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The geometry of evolved 
community matrix spectra
Silja Borring Låstad1 & Jan O. Haerter1,2,3*

Random matrix theory has been applied to food web stability for decades, implying elliptical 
eigenvalue spectra and that large food webs should be unstable. Here we allow feasible food webs 
to self-assemble within an evolutionary process, using simple Lotka–Volterra equations and several 
elementary interaction types. We show that, as complex food webs evolve under 105 invasion 
attempts, the community matrix spectra become bi-modal, rather than falling onto elliptical 
geometries. Our results raise questions as to the applicability of random matrix theory to the analysis 
of food web steady states.

Ecosystems are networks of species in a habitat where the population of any species generally depends on the 
populations of all other species. Such complex inter-relations make the species vulnerable to changes in the 
environment1–3. Recent research indicates that human activity drives species to extinction at a rate corresponding 
to that of a mass extinction4,5. Consequently, it is crucial to gain further understanding of the conditions under 
which ecosystems are stable or susceptible to collapse.

On Earth, the species in ecosystems sustain over many generations, yet stable ecosystems have been found 
difficult to construct due to their complexity6–8. As shown in seminal work9, a dynamical system represented 
by a random Jacobian is exceedingly unlikely to be stable the more the number of species is increased. Hence, 
if real ecosystems can be represented as random matrices, they are very unlikely to be stable. The situation can 
seemingly be improved, when making additional assumptions: stabilisation is achieved by self-regulation10, 
where mechanisms such as cannibalism aid in stabilising due the effective reduction of a species’ growth rate 
with its population size.

Recent work builds on the notion of randomly composed ecosystems7,11–13, describing additional ways in 
which stability can be obtained. Introducing predator-prey interactions into a random matrix framework results 
in an elliptical eigenvalue spectrum and thus stabilising the food web7,8. Randomly exposing a large set of species 
to one-another and checking for feasible survivors is another path to achieve a coexisting community12,13. Real 
ecosystems exhibit a range of additional interactions and dynamics14,15. Additional links, such as those from 
omnivory or parasitism, have been suggested to yield greater food web stability16–21. Conversely, also the lack of 
omnivory, that is trophic coherence22, has been shown to promote coexistence.

However, complexity itself can be seen as the result of a lengthy computational task23, hence in principle 
ruling out the “shortcut” via random matrices as a means of achieving plausible community matrices. Depart-
ing from food webs that are randomly composed, our current work more closely relates to generative food web 
models, where invaders sequentially attempt to enter an existing food web and thus shape coexistence through 
an evolutionary process24–27. We build an algorithm that simulates many successive invasion attempts by intro-
ducing species one by one with a randomly chosen set of interaction parameters. After each invasion attempt, 
species populations are allowed to acquire a new steady state—often requiring extinctions of the invader or any 
of the resident species.

We then ask in how far the community matrices, that is, the Jacobian of the Lotka–Volterra equations evalu-
ated at the fixed points, yield elliptical eigenvalue spectra as predicted by random matrix theory. Using three 
different invasion mechanisms we show that evolved community matrix spectra are increasingly bi-modal as 
species richness grows—with many eigenvalues with small and negative real parts, but several eigenvalues show-
ing large negative real parts. Specifically, we first study treelike food webs, where each species can have only one 
resource, and which are known to become increasingly robust under repeated invasions28–30. Second, we contrast 
to food webs with loops, which can be trophically coherent or omnivorous. In these more complex cases species 
richness remains bounded and the concept of absolute fitness breaks down, resulting in a distinct evolutionary 
dynamics. Yet, also here, greater species richness is associated with bi-modal community matrix spectra. In 
contrast, the spectra obtained from random matrices are uni-modal with a peak at intermediate real parts. Our 
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results hence raise the question, in how far a random matrix framework is applicable to food webs that resulted 
from an evolutionary process.

Results and discussion
Modelling complex evolved food webs.  Our interest here is to develop a conceptual comparison 
between the eigenvalue spectrum of a complex, evolved food web and a random matrix analog. We there-
fore focus on the widely-used generalised Lotka–Volterra equations for consumer-resource interactions. For 
simplicity, we further restrict to a single basic nutrient source, and require that species feeding on the basic 
nutrient source are never omnivorous31, e.g., plants do not consume other plants. The original Lotka–Volterra 
equations32,33 describe spatially and temporally homogeneous, consumer-resource relations. The generalised 
Lotka–Volterra equations34–36 can be used to describe the dynamics of larger, more complex food webs, and 
encode the dynamics of primary producers as

where Si , i ∈ {1, . . . , n1} , denote the population densities of primary producers in units of biomass, normalised 
to the system carrying capacity and n1 denotes the total number of primary producers, ki > 0 denote the growth 
rates of the corresponding primary producer Si , that is, the maximal reproduction rate at unlimited nutrient 
availability. We use ki = k for all primary producers. The negative sum on the species Sj encodes logistic growth 
by accounting for nutrient depletion by all primary producers. For all other species, Sk , k ∈ {n1 + 1, . . . , n} with 
n the total number of species in the food web, the equations read

Here, Sk is again measured in units of normalised biomass. In Eqs. (1) and (2), αj > 0 is the decay rate of 
a species Sj , representing death not caused by consumption through other species. ηki ≥ 0 is the link-specific 
interaction strength between consumer Sk and resource Si . On the RHS of either equation, note the final term 
representing the diminishing effects experienced by each resource species, which is caused by consumption. 
This term is mirrored by the first term in Eq. (2), which describes the strengthening effect on the consumer 
side. The coefficients βki ≤ 1 encode link-specific consumption efficiency—that is, potentially incomplete use of 
energy removed from a resource species by its consumer. βki = 1 would describe perfect consumption efficiency 
whereas in real food webs this value is estimated to lie considerably lower37. In our simulations we use βki = β 
for all interactions present.

Equations (1) and (2) describe a simplified food web structure where consumption is modelled by the simple 
Holling type-I response38, where consumer resource fluxes scale proportional to the product of consumer and 
resource biomass density and there are no saturation effects. Moreover, Eqs. (1) and (2) assume that the food 
web is rigid in that species are incapable of adapting their consumption behaviour to changes within the food 
web, such as a decreasing population of resources or competition from an invasive species39. Yet, these equations 
allow for a coherent description of the energy fluxes between species and constitute an established framework 
for complex consumer-resource relations to evolve.

To evolve food webs we simulate Eqs. (1) and (2) numerically. New species are added successively to an exist-
ing food web. We assume that invasion attempts occur on a slow timescale, such that equilibrium can be reached 
before the subsequent invasion attempt, though occasionally, the food web does not converge to its equilibrium 
state. After each invasion attempt the steady state species vector S∗ is computed. In case of feasibility the eigen-
values of the community matrix are evaluated in order to determine the linear stability of the steady states. If 
feasibility is not obtained, that is, if S∗ contain negative populations, Eqs. (1) and (2) are integrated numerically 
until extinctions occur and feasibility of the remaining species is reached (Details: “Materials and methods”). 
Examples of several invasion attempts are shown in Fig. 2.

Loops profoundly impact food web evolution.  To make sure our results do not depend on the details 
of the invasion process we allow for several qualitatively distinct evolutionary processes: (i) treelike food webs, 
where each consumer has a single resource; (ii) non-omnivorous food webs with loops; (iii) omnivorous food 
webs. Loops are known to be relevant for sustained limit cycles and chaotic attractors, thus widening the range of 
dynamical properties. Indeed, we find treelike food webs to stand out in that fitness, measured by species decay 
rates, indefinitely increases in the evolutionary process (Fig. 1a, dotted red line), a finding consistent with the 
recent literature30. This indefinite fitness improvement hinges on the absence of network loops: a given primary 
producer can only be replaced by an invading primary producer of greater intrinsic fitness, that is, lower decay 
rate.

Allowing for network loops, evolved food web do not show indefinite fitness improvement (Fig. 1b,c) and 
mean species richness somewhat decreases (Fig. 1, insets). All histograms show a systematic difference in odd 
and even species richness, with food webs of odd species richness being the most frequent. This tendency is most 
pronounced for treelike food webs. We interpret this as a manifestation of the requirement of non-overlapping 
pairing28. Treelike food webs are feasible and stable if every species in the food web can be coincidentally paired 
with a connected species or nutrient that is not part of another pairing. In food webs of even species richness 
the nutrient is never included in such a pairing. Food webs consisting of several smaller trees that are connected 
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through the nutrient source are therefore only feasible if every tree satisfies this requirement individually. On the 
contrary, the nutrient is always included in a pairing in food webs of odd species richness, and therefore odd food 
webs are more likely to be feasible. To a lesser extent this tendency is also found in the histograms representing 
food webs with network loops. We interpret this as resulting from the fact that 40-60% of the food webs from 
simulations allowing network loops are in fact treelike.

Why do loops counteract indefinite fitness improvement? This can be seen as a manifestation of relative, 
rather than absolute, fitness, where a species can consume two resources and thereby can help eliminate even 
primary producers of high intrinsic fitness (Fig. 1b,c). An example of this is illustrated in Fig. 2f), where the 
intrinsically fittest producer is a node in a food web loop, and is driven to extinction during the invasion of a 
producer with lower intrinsic fitness.

The evolution of intrinsic fitness in Fig. 1 implies that allowing for interaction loops makes resident species 
more vulnerable to extinction during invasions, because parameters that characterise high intrinsic fitness before 
an invasion might characterise low intrinsic fitness during the invasion. This is supported by the cumulative dis-
tribution of resident times (Fig. S1a), where residence times in food webs with network loops fall off faster than 
the residence times in treelike food webs. In Fig. S1b we observe that in accordance with this, the distribution of 
extinction event size falls off faster for treelike food webs (Fig. S1b), where the extinction event size is measured 
relative to the total number of species (species richness) in the food web. Fig. S1b therefore implies that interac-
tion loops make food webs less robust to invasions, as invasive species tend to create larger extinction events 
here than in treelike food webs. Finally, we find invasive species to have higher success rates when invading food 
webs with interaction loops, and the success rate is found to increase with β . In simulations with β = 0.75 we 
observe 11.5%, 27.2% and 29.8% for treelike, non-omnivorous, and omnivorous food webs with loops, respec-
tively. The implications of this are twofold. On one hand, it is easier to assemble feasible food webs when multiple 
resources and omnivory are allowed. On the other hand, these food webs are more susceptible to invasions and 
their resident species are more vulnerable. If a food web contains two-resource species, removal of one of the two 
resources of a species Si by an invader can already lead to a cascading extinction of S, as exemplified by Fig. S2.

Figure 1.   Evolution of three food webs using different assembly rules. All main panels show decay rates of 
all species present plotted against invasion attempts, that is, evolutionary steps. The decay rates are plotted 
as �α ≡ α − αmin , where αmin denotes the lower limit on decay rates (compare: Table 1). The thin red line 
highlights the currently lowest producer decay rate. Grey symbols denote producers, yellow and magenta 
symbols denote consumers of one or two resources, respectively. Cyan symbols denote omnivores. (a) Food 
webs where only one resource per consumer is allowed, yielding a treelike food web without loops. (b) 
Consumers can have either one or two resources at the same trophic level. (c) Consumers are allowed one 
or two resources at any trophic level l ≥ 1 . Note that both axes use logarithmic scaling. Insets: Normalised 
histograms of species richness, using all data. Note the logarithmic vertical axis scaling.
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Robustly bi‑modal eigenvalue spectra.  We now turn to the eigenvalue spectra of the evolved complex 
food webs, which we present as two-dimensional histograms in the complex plane (Fig. 3). Each simulation con-
ducts 105 invasion attempts, yet the number of unique feasible food webs is considerably lower, that is, approxi-
mately equal to the aforementioned rates of successful invasions. Furthermore, the number of unique feasibly 
food webs drastically decreases with species richness. While the data shown represent relatively small networks, 
we find that key spectral features are very systematic as function of species richness. A generic feature is that 
spectra typically have many eigenvalues with small negative real parts. Further, the real parts scatter more and 
more closely at small negative values, as species richness increases beyond two. All spectra contain a consider-
able fraction of purely real eigenvalues, typically making up 15–30% of a spectrum.

The origin of purely real eigenvalues.  The first column in Fig. 3 represents food webs with species rich-
ness two. These simple food webs only have one feasible configuration, namely that of one primary producer 
and one consumer. Any differences between spectra in the left column are therefore purely statistical. These 
food webs can be considered as isolated interactions between a consumer and its resource, hence the analytical 
eigenvalues of this food web can provide some insight on the dynamics underlying the eigenvalue spectra. From 
the analytical eigenvalues we obtain that an eigenvalue is purely real if the inequality

is fulfilled (Details: Sec. S3). Here, α1 and α2 are the decay rates of the resource and the consumer, respectively, 
and βη is short for β21η21 , the “consumption rate” of the consumer. γ can be interpreted as the inverse intrinsic 
fitness of the food web.

From feasibility, we have the additional requirement of γ < βη , hence, the consumer’s “consumption rate” 
is bounded also from below. As k decreases, the lower and upper boundaries on βη approach one-another until 
they are equal for k = 0 . A food web with low producer growth rate is therefore likely to have complex eigenval-
ues. In the opposite limit, when k → ∞ , or equivalently α1 → 0 , we see that γ reduces to α2 . In the first limit 
Eq. (3) reduces to βη ≤ ∞ which will always be satisfied and all eigenvalues are therefore purely real in this 
limit. This corresponds to a food web where the consumer has infinite access to resources and there is no stress 
or constraints on the web that could cause oscillations. In the limit where α1 → 0 , the eigenvalues pick up an 
imaginary component when βη is large compared to α2 and k. This occurs when the consumer population has 
a large intrinsic growth rate, thus heavily exploiting its resource.

Overall, purely real eigenvalues characterise food webs where consumption of the resource is moderate 
compared to the intrinsic fitness of the resource. This corresponds to an over-damped limit where the consumer 
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Figure 2.   Time series of a food web during several invasions. The panels (a–f) respectively correspond to 
invasion attempts 40312–40314, and 40316–40318 in Fig. 1c. Upper row: In each panel, orange circles and red 
“x”-symbols denote the invasive and extinct species, respectively. The vertical coordinate denotes trophic level, 
and node areas represent initial biomass densities. The green hexagon represents the basic nutrient source. (a) 
A species successfully invades the food web, but causes the extinction of two resident species, among these one 
of its own resources. (b) the invader is successful without causing any extinctions. (c) The invader is a primary 
producer and causes extinction of the invader from (b). (d) The invader replaces a resident species of same 
niche as the invader. (e) The invader is unsuccessful in invading the food web as it shares a niche with one of 
the resident species. (f) The invader is a primary producer and causes the extinction of three resident species, 
among these the primary producer with lowest decay rate, corresponding to largest intrinsic fitness, which is 
highlighted by the black arrow. Lower row: Time series corresponding to each of the food webs above, where 
time is measured in units of the inverse primary producer growth rate, k−1 . Blue and orange lines represent 
resident and invasive species, respectively, as the new steady state is approached. The black line in the last panel 
represents the producer with lowest decay rate. Note the double-log axis scaling.
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does not consume enough to cause any significant displacement of the resource population, hence a perturba-
tion of the consumer population will not spread to its resource. For higher species richness the Jacobian quickly 
becomes too complicated to be solved analytically. Even so, we expect the dynamics between a consumer and its 
resources to be conceptually analogous, namely that “sustainable over-consumption” yields oscillating densities 
and complex eigenvalues.

The set of smallest and largest real-valued eigenvalues is obtained when βη is only slightly larger than γ , hence 
barely satisfying the criterion of feasibility. The eigenvalues then reduce to �± = − k−α1

2
± k−α1

2
 . �+ is always 

zero, that is, food webs of species richness two are always stable, and with our choice of parameters �− ≥ −0.95 . 
We observe approximately the same range of real values in all numerical spectra of any species richness, thereby 
implying that the choice of parameters might be more important for the spectrum width than the structure of 
the food web.

The overall shape is qualitatively similar for all food web structures (see: Fig. 3). Importantly, omnivorous 
spectra are the only ones to contain also eigenvalues with positive real part, that is, unstable eigenvalues. These 
food webs do therefore not converge to their equilibrium state after an invasion, but are displaying periodic or 
chaotic dynamics (Details: “Materials and methods”). The unstable eigenvalues are all barely larger than zero, 
hence hardly visible in Fig. 3. Interestingly, non-omnivorous food webs with network loops exhibit the same 
species richness and approximate connectivity as the omnivorous food webs, yet they do not yield unstable 
eigenvalues. The differences between treelike food webs and food webs with network loops discussed earlier 
must therefore be unrelated to the stability of the food webs, thus emphasising the difference between stability 
to perturbation of a given food web and its robustness to invasions. For omnivorous food webs the fraction of 
unstable eigenvalues increases with species richness and decreases with β . Intuitively, it seems reasonable that 

Figure 3.   Complex eigenvalue spectra of evolved food webs. Each panel represents the two-dimensional 
histogram in the complex plane. Species richness and invasion mechanism are as labelled in panels, that is, 
rows of panels represent treelike, non-omnivorous, and omnivorous food webs. Note that the colour scale 
is logarithmic, with green marking the areas with largest likelihood of eigenvalues (Details: “Materials and 
methods”). Eigenvalue spectra of omnivorous food webs of other species richnesses can be seen in Fig. S3.
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there is a relation between instability and low consumption efficiency. A species with a low consumption effi-
ciency has to compensate by consuming more biomass, thereby putting more stress on its resources. Only for 
β = 1 are there no unstable omnivorous eigenvalues.

We now compare the evolved spectra (Fig. 3) to their random counterparts (Fig. 4). The diagonal entries 
represent self regulation of each species and are set to d = −1 . Off-diagonal entries are drawn from N (0, 1) with 
probability p(N), and are otherwise 0.

where N is “species richness”, that is, the number of rows (or columns) of the matrix. This corresponds to the 
implemented connectivity in the simulation allowing network loops and omnivory, that is, the connectivity of 
omnivorous food webs given no extinctions occur (Details: Sec. S5). As predicted by spectral theory of random 
matrices, the spectra are centred around d on the real axis and approach a circular geometry as the size of the 
matrix increases. Already for N = 2 does the spectrum contain unstable eigenvalues. The fraction of unstable 
eigenvalues increases with N as the circle radius increases. Also for random spectra do we observe a large frac-
tion of purely real eigenvalues. We attribute this to the small size of the matrices, being much smaller than the 
infinity limit for which the law was derived40.

Finally, we study the real-part frequency distributions of eigenvalues of all four types (treelike, non-omnivo-
rous, omnivorous and random). The frequency distributions for species richness 2–9 can be seen in Fig. 5, where 
each distribution consists of data from various values of β (see Table 1). In order to facilitate comparison of the 
functional form of the frequency distributions, rather than the range, the frequency distributions are scaled to 
be bounded by −1 on the real axis, that is, we divide each data point by (|min{x}|)−1 where x is the data points 
of the distribution. Frequency distributions representing the evolved food webs follow approximately the same 
curve for a given species richness, and are distinctively different from the random matrices. As also seen in 
Fig. 3 omnivorous distributions are the only to extended to positive values for species richness greater than two.

Once again, we observe quantitative differences between food webs with odd and even species richness: For 
odd species richness the distribution is bi-modal with a global maximum near x = 0 and a secondary maximum 
near the lower limit, that is x = −1 . For even species richness, the distribution is initially less strongly peaked. Yet, 
as species richness increases, a sharp peak emerges around x = 0 . The distribution thus becomes more similar 
to that of the food webs with an odd number of species.

The intermediate part of the spectrum is increasingly depleted of eigenvalues at higher species richness. Com-
paring Fig. 5 with Fig. 3 we see that the left part of all distributions consists of purely real eigenvalues, whereas 
it is mostly complex eigenvalues that make up the global maximum near x = 0 . This implies that perturbations 
can be divided into two main groups: perturbations from which the food web quickly returns to the respective 
steady state, and perturbations that induce oscillations from which the food web takes very long to recover. The 
peak consisting of purely real eigenvalues near x = −1 does not change notably with species richness, indicating 
that, independent of species richness, food webs are robust to certain perturbations. In accordance with this we 
observe that food webs of all species richness usually return quickly to their steady states after an unsuccessful 
invasive species goes extinct. The main peak (near x = 0 ) becomes both higher and narrower with increasing 
species richness, that is, the food webs become quasi-stable. In larger food webs there are more species that can 
be disturbed by a perturbation, which might prolong the effect of the perturbation, that is, push eigenvalues 
towards zero on the real axis. Overall, we thus find that the histogram of complex food webs becomes strongly 
bi-modal as food webs consisting of many species are approached in an evolutionary process, whereas random 
matrix spectra are consistently uni-modal. In Sec. S8–S9 we consider the robustness of the results in Fig. 5 by 
varying the parameter distributions and implementing Holling type-II response, respectively.

(4)p(N) =
N2 + 21N − 28

9N(N − 1)
, for N > 1,

Figure 4.   Complex eigenvalue spectra of random matrices. Heat maps of eigenvalue spectra of random 
matrices, corresponding to the respective species richnesses shown in Fig. 3. Off-diagonal entries are drawn 
from a normal distribution with probability p(N) = N2+21N−28

9N(N−1)
 (Details: Sec. S5), and are otherwise set to zero. 

Diagonal elements are set to −1.
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Conclusion
Using the established generalised Lotka–Volterra equations, we have evolved synthetic food webs through suc-
cessive invasion attempts by random species. This evolutionary process followed simple assembly rules, yielding 
three different food web structures: ’treelike’ without network loops, ’non-omnivorous’ allowing network loops 
between strict trophic levels, and ’omnivorous’ with network loops and omnivory allowed. Data from ’treelike’ 
food webs reproduced known results for this food web structure30. We found that when allowing network loops 
in food webs, the notion of ’absolute fitness’ does no longer apply. Food webs with network loops are thus not 
able to systematically improve fitness with evolution, thus yielding a qualitatively different evolutionary process. 
We observed both shorter resident times and larger extinction events in food webs with network loops, than in 
their treelike counterparts. Despite these qualitative differences in the evolutionary process, all resulting spectra 
have similar features, with pronounced bi-modal real part histograms, and increasing species richness sharpening 
the bi-modality. By contrast, random matrix spectra remain uni-modal and, by construction, show no structural 
changes when species richness is increased.

Our approach uses a canonical set of equations for consumer-resource interactions, often taken as a simple 
starting point for the theoretical study of complex food webs. Yet, many variants exist, which could allow for 
greater realism or additional routes to coexistence. For example, Holling type-II functional responses may be a 
means of widening the range of coexistence, thus likely increasing achievable species richness. It could further 
be insightful to explore the effects of mutualism20, parasitism19, or the detritus network41 on opening further 
pathways to coexistence. It should then be explored if any of these additions bring the community matrix spectra 
closer to the spherical geometries typical of random matrices.

Materials and methods
Definitions.  We here define a food web as the directed network representing all energy fluxes in an ecosys-
tem. Vertices and edges represent species (which can be consumers or resources or both) and their interactions, 
respectively. An example (Fig. 6) highlights a basic physical or chemical nutrient source, such as solar radiation 
or sugar, primary producers (autotrophs), such as plants, their consumers, and omnivores. We here measure a 
species’ trophic level, l, as the weighted mean of its resources’ trophic levels incremented by one. Primary pro-
ducers are distinct in that they only consume basic nutrient sources, hence they always have l = 1 . An invader 

Figure 5.   Distribution of eigenvalues along the real axis. Normalised frequency distributions of eigenvalues 
along the real axis for all food web structures and random matrices for species richness 2− 9 . Eigenvalues 
representing food webs are taken from simulations using a range of values of β (Table 1), since varying β does 
not have significant effects on the real-part distributions (Details: Sec. S6). All distributions are scaled to start in 
−1 . Note the logarithmic vertical axis scaling.
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is defined as a species previously not present in an existing food web, which may reach a feasible steady state 
when initialised at an infinitesimally small initial biomass concentration and exposed to the existing food web.

Stability.  The RHSs of Eqs. (1) and (2) are linear in the species populations Si , therefore we can obtain the 
steady state of species concentrations from the matrix equation28

Here, S∗ is the vector of the species’ steady state populations, R is the matrix containing all interaction coef-
ficients, and K contains the species specific growth and decay rates. From Eq. (5) it follows that food webs with 
invertible interaction matrices have unique steady states42. Feasibility of the food web additionally requires that 
all S∗ be positive, a point we return to below.

For small perturbations away from equilibrium, linear stability of the steady states can be determined from 
the eigenvalues of the community matrix, C , that is, the Jacobian of the Lotka–Volterra equations evaluated at 
the fixed points, namely

Here Sj and Ṡj ≡ ∂Sj/∂t are the species biomass concentrations and their time derivatives, respectively, com-
pare Eqs. (1) and (2), and S∗ is the steady state species vector, see Eq. (5). C is asymmetric, partly stemming from 
the asymmetry with regard to what the predator gains and what the prey loses. The general community matrix 
is written out explicitly in Sec. S10. The food web is linearly stable if all eigenvalues of the community matrix C 
have negative real parts, corresponding to local attraction towards the steady state43.

Previously, it has been suggested that the community matrix can be represented by a random matrix8,9,44. 
The eigenvalue spectrum of a random matrix scatters within a semicircle as the size of the matrix tends towards 
infinity. The radius of the semicircle increases with size and density of the random matrix45. If a large and complex 
food web can accurately be modelled by a random matrix, it is therefore very likely to yield at least one eigenvalue 
with positive real value, hence to be unstable.

Computer simulations.  Algorithm.  Simulations are performed in C++, using the Eigen library46 to per-
form the matrix operations described in the previous section. The simulation builds food webs by successively 
adding new species to the existing food web. Once disrupted, one or more species might go extinct while the 
food web settles in its new steady state. Each simulation conducts 105 invasion attempts to the initial food web 
consisting of a basic nutrient source and a primary producer feeding on the source. A pseudo-code describing 
the simulation is shown in Algorithm 1.

(5)S
∗ = R

−1 · K .

(6)Cij ≡
∂

∂Sj
Ṡi(S(t))

∣

∣

∣

S=S∗
.

Figure 6.   Example of an evolved food web. Species types as indicated in the legend. The vertical axis marks the 
trophic level, l. A species’ trophic position is defined using average food chain length.
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Algorithm 1: Pseudocode for the evolutionary algorithm

1 initialize food web;
2 for each invasion do
3 add new species;
4 compute steady states;
5 if feasible then
6 compute eigenvalues;
7 end
8 while not converged do
9 integrate food web;

10 update time;
11 if extinction event then
12 remove species;
13 restart time;
14 compute steady states;
15 if feasible then
16 compute eigenvalues;
17 end
18 end
19 if time ≥ 105 then
20 break;
21 end
22 end
23 end

With each invasion S∗ is computed. If the food web is feasible, that is, if Si > 10−14 for all i, the eigenvalues 
of the community matrix are also computed. At every time step the food web is checked for extinct species. A 
species, Si , is considered extinct if Si ≤ 10−12 . Such a species is subsequently removed from the food web by 
setting its biomass density and all other parameters to zero, including links to resources/consumers. After every 
extinction the steady states and community eigenvalues are recomputed since they will have changed. For both 
physical and numerical reasons it is meaningful to set the extinction threshold larger than zero. However, this 
means that extinctions can occur even in food webs that are theoretically stable.

Numerical convergence criteria.  A food web is considered to have converged to its steady state when all spe-
cies in the food web satisfy |Si − S∗i |/S

∗
i < 10−6 for all i. For time efficiency this criterion is softened to 10−2 

if the food web does not converge within t = 104 k
−1 . Furthermore, if the food web still has not converged at 

t = 105 k
−1 , the integration is broken and the food web is considered to be “non-convergent”. The dynamics of 

the non-convergent food webs are not investigated further, and might be periodic, chaotic or even converging 
at a very low rate.

We only apply the two first convergence criteria to food webs that are feasible and linearly stable, since these 
are the only food webs we expect to converge. We assume linearly stable food webs that do not converge within 
the given range of t to be in fact converging, yet too slowly to be detected by our naïve test for convergence. We 
therefore set the final biomass densities of linearly stable, non-convergent food webs equal to the steady states, 
that is we set Si(t = 105 k−1) = S∗i  . The few food webs that are feasible, but not linearly stable are integrated until 
t = 105 k

−1 , or until an extinction occurs. If a species in the food web goes extinct, both the feasibility and linear 
stability of the food web are recomputed, and the time is restarted. Unfeasible food webs are always integrated 
until one or several extinction events renders them feasible. Following this procedure, invasive species are only 
added to feasible food webs long after previous invasions or extinctions.

Declaring a species.  In the simulations we use objects to represent each species. A class ’species’ is created, with 
the derived class ’producer’ containing the subgroup of primary producers (See Sec. S7 for a class diagram.). 
Each member of species (hence also of producer) contains a biomass density variable, species- and link-specific 
parameters and a trophic level, corresponding to Si , ki ,αi , ηji ,βkm and li from Eq. (1) and (2). When a species 
is declared, it is assigned a small initial biomass density, Si(t = 0) = 10−10 , and the intrinsic parameters α and 
k. For simplicity ki = 1 for all primary producers. β is fixed for all species within one simulation, but varied 
between simulations (See Table 1). For all species α is drawn from U(0.05, 0.5) . The interaction parameters and 
trophic levels depend on the structure of the specific food web, and will be assigned to a species as it is added to 
the food web. The invasion ratio of producers to species is set to 1:2. Parameters and corresponding distributions 
are collected in Table 1.

Modelling invasion attempts.  An invader is added to the food web when an interaction link is established to one 
or several of the resident species. An invasive primary producer is connected by a single consumption link to 
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the basic nutrient source, whereas invasive species at higher trophic positions are assigned at least one resource 
species. In simulations, where the species are allowed to consume more than one resource, in effect allowing 
for network loops, a second link is established with a fixed probability. In simulations, where strict trophic levels 
are demanded, that is, omnivory is not allowed, we only accept the randomly selected second resource if it has 
the same trophic level as the first. In the omnivorous case, the second resource is always accepted, thus leading 
to a blend of species with single consumption links, two links to resources and the same trophic level, and two 
links to resources at distinct trophic levels. To roughly compensate for the lower acceptance rate of the second 
consumption link in the non-omnivorous case, the probability of adding a second resource in a non-omnivorous 
food web is set to 1.5p where p = 1/2 is the probability of a second resource in an omnivorous web. When an 
interaction is created ηki is drawn uniformly from η ∈ U(0.01, 1) . Finally, all species’ trophic levels are updated, 
reflecting the structure of the current food web.

Although it can be argued that a species would pick its resources after abundance or would specialise on a 
certain type of resource species15, this is not imitated in the current simulation. We argue that such additional 
constraints would further reduce the randomness of interactions. Our intention here is to compare an evolved 
food web’s community matrix with a that of a random counterpart—we hence aim to limit further restrictions 
or assumption on the types of interactions.

Data availability
Not applicable. The program code is available in a GitHub repository: https://​www.​github.​com/​silja​bl/​FoodW​
ebs. The simulation data used in this manuscript can be reproduced using the code attached (“Materials and 
methods”).
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