Vr

û1

s ðVs;oÞ � lim
Vs%Vr

û1

s ðVs;oÞ ¼ û1

s ðVth;oÞ ð53Þ

lim
Vs&Vr

û1

s;1ðVs;oÞ � lim
Vs%Vr

û1

s;1ðVs;oÞ ¼ û1

s;1ðVth;oÞ ð54Þ

lim
Vs&Vr

û1

s;2ðVs;oÞ � lim
Vs%Vr

û1

s;2ðVs;oÞ ¼ û1

s;2ðVth;oÞ; ð55Þ

where :̂ indicates a complex valued variable that depends on ω. Note that this ODE system

depends on the (steady state) solution of the system (39)–(43) through p0
s , p

0
s;1 and p0

s;2.

The linear (complex valued) ODE system with variable coefficients (45)–(55) can be

conveniently solved in the following way. The desired spike rate response solution can

be written as r̂1ðoÞ ¼ m
1
s r̂
ms
1 ðoÞ þ m

1
dr̂

md
1 ðoÞ where the solution component r̂ms1 ðoÞ

corresponds to m1
d ¼ 0 and, vice versa, r̂md1 ðoÞ corresponds to m1

s ¼ 0. We first describe how

we obtain r̂ms1 ðoÞ (r̂md1 ðoÞ is calculated in an analogous way, see further below). The solution

xsðVs;oÞ≔ ðp̂1
s ; p̂

1
s;1; p̂

1
s;2; û

1
s ; û

1
s;1; û

1
s;2Þ associated with r̂ms1 ðoÞ can be decomposed into (omit-

ting the argument ω below for improved readability)

xsðVsÞ ¼ r̂ms1 xaðVsÞ þ Ẑ
1
d;1ðVthÞxbðVsÞ þ Ẑ

1
d;2ðVthÞxgðVsÞ þ xdðVsÞ; ð56Þ

where xα, xβ, xγ solve the homogeneous part (m1
s ¼ 0, m1

d ¼ 0) of the ODE system (45)–(50)

with p̂1
xðVthÞ ¼ p̂1

x;1ðVthÞ ¼ p̂1
x;2ðVthÞ ¼ 0 for x 2 {α, β, γ}, û1

a
ðVthÞ ¼ 1, û1

b
ðVthÞ ¼ û1

g
ðVthÞ ¼ 0,
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û1
a;1
ðVthÞ ¼ Z

0
d;1ðVthÞ, û1

a;2
ðVthÞ ¼ Z

0
d;2ðVthÞ, û1

b;1
ðVthÞ ¼ r0, û1

b;2
ðVthÞ ¼ 0, û1

g;1
ðVthÞ ¼ 0,

û1
g;2
ðVthÞ ¼ r0, and “jump” conditions (53)–(55). Note that r0, Z0

d;1ðVthÞ and Z0
d;2ðVthÞ are

known from the solution for the steady state system. xd solves the inhomogeneous system

(45)–(50) with m1
s ¼ 1 (m1

d ¼ 0) and condition xd(Vth) = 0. These solutions are obtained

numerically by backward integration from Vth to Vlb. r̂ms1 ðoÞ together with Ẑ1
d;1ðVthÞ; Ẑ

1
d;2ðVthÞ

are then calculated by solving the linear equation system that arises to satisfy the condition

û1
s ðVlbÞ ¼ û1

s;1ðVlbÞ ¼ û1
s;2ðVlbÞ ¼ 0. The solution method for r̂md1 ðoÞ is completely analogous

with the difference that r̂md1 appears instead of r̂ms1 in Eq (56) and xd solves the inhomogeneous

system (45)–(50) with m1
d ¼ 1 (m1

s ¼ 0).

We obtain the amplitude of the spike rate response to an applied field from

r̂1ðoÞ ¼
GiDE1

Cd
r̂md1 ðoÞ �

GiDE1

Cs
r̂ms1 ðoÞ; ð57Þ

whereas the response modulations to sinusoidal mean input at the soma and dendrite in the

absence of an oscillatory field are given by r̂1ðoÞ ¼
�I 1
s r̂
ms
1 ðoÞ=Cs and r̂1ðoÞ ¼

�I 1
dr̂

md
1 ðoÞ=Cd,

respectively.

4. Parametrization via ball-and-stick model

In the following we describe a semi-analytical technique to fit the two-compartment (2C)

model to a biophysically more detailed, spatially extended ball-and-stick (BS) model. In partic-

ular, the parameter values of the 2C model are determined to best approximate the somatic

voltage dynamics of the BS model. This is done in an efficient way using analytical results for

the voltage dynamics of both models, and it does not depend on a particular choice of parame-

ter values for the input or the extracellular field. This part may thus be regarded as a reduction

of the BS model.

Ball-and-stick model. The BS neuron model consists of a finite passive dendritic cable

of length L with lumped somatic compartment at the proximal end, x = 0, and a sealed end

boundary condition at the distal extremity, x = L. It includes capacitive and leak currents

across the membrane, an approximation of the spike-generating sodium current at the soma,

an internal current (along the cable) and synaptic input currents at the soma and distal den-

drite as well as a spatially homogeneous but time-varying external electric field (for details on

the derivation of this model see [25]). The dynamics of the model are governed by

cm
@V
@t
� gi

@
2V
@x2
þ gmV ¼ 0; 0 < x < L; ð58Þ

cs
@V
@t
� gi

@V
@x
þ gsV � gsDTe

V � VT

DT ¼ IsðtÞ � giEðtÞ; x ¼ 0; ð59Þ

@V
@x
¼
IdðtÞ
gi
þ EðtÞ; x ¼ L ð60Þ

together with a reset condition

if Vð0; tÞ � Vth then Vð0; tÞ≔ V 0r; ð61Þ

where cm = cDd π is the membrane capacitance, gm = %m Ddπ is the membrane conductance

and gi = %i(Dd/2)2π is the internal (axial) conductance of a dendritic cable segment of unit

length. c is the specific membrane capacitance (in F/m2), %i is the specific internal conductance
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(in S/m), %m is the specific membrane conductance (in S/m2) and Dd is the cable diameter.

cs ¼ cD2
sp and gs ¼ %mD2

sp are the somatic membrane capacitance and leak conductance,

respectively, with soma diameter Ds. The exponential term with threshold slope factor ΔT and

effective threshold voltage VT approximates the rapidly increasing Na+ current at spike initia-

tion [49]. Spike times are defined by the times at which the somatic membrane voltage V(0, t)
crosses the threshold voltage value Vth from below (cf. spike mechanism of the 2C model).

Is(t), Id(t) and E(t) are described by Eqs (8), (9) and (7), respectively. The parameter values are

provided in Table 1.

To generate spike trains we simulated the BS neuron model using a semi-implicit numerical

scheme (Crank-Nicolson method; see, e.g. appendix C of [59]) that was extended for stochasti-

city as proposed in [60], and by applying the tridiagonal matrix algorithm. Discretization steps

were 5 μs for time and L/200 for space (along the dendrite).

Calculation of subthreshold responses. We analytically calculate the somatic membrane

voltage response of the BS model for small variations of the synaptic inputs Is(t), Id(t) and a

weak oscillatory field E(t), which do not elicit spikes. We consider that the somatic voltage

evolves sufficiently below VT, which allows us to neglect the exponential term in Eq (59) (cf.

Methods section 2). The linear PDE (58) together with the boundary conditions (59) and (60)

is then solved using separation of variables V(x, t) = W(x)U(t) and the Fourier transform

V̂ ðx;oÞ ¼WðxÞÛðoÞ ¼WðxÞ
Z 1

� 1

UðtÞe� iotdt: ð62Þ

We obtain the system of differential equations

cmioV̂ � gi
@

2V̂
@x2
þ gmV̂ ¼ 0 0 < x < L; ð63Þ

csioV̂ � gi
@V̂
@x
þ gsV̂ ¼ Î sðoÞ � giÊðoÞ x ¼ 0; ð64Þ

@V̂
@x
¼
ÎdðoÞ
gi
þ ÊðoÞ x ¼ L; ð65Þ

where :̂ indicates a (temporally) Fourier transformed variable. The solution of this system can

Table 1. Description and values of the ball-and-stick model parameters.

Parameter (unit) Description Default value

c (F/m2) Specific membrane capacitance 1 � 10−2 [45, 54]

%m (S/m2) Specific membrane conductance 1/3 [54]

%i (S/m) Specific internal conductance 1/2 [55]

Ds (m) Soma diameter 15 � 10−6 [56]

Dd (m) Dendritic cable diameter 1 � 10−6 [55]

L (m) Dendritic cable length 7 � 10−4 [57]

ΔT (mV) Threshold slope factor 1.5 [58]

VT (mV) Effective threshold voltage 10 [58]

Vth (mV) Threshold (spike) voltage 20

V 0rðmVÞ Reset voltage 0

The values of Ds, Dd and L were varied in S1 and S2 Figs.

https://doi.org/10.1371/journal.pcbi.1006974.t001
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be expressed as

V̂ ð0;oÞ ¼ Î sðoÞẐ
Is
BSðoÞ þ Î dðoÞẐ

Id
BSðoÞ þ giÊðoÞ

h
ẐId
BSðoÞ � Ẑ Is

BSðoÞ
i

ð66Þ

with

Ẑ Is
BSðoÞ ¼ 1=½csioþ gs þ zðoÞ gi tanhðzðoÞLÞ�; ð67Þ

Ẑ Id
BSðoÞ ¼ Ẑ Is

BSðoÞ=coshðzðoÞLÞ; ð68Þ

where ±z(ω) are the roots of the characteristic polynomial giy2 = gm + cmiω of Eq (63),

zðoÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gm þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2
m þ o

2c2
m

p

2gi

s

þ sgnðoÞi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� gm þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2
m þ o

2c2
m

p

2gi

s

: ð69Þ

Note that ẐIs
BS and Ẑ Id

BS are the somatic impedances for inputs at the soma and the distal den-

drite, respectively.

The response to a sinusoidal field variation, E(t) = E1 sin(φt), with constant Is and Id can be

expressed in the time domain as

Vð0; tÞ ¼
�
�
�E1½Ẑ

Id
BSðφÞ � Ẑ Is

BSðφÞ�
�
�
� sinðφt þ arg ½ẐId

BSðφÞ � Ẑ Is
BSðφÞ�Þ: ð70Þ

In addition we calculate the somatic voltage time series in response to subthreshold input

for a given initial condition V(x, 0) = V0(x). Using separation of variables and the Laplace

transform

~V ðx; sÞ ¼WðxÞ ~UðsÞ ¼WðxÞ
Z 1

0

UðtÞe� stdt; ð71Þ

with complex variable s we obtain

cmðs~V � V0Þ � gi
@2 ~V
@x2
þ gm ~V ¼ 0 0 < x < L; ð72Þ

csðs ~V � V0Þ � gi
@ ~V
@x
þ gs ~V ¼ ~I sðsÞ � gi~EðsÞ x ¼ 0; ð73Þ

@ ~V
@x
¼

~I dðsÞ
gi
þ ~EðsÞ x ¼ L; ð74Þ

where ~: indicates a (temporally) Laplace transformed variable. We solve this system and obtain

~V ð0; sÞ ¼
h
~I sðsÞ þ csV0ð0Þ

i
~ZIs
BSðsÞ þ

h
~I dðsÞ þ cm

Z L

0

coshðzðsÞðL � yÞÞV0ðyÞdy
i

~ZId
BSðsÞ

þ gi~EðsÞ
h

~ZId
BSðsÞ � ~ZIs

BSðsÞ
i ð75Þ

with

~ZIε
BSðsÞ ¼ 1=½csisþ gs þ zðsÞgi tanhðzðsÞLÞ�; ð76Þ

~ZId
BSðsÞ ¼ ~ZIs

BSðsÞ=coshðzðsÞLÞ; ð77Þ

Modeling spiking neurons and networks in the presence of weak electric fields

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006974 April 22, 2019 22 / 30

https://doi.org/10.1371/journal.pcbi.1006974


where ±z(s) are the roots of the characteristic polynomial giy2 = cms + gm of Eq (72), given by

zðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cmsþ gm

gi

r

: ð78Þ

The somatic voltage time series V(0, t) is then computed by inverse transforming ~V ð0; sÞ
using an efficient numerical method [61].

Parameter fitting. We approximate the somatic voltage dynamics of the BS model by the

2C model in two steps. First, we fit V̂ sðoÞ to V̂ ð0;oÞ using Eqs (10) and (66) over a range of

angular frequencies ω 2 [0, ωmax], requiring that the voltage values for ω = 0 (i.e. the steady

states) match exactly. This constraint determines three parameters,

Gd ¼ ðgs � GsÞ coshðL=lÞ þ lgm sinh ðL=lÞ; ð79Þ

Gi ¼ Gd=½coshðL=lÞ � 1�; ð80Þ

D ¼ gi=Gi: ð81Þ

where we have introduced the electrotonic length constant l≔
ffiffiffiffiffiffiffiffiffiffiffi
gi=gm

p
. The remaining three

subthreshold parameters Cs, Cd and Gs are obtained using the method of least squares, with

ωmax/(2π) = 10 kHz. In the second step we determine the reset voltage Vr by approximating

the transient BS somatic voltage time series immediately after a spike elicited by threshold

somatic input and threshold dendritic input for E(t) = 0. Specifically, we fit the post-spike volt-

age time series Vs(t) to V(0, t) across the time interval t 2 [0, τs] with initial conditions Vs(0) =

Vr, Vd(0) = (GiVth + Id)/(Gd + Gi) and Vð0; 0Þ ¼ V 0r,

Vðx; 0Þ ¼
Is coshððL � xÞ=lÞ þ Id½coshðx=lÞ þ gs=ðlgmÞ�

gs coshðL=lÞ þ lgm sinhðL=lÞ
0 < x < L ð82Þ

for threshold somatic input Is = Vth[gs + λgm tanh(L/λ)], Id = 0 and for threshold dendritic

input Id = Vth[gs cosh(L/λ) + λgm sinh(L/λ)], Is = 0 simultaneously using the method of least

squares. τs = Cs/(Gs + Gi) is the somatic membrane time constant of the 2C model. Note that

we consider threshold input as constant current that yields V = VT (calculated from the linear

subthreshold model systems). The voltage time series V(0, t) of the BS model is rapidly com-

puted using the Laplace transform, Eq (75), and the voltage time series Vs(t) of the 2C model is

calculated analytically in a straightforward way (linear ODE system). To guarantee an equal

effectiveness of the exponential term on the somatic membrane voltage dynamics in the 2C

model compared to the BS model we set Ge = Cs gs/cs (cf. Eqs (1) and (59)). The values for ΔT,

VT and Vth are set equal to those of the BS model. Notably, this fitting method is very efficient,

since it involves analytical results and does not depend on specific realizations of time series

for the neuronal input or extracellular field.

5. Spike coincidence measure

To quantify the similarity between the spike trains of the two-compartment and the ball-and-

stick model neurons we used the coincidence factor Γ defined by [62]

GBS;2C ¼
Nc � hNci

ðNBS þ N2CÞ=2

1

N
; ð83Þ

where Nc is the number of coincident spikes with precision (i.e., maximal temporal separation)

Δc, NBS and N2C are the number of spikes in the spike trains of the ball-and-stick and the two-
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compartment models, respectively. hNci = 2rΔcNBS is the expected number of coincidences

generated by a homogeneous Poisson process with spike rate r = N2C/T as exhibited by the

two-compartment model, where T is the duration of the spike train. The factor N ¼ 1 � 2rDc

normalizes ΓBS,2C to a maximum value of 1, which is attained if the spike trains match opti-

mally (with precision Δc). ΓBS,2C = 0 on the other hand would result from a homogeneous Pois-

son process with rate that corresponds to the spike train of the two-compartment model, and

therefore indicates pure chance. Here we used Δc = 5 ms.

6. Two-population network

In this section we describe the network model of a large number N of sparsely and randomly

coupled pyramidal (PY) neurons and inhibitory (IN) interneurons, and derive a mean-field

system from it. Each PY neuron is described by the 2C model, Eqs (1)–(4), (7)–(9), and each

IN neuron is described by an exponential integrate-and-fire (point) neuron model,

CIN
dV
dt
¼ � GINV þ GINDTe

V � VT

DT þ IINðtÞ; ð84Þ

if V � Vth then V  V 0r; ð85Þ

because IN neurons do not exhibit an elongated spatial morphology compared with PY neu-

rons. We used CIN = 0.2 nF and GIN = 10 nS. The model neurons receive fluctuating external

and recurrent synaptic input and are exposed to an applied weak electric field E(t) that is spa-

tially uniform. For fields induced by transcranial brain stimulation [10] this is a valid assump-

tion. Each PY neuron receives inputs from Ks IN neurons at the soma and Kd IN neurons at

the dendrite and each IN neuron receives inputs from KIN PY neurons. Synaptic coupling is

described by delayed current pulses that produce postsynaptic potentials of size Js, Jd or JIN
(depending on the location of the synapse). Specifically, the input currents for neuron k, with

somatic and dendritic membrane voltage Vs,k, Vd,k (in case of a PY neuron) or overall mem-

brane voltage Vk (in case of an IN neuron), are given by

Ix;kðtÞ≔ �I x;extðtÞ þ sx;extðtÞ xx;kðtÞ þ Cx

X

l

Jxk;l
X

m

dðt � tml � dxk;lÞ; ð86Þ

x 2 {s, d, IN}, where Jxk;l 2 fJx; 0g, t
m
l is the m-th spike time of neuron l and dxk;l the coupling

delay between neuron l and k. The delays are independently sampled according to the proba-

bility distribution with density

pxdðdÞ≔
GðdÞ
txd � t

x
r

e� d=txd � e� d=txr
� �

ð87Þ

x 2 {s, d, IN}. We consider large numbers of connections Kx and reasonably small coupling

strengths Jx.

We simulated networks of this type in the presence of a sinusoidal weak field and, alterna-

tively, sinusoidal modulations of the mean inputs at the soma or dendrite of PY neurons. Net-

work simulations were performed using the Python-based Brian2 simulator [63]. In addition,

we derived a mean-field description and analytically computed network activity in terms of

population-averaged spike rates, as described in the following.

Derived mean-field model and resonance analysis. For large networks (in the mean-

field limit N!1) the overall synaptic input can be approximated by a mean part with
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additive fluctuations,

Ix;kðtÞ � �I xðt; rxdÞ þ sxðt; r
x
dÞzx;kðtÞ; ð88Þ

�I xðt; rxdÞ≔ �I x;extðtÞ þ CxJxKxrxdðtÞ; ð89Þ

s2
xðt; r

x
dÞ≔ s2

x;extðtÞ þ C2
xJ

2
xKxrxdðtÞ; ð90Þ

x 2 {s, d, IN} with delayed spike rates rsd ¼ psd � rIN, rdd ¼ pdd � rIN, rINd ¼ pINd � rPY, and unit

white Gaussian noise process zx,k that is uncorrelated to that of any other neuron (see, e.g.

[32]). This step is valid under the assumptions of (i) sufficient presynaptic activity, (ii) that

neuronal spike trains can be approximated by Poisson processes and (iii) that the correlations

between the fluctuations of synaptic inputs for different neurons vanish. Note that the latter

assumption is supported by sparse and random synaptic connectivity.

The previous approximation allows us to express the collective spiking dynamics in terms

of a coupled system of Fokker-Planck PDEs, one for the PY population (cf. Methods section 3)

and one for the IN population, where the coupling is mediated through the synaptic input

moments �I x and s2
x (cf. Eqs (89) and (90)). Specifically, the system for the PY population con-

sists of Eq (15) with

qs ≔ GiðVd � Vs � DEðtÞÞ � Iion;sðVsÞ þ
�I sðt; rsdÞ

� � p
Cs
�
s2
s ðt; r

s
dÞ

2C2
s

@p
@Vs

; ð91Þ

qd ≔ GiðVs � Vd þ DEðtÞÞ � GdVd þ
�I dðt; rddÞ

� � p
Cd
�
s2
dðt; r

d
dÞ

2C2
d

@p
@Vd

ð92Þ

subject to the conditions (18)–(21) and rPY given by Eq (22). The system for the IN population

is specified by

@pV
@t
þ
@qV
@V
¼ 0; ð93Þ

qV ≔ ½GINðDTe
V � VT

DT � VÞ þ �I INðt; rINd Þ�
p
CIN
�
s2
INðt; r

IN
d Þ

2C2
IN

@p
@V

ð94Þ

subject to the conditions

pVðVth; tÞ ¼ 0; lim
V!� 1

qVðV; tÞ ¼ 0; ð95Þ

lim
V&V0r

qVðV; tÞ � lim
V%V 0r

qVðV; tÞ ¼ qVðVth; tÞ ð96Þ

and spike rate given by rIN = qV(Vth, t).
To analyze the resonance properties of this mean-field network model we proceed similarly

as in Methods section 3: we consider either a weak sinusoidal electric field, Eq (7), or weak

sinusoidal modulations of the external mean input at the soma or dendrite of PY neurons,

�I x;extðtÞ ¼ �I 0
x;ext þ

�I 1
x;exte

iot , x 2 {s, d}. We assume a parametrization of the network such that

without these modulations (E1 ¼
�I 1
x;ext ¼ 0) it exhibits asynchronous activity represented by

a fixed point solution of the mean-field system. We write the modulations in complex form

and express the first order population spike rate responses as rPYðtÞ ¼ r0
PY þ r̂1

PYðoÞe
iot and

rINðtÞ ¼ r0
IN þ r̂1

INðoÞe
iot. To obtain the stationary (steady state) components r0

PY and r0
IN we
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solve the system (39)–(43) with m0
x ¼

�I 0
x;ext=Cx þ JxKxr0

IN and s2
x ¼ s

2
x;ext=C

2
x þ J2

xKxr0
IN, x 2 {s, d}

(and with the corresponding boundary conditions) together with the respective system for

the IN population with m0
IN ¼

�I 0
IN;ext=CIN þ JINKINr0

PY and s2
IN ¼ s

2
IN;ext=C

2
IN þ J2

INKINr0
PY via fixed

point iteration of the form ðr0
PY;nþ1

; r0
IN;nþ1
Þ ¼ Fðr0

PY;n; r
0
IN;nÞ, where n denotes the iteration num-

ber. Recall that σsd = σds = 0 in Eqs (13) and (14), as noted above. The response components

r̂1
PY and r̂1

IN are obtained from

r̂1
PYðoÞ ¼

�I 1
s;ext � GiDE1

Cs
r̂ms1 ðoÞ þ JsKsp̂

s
dðoÞr̂

1

INðoÞ½r̂
ms
1 ðoÞ þ Jsr̂

s2
s

1 ðoÞ�

þ
�I 1
d;ext þ GiDE1

Cd
r̂md1 ðoÞ þ JdKdp̂

d
dðoÞr̂

1

INðoÞ½r̂
md
1 ðoÞ þ Jdr̂

s2
d

1 ðoÞ�;

ð97Þ

r̂1

INðoÞ ¼ JINKINp̂
IN
d ðoÞr̂

1

PYðoÞ½r̂
mIN
1 ðoÞ þ JINr̂

s2
IN

1 ðoÞ�; ð98Þ

where p̂xdðoÞ ¼ ðt
x
r ioþ 1Þ

� 1
ðtxdioþ 1Þ

� 1
, x 2 {s, d, IN} is the Fourier transformed delay

density (cf. Eq (87)) and r̂mx1 , r̂s
2
x

1 are the population spike rate response components for sinusoi-

dal modulations of μx, s2
x of unit amplitude. Note that Eqs (97) and (98) can be jointly solved

in a straightforward way. In addition to first order responses to modulations of μs and μd

we therefore need to calculate the responses for weak sinusoidal modulations of s2
s and s2

d.

That is, the rate response solution of the system (25)–(36) for s2
ssðtÞ ¼ s

2
s;0 þ s

2
s;1e

iot and

s2
ddðtÞ ¼ s

2
d;0 þ s

2
d;1e

iot is required. This is done in an analogous way as explained above for

sinusoidal modulations of μs and μd (see Methods section 3). In particular, we solve (45)–(55)

with s2
ss ¼ s

2
s;0, s2

dd ¼ s
2
d;0, s2

sd ¼ s
2
ds ¼ 0, and where the inhomogeneous terms m1

sp
0
s , m

1
sp

0
s;1,

m1
sp

0
s;2 and 2m1

dp
0
s;1 in Eqs (45), (47), (49) and (48) are replaced by �

s2
s;1
2

dp0
s

dVs
, �

s2
s;1
2

dp0
s;1

dVs
, �

s2
s;1
2

dp0
s;2

dVs

and s2
d;1p

0
s , respectively. The resulting system can be numerically solved as explained in

Methods section 3, using Eq (56) where r̂ms1 is replaced by r̂s
2
s

1 and r̂
s2
d

1 , respectively, and xd

solves the adjusted inhomogeneous system (with s2
s;1 ¼ 1, m1

s ¼ m
1
d ¼ s

2
d;1 ¼ 0 and s2

d;1 ¼ 1,

m1
s ¼ m

1
d ¼ s

2
s;1 ¼ 0, respectively). For the simpler case of the exponential integrate-and-fire

point model for the IN population (steady state and response modulations) we refer to Refs.

[32, 46].

Supporting information

S1 Fig. Subthreshold response properties of ball-and-stick neurons and fitted two-com-

partment neurons. A: amplitude of subthreshold somatic impedances for inputs at the soma

and dendrite, respectively, as a function of input frequency (cf. Fig 1C). B: amplitude of sub-

threshold somatic voltage responses to a sinusoidal electric field with amplitude E1 = 1 V/m as

a function of field frequency (cf. Fig 1D). C: somatic voltage transients after a spike for con-

stant threshold inputs at the soma and dendrite, respectively (cf. Fig 1E). The six columns cor-

respond to different parametrizations (morphologies) of the ball-and-stick model, from left to

right: L = 4 � 10−4 m, L = 10 � 10−4 m (default L = 7 � 10−4 m), Dd = 0.5 � 10−6 m, Dd = 1.5 � 10−6

m (default Dd = 1 � 10−6 m), Ds = 10 � 10−6 m, Ds = 20 � 10−6 m (default Ds = 15 � 10−6 m). For

all other parameter values see Table 1. All curves were analytically computed.

(TIFF)

S2 Fig. Spike rate responses of two-compartment neurons. A: spike rate as a function of

somatic (green) and dendritic (blue) mean input, respectively, for ss=Cs ¼ 0:1 V=
ffiffi
s
p

and

Modeling spiking neurons and networks in the presence of weak electric fields

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006974 April 22, 2019 26 / 30

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006974.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006974.s002
https://doi.org/10.1371/journal.pcbi.1006974


sd=Cd ¼ 0:05 V=
ffiffi
s
p

(cf. Fig 1H). B: amplitude of spike rate responses to sinusoidal modula-

tions of the mean input at the soma (green) or at the dendrite (blue) as a function of

modulation frequency, for baseline input statistics �I 0
s=Cs ¼

�I 0
d=Cd ¼ 0:25mV=ms, ss=Cs ¼

0:1 V=
ffiffi
s
p

and sd=Cd ¼ 0:05 V=
ffiffi
s
p

(cf. Fig 2C and 2D). Modulation amplitudes were

�I 1
s=Cs ¼

�I 1
d=Cd ¼ 0:1mV=ms. Columns correspond to different parametrizations of the two-

compartment model, obtained by fitting ball-and-stick neurons with different morphology

(see S1 Fig). The values of critical parameters are indicated; somatic and dendritic time con-

stants are defined by τs ≔ Cs/(Gs + Gi), τd ≔ Cd/(Gd + Gi). For comparison, the default (fitted)

values were Cs = 9.9 pF, Cd = 28.9 pF, Gi = 1.2 nS, τd/τs = 2.04. Dots denote results from

numerical simulations, solid or dashed curves from analytical calculations. Remark: spike rate

responses to a weak sinusoidal field may be directly calculated from the responses to mean

input modulations at the soma and dendrite, respectively, using both response amplitudes and

phases (see Eq (57)).

(TIFF)
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20. Herrmann CS, Rach S, Neuling T, Strüber D. Transcranial alternating current stimulation: a review of

the underlying mechanisms and modulation of cognitive processes. Front Hum Neurosci. 2013; 7:1–

13. https://doi.org/10.3389/fnhum.2013.00279

21. Berenyi A, Belluscio M, Mao D, Buzsaki G. Closed-Loop Control of Epilepsy by Transcranial Electrical

Stimulation. Science. 2012; 337:735–737. https://doi.org/10.1126/science.1223154 PMID: 22879515

22. Ladenbauer J, Ladenbauer J, Külzow N, de Boor R, Avramova E, Grittner U, et al. Promoting sleep

oscillations and their functional coupling by transcranial stimulation enhances memory consolidation in

mild cognitive impairment. J Neurosci. 2017; 37:7111–7124. https://doi.org/10.1523/JNEUROSCI.

0260-17.2017 PMID: 28637840

23. Bikson M, Inoue M, Akiyama H, Deans JK, Fox JE, Miyakawa H, et al. Effects of uniform extracellular

DC electric fields on excitability in rat hippocampal slices in vitro. J Physiol. 2004; 557:175–90. https://

doi.org/10.1113/jphysiol.2003.055772 PMID: 14978199

24. Radman T, Ramos RL, Brumberg JC, Bikson M. Role of cortical cell type and morphology in subthresh-

old and suprathreshold uniform electric field stimulation in vitro. Brain Stimul. 2009; 2:215–28. https://

doi.org/10.1016/j.brs.2009.03.007 PMID: 20161507

25. Aspart F, Ladenbauer J, Obermayer K. Extending integrate-and-fire model neurons to account for input

filtering and the effects of weak electric fields mediated by the dendrite. PLOS Comput Biol. 2016; 12:

e1005206. https://doi.org/10.1371/journal.pcbi.1005206 PMID: 27893786

26. Aspart F, Remme MWH, Obermayer K. Differential polarization of cortical pyramidal neuron dendrites

through weak extracellular fields. PLOS Comput Biol. 2018; 14:e1006124. https://doi.org/10.1371/

journal.pcbi.1006124 PMID: 29727454

Modeling spiking neurons and networks in the presence of weak electric fields

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006974 April 22, 2019 28 / 30

https://doi.org/10.1038/nrn3599
https://doi.org/10.1038/nrn3599
http://www.ncbi.nlm.nih.gov/pubmed/24135696
https://doi.org/10.3389/fpsyt.2012.00083
https://doi.org/10.3389/fpsyt.2012.00083
https://doi.org/10.1016/j.brs.2009.03.005
http://www.ncbi.nlm.nih.gov/pubmed/20648973
https://doi.org/10.1523/JNEUROSCI.5252-09.2010
https://doi.org/10.1523/JNEUROSCI.5252-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/20739569
https://doi.org/10.1523/JNEUROSCI.2059-10.2010
https://doi.org/10.1523/JNEUROSCI.2059-10.2010
http://www.ncbi.nlm.nih.gov/pubmed/21068312
https://doi.org/10.1038/nn.2727
http://www.ncbi.nlm.nih.gov/pubmed/21240273
https://doi.org/10.1523/JNEUROSCI.5867-12.2013
https://doi.org/10.1523/JNEUROSCI.5867-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23825429
https://doi.org/10.1016/j.cub.2013.12.041
https://doi.org/10.1016/j.cub.2013.12.041
http://www.ncbi.nlm.nih.gov/pubmed/24461998
https://doi.org/10.7554/eLife.18834
https://doi.org/10.7554/eLife.18834
http://www.ncbi.nlm.nih.gov/pubmed/28169833
https://doi.org/10.1113/jphysiol.2007.137711
http://www.ncbi.nlm.nih.gov/pubmed/17599962
https://doi.org/10.1523/JNEUROSCI.0095-07.2007
https://doi.org/10.1523/JNEUROSCI.0095-07.2007
http://www.ncbi.nlm.nih.gov/pubmed/17360926
https://doi.org/10.1038/nature05278
http://www.ncbi.nlm.nih.gov/pubmed/17086200
https://doi.org/10.3389/fnhum.2013.00279
https://doi.org/10.1126/science.1223154
http://www.ncbi.nlm.nih.gov/pubmed/22879515
https://doi.org/10.1523/JNEUROSCI.0260-17.2017
https://doi.org/10.1523/JNEUROSCI.0260-17.2017
http://www.ncbi.nlm.nih.gov/pubmed/28637840
https://doi.org/10.1113/jphysiol.2003.055772
https://doi.org/10.1113/jphysiol.2003.055772
http://www.ncbi.nlm.nih.gov/pubmed/14978199
https://doi.org/10.1016/j.brs.2009.03.007
https://doi.org/10.1016/j.brs.2009.03.007
http://www.ncbi.nlm.nih.gov/pubmed/20161507
https://doi.org/10.1371/journal.pcbi.1005206
http://www.ncbi.nlm.nih.gov/pubmed/27893786
https://doi.org/10.1371/journal.pcbi.1006124
https://doi.org/10.1371/journal.pcbi.1006124
http://www.ncbi.nlm.nih.gov/pubmed/29727454
https://doi.org/10.1371/journal.pcbi.1006974


27. Anastassiou CA, Montgomery SM, Barahona M, Buzsáki G, Koch C. The effect of spatially inhomoge-
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