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Abstract 
 
AlphaFold's ipTM metric is used to predict the accuracy of structural predictions of protein-protein 
interactions (PPIs) and the probability that two proteins interact. Many AF2/AF3 users have 
experienced the phenomenon that if they trim full-length sequence constructs (e.g. from UniProt) 
to the interacting domains (or domain+peptide), their ipTM scores go up, even though the 
structure prediction of the interaction is unchanged. The reason this happens is due to the 
mathematical formulation of ipTM in AF2/AF3, which scores the interactions of whole chains. If 
both chains in a PPI complex contain large amounts of disorder or accessory domains that do not 
form the primary domain-domain or domain/peptide interaction, the ipTM score can be lowered 
significantly. The score then does not accurately represent the accuracy of the structure prediction 
nor whether the two proteins actually interact. We have solved this problem by: 1) including only 
residue pairs in the ipTM metric that have good predicted aligned error (PAE) scores; 2) by 
adjusting the d0 parameter (a function of the length of the query sequences) in the TM score 
equation to include only the number of residues with good interchain PAEs to the aligned residue; 
and 3) using the PAE value itself and not the probability distributions over the aligned error to 
calculate the pairwise residue-residue pTM values that go into the ipTM calculation. The first two 
are crucial in calculating high ipTMs for domain-domain and domain-peptide interactions even in 
the presence of many hundreds of residues in disordered regions and/or accessory domains. The 
third allows us to require only the common output json files of AF2 and AF3 (including the server 
output) without having to change the AlphaFold code and without affecting the accuracy. We show 
in a benchmark that the new score, called ipSAE (interaction prediction Score from Aligned 
Errors), is able to separate true from false complexes more efficiently than AlphaFold2’s ipTM 
score. The resulting program is freely available at https://github.com/dunbracklab/IPSAE. 
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Introduction 
 
The AlphaFold programs (1-3) have had a profound impact on the structure prediction of proteins 
and protein complexes. AlphaFold-Multimer (v2.3) has enjoyed the widest use in predicting the 
structures of protein-protein interactions (PPIs), which are critical to essentially all biological 
processes. Since AlphaFold-Multimer code has been available for download since late 2021 (and 
v2.3 since December 2022), these programs have been extensively benchmarked for their ability 
to predict the structures of protein complexes accurately and their ability to predict whether two 
proteins interact. These benchmarks have utilized the scoring output from the AlphaFold 
programs, including residue-specific predicted local distance difference tests (pLDDTs), predicted 
aligned errors (PAEs) for residue pairs, and predicted template-modeling scores (pTM) and 
interface predicted template modeling scores (ipTMs) for the whole modeled system.  
 
Typically, benchmarks have been constructed from Protein Data Bank (PDB) structures, and use 
the sequences provided for each PDB entry (e.g., the CASP competitions (4, 5) and others (6)). 
That is, they do not use the full UniProt sequences, which may contain disordered sequences and 
domains that do not form part of the interaction. PDB constructs are mostly fully ordered, save for 
some loops or short N and C terminal tails. In these cases, the ipTM score generally works well 
in assessing the accuracy of the structure prediction (7). However, in real-world situations where 
the interacting regions may not be known, structure predictions usually start with full-length protein 
sequences from UniProt. Then after observing which domains interact in the model with good 
PAE scores, it can be productive to input shorter sequence constructs to AlphaFold.  
 
Many studies have noted that different sequence constructs produce different ipTM scores, even 
though the predicted interface contacts are unchanged (8-12). For example, Danneskiold-
Samsøe et al. compared AlphaFold-Multimer v2.2 models produced from either full-length 
sequences of single-pass transmembrane receptors and their full-length unprocessed ligands, or 
various truncations of the proteins (e.g., the extracellular domains only and the proteolytically 
processed secreted ligand proteins) (13). ipTM scores were higher and more predictive for the 
shorter constructs comprising only the interacting domains. In a comprehensive study, Lee et al. 
found shorter fragments of peptides binding to protein domains often scored better than longer 
fragments or full-length proteins (14). Bret et al. developed a scanning approach to search through 
disordered sequence regions for protein domain binders, because the ipTM score was not 
successful on full-length sequences (8). Some reports have shown that ipTMs, which are 
calculated over whole chains, are less predictive than other measures. These measures include 
pLDDT values of interface residues (as in the pDockQ score) (15, 16), interface PAE values 
(iPAE’s) calculated over only interchain residue pairs within various cutoff distances (17, 18), or 
combinations of AlphaFold metrics and energy functions to evaluate interfaces (6). 
 
In this paper, we investigate the origin of the behavior of AlphaFold’s pTM and ipTM scores based 
on their mathematical descriptions in the AlphaFold papers. We then use this analysis to identify 
alternative formulations that are not sensitive to disordered regions or non-interacting accessory 
domains in either or both chains of pairwise interactions in AlphaFold models. We show that using 
only interchain residue pairs with good PAE scores in the evaluation of ipTM and evaluating the 
TM formula’s d0 parameter (which is based on sequence length) accordingly, we can produce 
good ipTM values for true interactions even in the presence of large amounts of disorder and 
accessory domains. The resulting code, which is freely available, works only on the PAE matrix 
provided in the default output of both AlphaFold2 and AlphaFold3. We have named the metric 
ipSAE for “interaction prediction score from aligned errors.” The word is a play on the Latin phrase 
“Rēs ipsae loquuntur,” meaning “The things speak for themselves,” referring to the AlphaFold 
output scores. 
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Derivation of the ipTM and ipSAE scores 
 
The TM score was developed by Zhang and Skolnick to assess the accuracy of predicted models 
of protein structures compared to experimental structures of the same proteins (19). It is defined 
as: 
 

𝑇𝑀 = max
𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠

[
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 (1) 

 

Each dj is a distance between the predicted position of the C atom of residue j in the model and 

residue j in the experimental structure for a given superposition. A model of a protein can be 
superimposed in various ways on an experimental structure, and the maximum is taken over all 
possible alignments. In practice, the maximum is taken over only a subset of such alignments 
(e.g., by running different structure alignment programs or with different parameters). d0 is a 
scaling factor that reduces or eliminates the length dependence of the TM score for alignments 
of unrelated proteins (19). It has a fitted value of  
 

𝑑0 = 1.24√𝐿𝑡𝑎𝑟𝑔𝑒𝑡 − 15
3

− 1.8 (2) 

 
If Ltarget is 500 residues, d0 has a value of about 8 (Figure 1). The original TM score was used in 
development of protein structure prediction methods, when the sequence length of the 
experimental structure (the target) might be longer than the sequence length of the model (e.g., 
if only a single domain of the target could be modeled using templates). Thus, a partial model (or 
template) was heavily penalized. In some cases, the experimental structure might be missing 
some residues due to poor electron density. The sum is therefore over the number of residues 
the model and experimental structure have in common (Lcommon). 

 
Figure 1. The d0 parameter in the TM score equation as a function of sequence length L 

 
AlphaFold2 and AlphaFold3 use the concept of “aligned error” to generate predicted accuracy 

metrics for output models (Figure 2). After superposing the N, C, and C atoms of residue i of a 

model onto the N, C, and C atoms of the same residue i in the experimental structure, the aligned 
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error (AE) of residue j is the distance between the C atom of residue j in the model and C of 

residue j in the experimental structure. During training, the experimental structure is known, and 
the network is trained to predict a probability distribution over the aligned error distance when the 
experimental structure is not known (i.e., during inference). The probability distribution is defined 
over the 𝐴𝐸𝑖𝑗 distance in 64 bins of width 0.5 Å (0Å-0.5Å, 0.5Å-1.0Å, …, 31.5-32Å), where the last 

bin also includes distances larger than 32 Å. The predicted aligned error, 𝑃𝐴𝐸𝑖𝑗, for each pair of 

residues is calculated from the predicted probability distribution over the aligned error with the 
equation (Eq. 11 in AF3 paper supplemental): 
 

𝑃𝐴𝐸𝑖𝑗 = ∑ 𝑝𝑖𝑗
𝑏 Δ𝑏

64

𝑏=1

 (3) 

 

where Δ𝑏 = (𝑏 − 0.5) 2⁄  is the center of each bin (0.25Å, 0.75Å, …, 31.75Å), 𝑝𝑖𝑗
𝑏  is the probability 

of bin b, and ∑ 𝑝𝑖𝑗
𝑏 = 1𝑏=1,64 . 

 
 

 
Figure 2. Definition of aligned error (AE) in AlphaFold2 and AlphaFold3 

 
 
For a single chain (or a whole protein complex), the 𝑃𝐴𝐸𝑖𝑗 values can be substituted into Equation 

1 for the TM score to provide an equation for the pTM score (predicted template modeling score): 
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(4) 

The role of residue i in this equation is to create a set of alignments used to calculate the 
TM score, one for each residue in the chain (or complex). The value of pTM is then calculated 
from the highest scoring of these alignments, just as in Equation 1 for the original TM score 
 
In the AlphaFold papers, the expression under the sum is instead calculated as an expectation 
value from the probability distribution of the aligned error used in Eq. 3 (AF3 paper supplemental 
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Eq 17): 
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(5) 

 
For simplicity, we define the pairwise pTM matrix from the aligned error probability distribution as: 
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(6) 

 
or alternatively (as an approximation) from the PAE value.  
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(7) 

 
 
The 𝑝𝑆𝐴𝐸𝑖𝑗  can be used anywhere 𝑝𝑇𝑀𝑖𝑗  can be used. 

 
The residue-specific mean value of 𝑝𝑇𝑀𝑖𝑗 , based on the alignment of residue i is given by:  

 

𝑝𝑇𝑀𝑖 =
1

𝐿
∑𝑝𝑇𝑀𝑖𝑗

𝐿
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(8) 

From these equations, we can generalize the expression for pTM by specifying the residue sets 
for the alignments (set S1, residues i) and those for the residue displacements between modeled 
structure and experimental structure, if it were known (S2: residues j): 
 

𝑝𝑇𝑀 = max
𝑖∈𝑆1

[𝑝𝑇𝑀𝑖] = max
𝑖∈𝑆1

[mean
𝑗∈𝑆2

𝑝𝑇𝑀𝑖𝑗] 

 

(9) 

 
For a complex of two protein chains, A and B, we can perform the residue-residue structure 
superpositions over one chain (e.g., S1=chain A) and calculate the TM score over the other chain 
(S2=chain B), which would then contain a rotation-translation component as well as the accuracy 
of the structural model of chain B. So 
 

𝑖𝑝𝑇𝑀(𝐴 → 𝐵) = max
𝑖∈𝐴

[mean
𝑗∈𝐵

(𝑝𝑇𝑀𝑖𝑗)] 

 

(10) 
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When AlphaFold2 or AlphaFold3 provides a value of 𝑖𝑝𝑇𝑀 for a pair of chains, it provides a single 

value which is the maximum of the two asymmetric values (or equivalently the maximum over all 
residues in both chains of the interchain 𝑝𝑇𝑀𝑖): 

 

𝑖𝑝𝑇𝑀 = max[𝑖𝑝𝑇𝑀(𝐴 → 𝐵), 𝑖𝑝𝑇𝑀(𝐵 → 𝐴)] 
 

(11) 

 
AlphaFold3 provides an ipTM for each chain where the maximum is taken over all residues i in 
that chain and the mean is over all residues in all other chains. 
 
 

𝑖𝑝𝑇𝑀(𝑐ℎ𝑎𝑖𝑛 𝑋) = max
𝑖∈𝑋

[mean
𝑗∈𝑛𝑜𝑡𝑋

𝑝𝑇𝑀𝑖𝑗] 

 

(12) 

 
In AlphaFold2 and AlphaFold3, the overall ipTM of any multiprotein complex is calculated from 
the maximum over all residues of the mean 𝑖𝑝𝑇𝑀𝑖𝑗 , where the mean is taken over all residues in 

all other chains that do not contain residue i. The value of d0 is the sum of all protein chain lengths 
in the model. 
 
 

𝑖𝑝𝑇𝑀 = max
𝑖

[ mean
𝑗∈𝑛𝑜𝑡𝐶ℎ𝑎𝑖𝑛(𝑖)

𝑝𝑇𝑀𝑖𝑗] 

 

(13) 

 
Our experience, and that of many others (13), demonstrates a problem in the calculation of ipTM 
in the presence of disordered residues and other domains in the sequence constructs that do not 
interact between the chains. Frequently, users of AlphaFold2 and AlphaFold3 have to repeat 
calculations with different protein constructs that remove the disordered regions and observe an 
increase in ipTM, even though the interacting domain-domain or domain-peptide complex 
structure remains the same. This occurs especially when there is disorder in both chains of a 
complex, rather than just one of them. 
 
The reason is clear from the equations presented above. For a protein-protein complex, ipTM is 

a mean value of 𝑝𝑇𝑀𝑖𝑗 over all residues j in one of the chains, after superposition on one residue 

i in the other chain (after taking the maximum over all residues i). It therefore includes 𝑝𝑇𝑀𝑖𝑗 

values between ordered and disordered residues, which are almost always very poor. Any mobile 
domains that do not interact also lower the score. 
 
As an example, we take the interaction between KRAS and the RAS-binding domain of RAF1 
(Figure 3). When only the ordered domain sequences are input to AlphaFold-Multimer (v2.3), the 
ipTM is 0.9. When disorder is added to only one chain (the blue RAF1 in Example 2), the ipTM is 

still 0.9. This occurs because a residue in RAF1 (marked by a red asterisk) has high 𝑝𝑇𝑀𝑖𝑗  values 

with all residues in the fully ordered KRAS chain (magenta). But when disorder is present in both 
chains (Examples 3 and 4 in Fig. 3), the ipTM is decreased because every residue in each chain 
has some low 𝑝𝑇𝑀𝑖𝑗  values with residues in the other chain. The decrease is proportional to the 

relative amount of disorder to order in the chain with less disorder. For example, with 120 
disordered residues in each chain (Example 4), RAF1-RBD and KRAS are 61% and 41% 
disordered respectively. The ipTM value is due to residue T68 of RAF1, which sits in the interface 
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with KRAS. Its pairwise 𝑝𝑇𝑀𝑖𝑗 values with KRAS residues are 59% ordered (at ~0.9 each) and 

41% disordered (at ~0.2 each), or approximately 0.59*0.9 + 0.41*0.2 = 0.61 (the AF2 output value 
is 0.59). 
 
 

 
Figure 3. AlphaFold2 models of the complex of KRAS (magenta) and the RAS-binding domain of RAF1 (blue). 
Disordered residues (15 repeats of the sequence GGGS) were added to the N or C terminus (or both) of one or both 

chains, which residues the 𝑖𝑝𝑇𝑀 when this occurs in both chains (Examples 3 and 4).  

 
There are several ways of dealing with this. In the ipTM expressions, we could skip residue pairs 
where one (or both) residues have pLDDT values less than some cutoff value (e.g. pLDDT<50). 
This does not always work: auxiliary domains in one or both of the proteins that do not contribute 

to the protein-protein interaction will have good pLDDTs but poor intermolecular 𝑝𝑇𝑀𝑖𝑗, thus 

lowering the ipTM. 

 
The ipTM could be calculated over only contacting residues in the model within some cutoff 
distance. This can also be a problem because disordered residues or auxiliary domains in one or 

both chains can contact the other chain and contribute poor 𝑝𝑇𝑀𝑖𝑗 to the ipTM evaluation, 

 
Varga et al recently proposed using the predicted distance distograms produced by the 
AlphaFold2 network to restrict the calculation of ipTM to interchain residue pairs that are predicted 
to be in contact (20). This method excludes disordered regions and auxiliary domains that do not 
have a strongly predicted interaction, even if they are in contact in the models. Their score, called 
actifpTM, is calculated over the subsets of residues that make up the interface of two chains but 
only those that AlphaFold2 is confident about. actifpTM is now implemented within the ColabFold 
framework (21). 
 
We propose another alternative, where we use the 𝑃𝐴𝐸𝑖𝑗 values to restrict the ipTM calculation to 

interchain residue pairs that have well predicted aligned error distances, regardless of whether 
they are in or near the protein-protein interface. In contrast to actifpTM, we adjust the value of d0 
in the asymmetric ipTM expression to the number of residues in the chain under the mean 
expression with good interchain PAE values (Equation 10). This is critical, because a small 

number of interchain residue pairs with spuriously good 𝑃𝐴𝐸𝑖𝑗  and consequently good 𝑝𝑇𝑀𝑖𝑗 

values may produce an unrealistically ipTM if d0 is not adjusted. 
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We define the ipSAE score (interface predicted TM Score based on Aligned Errors) for two chains 
(A and B) as follows: 
 

𝑖𝑝𝑆𝐴𝐸(𝐴 → 𝐵) = max
𝑖∈𝐴

[
 
 
 
 

mean
𝑗∈𝐵

𝑃𝐴𝐸𝑖𝑗<𝑐𝑢𝑡𝑜𝑓𝑓

(

 
 1

1 + (
PAE𝑖𝑗

𝑑0
)

2

)

 
 

]
 
 
 
 

 

 

(14) 

and 
 
 

𝑑0 = 1.24√𝐿𝑃𝐴𝐸<𝑐𝑢𝑡𝑜𝑓𝑓 − 15
3

− 1.8        𝐿 ≥ 27 

𝑑0 = 1                                                              𝐿 < 27 
 
 

(15) 

 
Here, 𝐿𝑃𝐴𝐸<𝑐𝑢𝑡𝑜𝑓𝑓 is the number of unique residues in chain B that have 𝑃𝐴𝐸𝑖𝑗 < 𝑐𝑢𝑡𝑜𝑓𝑓 given the 

identity of the aligned residue i. We use a minimum value of 1 for d0, since Yang and Skolnick did 
not test the fit for proteins shorter than 30 amino acids (d0=1 for L~26.5), and the denominator in 
Eq. 14 starts to blow up for values << 1.0, which may not be realistic or helpful. In the AlphaFold 
code, the minimum value is set to 19, since L=18 produces a negative number.  
 
For a given chain pair, the ipSAE score is the maximum of the two asymmetric values: 
 

𝑖𝑝𝑆𝐴𝐸(𝐴, 𝐵) = max[𝑖𝑝𝑆𝐴𝐸(𝐴 → 𝐵), 𝑖𝑝𝑆𝐴𝐸(𝐵 → 𝐴)] 
 

(16) 

ipSAE can be calculated for every pair of chains in a multi-chain complex from the PAE matrices 
from the AlphaFold2 or AlphaFold3 output json files. 

 
 
Results 
 
RAF1 complexes 
 
The TKL family kinase, RAF1, contains three domains: a RAS-binding domain (RBD: residues 
56-131), an immediately adjacent cysteine-rich domain (CRD: residues 138-184), and a protein 
kinase domain (PK: residues 340-614). The rest of the chain of length 648 residues is intrinsically 
disordered (residues 1-55, 185-339, and 615-648).  
 
As noted above, AlphaFold-Multimer models of the RAF1-RBD with KRAS result in ipTM values 
that are lowered in the presence of artificial disordered sequences when they are present in both 
chains (Figure 3). The ipSAE value of 0.8 for Example 4 eliminates most of the disorder effect. 
  
RAF1 interacts with the TKL family pseudokinase KSR1, facilitating the activation of RAF1 and its 

translocation to the membrane (22). KSR1 also contains three domains: the coiled-coil/Sterile--
motif domain (CC-SAM: residues 30-172), a cysteine-rich domain, homologous to the CRD of 
RAF1 (CRD: residues 347-391), and a protein pseudokinase domain (pPK: residues 599-833). 
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There is no experimental structure of a RAF1-KSR1 complex, but it has been hypothesized that 
the two kinase domains bind in a mode similar to the well-known BRAF homodimer (23). 
 
AlphaFold-Multimer models of the heterodimer sequences of full-length RAF1 and full-length 
KSR1 show a kinase/pseudokinase heterodimer that is very similar to the BRAF homodimer (23) 
with ipTM values between 0.38 and 0.41 across 25 models (5 seeds by all 5 sets of AF2 model 
weights, without templates). The other folded domains and disordered regions of both proteins 
are not in fixed position relative to the kinase domains across the 25 models, and do not show 
any key interprotein interactions (Figure 4A). 
 
As described above, we can use the PAE values to calculate ipTM-like scores over specified 
interprotein residue pairs. AF2 calculates the full pTM matrix with a value of d0 that is the combined 
length of the two proteins. If we calculate pTM with the PAE values instead and use the same d0, 
the interchain pSAEij and pTMij are highly correlated (Figure 4B). 
 

 

 
Figure 4. RAF1-KSR1 models. A. AlphaFold2 models of full-length RAF1 and KSR1. RAF1 RBD-CRD domains 
in pink and kinase domain in magenta. KSR1 CC-SAM domains in green, CRD in yellow, and pseudokinase domain 
in blue. The 25 models are aligned on the kinase domain of RAF1. The non-kinase domains are not fixed relative to 
the two kinase domains.  B. Scatterplot of interchain pSAEij vs pTMij values for RAF1-KSR1 complex. pTMij was 
calculated from the pTM matrix output by AlphaFold2 (from a modified version of ColabFold). It uses a d0 from the 
combined length of both proteins. pSAEij was calculated with no PAE cutoff and with a d0 also based on the combined 
length of both protein chains. 

 

AlphaFold-Multimer calculates the ipTM via Equations 10 and 11 by calculating the 𝑝𝑇𝑀𝑖 for each 

residue in both chains (Figure 5). The two kinase domains are responsible for the high scoring 
regions, while the accessory domains in each protein are visible as small bumps in the plots. The 
maximum value in the curve in Figure 5 occurs for residue W632 of KSR1, which is in the interface 

between the kinase domains. If we use the 𝑝𝑆𝐴𝐸𝑖𝑗  value to calculate 𝑝𝑆𝐴𝐸𝑖  for each aligned 

residue i of the complex and adjust d0 for the number of residues that have a good PAE for the 
aligned, we see higher scores for the kinase domains in RAF1 and KSR1 and zero for the 
accessory domains. AlphaFold2’s ipTM for the top-ranking complex is 0.41, while the ipSAE score 
is 0.73. 
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Figure 5. Per-residue ipTM and ipSAE scores for the RAF1-KSR1 complex. ipTM (top) was calculated from the 
pairwise pTM matrix from AlphaFold-Multimer v2.3 (ColabFold). It uses a d0 from the combined length of the two 
proteins (1571 amino acids; d0=12.57). ipSAE with a PAE cutoff of 15.0 and the same value of d0 (middle figure). A 
cutoff for the PAE score of 15.0 Å was used to produce the ipSAE scores (bottom figure). The maximum occurs for 
W632 of KSR1 for both scores (green arrows) with a value of d0 of 6.32 (286 residues in RAF1 with PAE<15 Å). 
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Figure 6. Per-residue ipTM (top) and ipSAE scores (middle and bottom) for the RAF1-RIPK1 pseudocomplex. 
A cutoff for the PAE score of 15.0 Å was used to produce the ipSAE scores. The ipTM score per residue scores (top 
plot) show a modest interaction between the chains with a maximum value at residue D380 of RIPK1, ipTM=0.290. 
AF2 uses d0 from the sum of the full chain lengths. A PAE cutoff using the same d0 (middle plot) (from the sum of both 
chain lengths) raises the ipSAE values compared to the ipTM values. But adjusting d0 to account for the number of 
residues in the mean pTMij calculation (e.g. for each residue in RAF1, this is the number of residues in RIPK1 that 
have PAE<PAEcutoff) significantly lowers the score of the non-interacting proteins to a value of 0.044. 
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The TKL family kinase, RIPK1, is not known to bind to RAF1. RIPK1 has a kinase domain (PK: 
residues 8-324), a RIP homotypic interaction motif (RHIM: residues 531-547), and a Death 
domain (DD: residues 567-671). ipTM and ipSAE plots by residue are shown in Figure 6, 
demonstrating the effects of using the PAE cutoff and the evaluation of d0 based on the number 
of residues with PAE less than a cutoff of 15 Å. The top plot shows the per-residue ipTM scores 

from AlphaFold2 (by averaging each row of the interchain 𝑝𝑇𝑀𝑖𝑗 values output from a modified 

version of ColabFold). AF2 uses a d0 based on the sum of the two chain lengths (in this case 648 
+ 671 = 1319 residues, d0=11.75). In the middle plot, the PAE matrix is used to limit the number 

of 𝑝𝑇𝑀𝑖𝑗 used for each residue. It uses the same value of d0 (11.75) as in the top plot. The 

resulting residue-specific ipSAE values are much higher than the ipTM values, with an overall 
ipSAE value of 0.459 from the alignment on residue L433. This is expected because residue pairs 
with good PAE values will have high pairwise ipTM (or ipSAE) values. But the number of such 
pairs in truly non-interacting proteins is quite low, if AlphaFold is working as expected. In the 
bottom plot, the combined effect of the PAE cutoff of 15 Å and the residue-specific d0 values bring 
the residue ipSAE values way down. The overall value of ipSAE is now 0.044, indicating that the 
proteins are not likely to interact. The value of d0 was 3.05 from 75 residues below the PAE cutoff. 
 
Benchmark of recent PDB entries 
We identified a set of 40 PDB entries that share at most 40% identity with any chain present in 
the PDB prior to the AlphaFold-Multimer v2.3 cutoff date of Sept. 30, 2021. The entries had to 
have exactly two unique sequences and have a biological assembly consistent with a pairwise 
interaction of the two unique sequences (e.g., we excluded assemblies larger than octamers and 
chose entries where the shorter sequence interacted with only one copy of the longer sequence). 
Each sequence had to have at least 12 amino acids in the coordinates of the PDB file. Sequence 
identities were obtained from the PISCES webserver (24). We ran AlphaFold-Multimer v2.3  on 
the PDB sequences themselves and from the full-length Uniprot sequences, as identified from 
SIFTS (25)  (as given in the PISCES sequence files). We also created a set of 70 AlphaFold jobs 
by randomly creating heterodimer pairs by mixing sequences from different entries in the set of 
40 PDB entries. These were run with the full-length Uniprot sequences only. 
 
The results of the ipTM and ipSAE scores are shown in Figure 7. The top left panel shows the 
ipTM values calculated from the pTM matrix in ColabFold. AF2 uses a value of d0 calculated from 
the sum of the lengths of the two sequences in each query. Our values of ipTM agree exactly with 
the ipTM values present in the AF2 json output files. If we use the PAE values in the ipTM 
expression (but no PAE cutoff), instead of the AF2 pTM matrix, we get quite similar distributions 
(top right panel). In both panels, there is overlap in the density between values of ipTM or ipSAE 
from 0.3 to 0.7 for the true dimers (full-length Uniprot sequences, blue curves and data points) 
and false dimers (full-length Uniprot sequences, magenta curves and data points). 
 
In the next three rows, kernel density plots of ipSAE values are shown for all three sets of targets 
with different values of the PAE cutoff in descending order (32 = no cutoff, 25, 20, 15, 10, and 5 
Å). As the PAE cutoff decreases, the density in the mid-range of ipSAE decreases, separating 
true from false dimers more effectively than the ipTM values from AlphaFold (top left panel). The 
true dimers with Uniprot sequences have significantly improved ipSAE values at lower cutoffs, 
because they contain disorder and accessory domains that do not form part of the interaction 
between the two proteins. The PDB sequences (green curves), conversely, do not change that 
much with the PAE cutoff since they do not usually contain disordered regions or mobile domains 
that do not form part of the interaction. The overall results indicate that the ipSAE score may be 
better at separating true from false interactions even in the presence of disordered sequences 
and/or accessory domains in both sequences. Cutoffs of 10 or 15 Å may be most suitable. 
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Figure 7. Benchmark of recent PDB heterodimers. A set of 40 heterodimer PDB entries with less than 40% 
sequence identity to any sequences in the PDB prior to October 1, 2021 were identified. The PDB sequences were 
used as queries to AlphaFold-Multimer v2.3 (green curves). The full-length Uniprot sequences for these chains were 
also used as a second set of 40 target complexes for AF-Multimer v2.3 (blue curves). A third set of 70 targets was 
built from mixing the Uniprot sequences from different entries (magenta curves). The plots show kernel density 
estimates of ipTM and ipSAE for the top 10 ranked complexes (AF2 ranking based on 0.8*ipTM + 0.2*pTM) out of 25 
models (5 seeds x 5 AF2 weight-sets with no templates used). The top left panel shows ipTM based on the pTM 
matrix from AF2. The top right panel shows ipTM calculated from the PAE matrix instead of the pTM matrix (the PAE 
value is used in the denominator of the pTM expression instead of the sum over probabilities). The remaining rows 
show ipSAE values with different PAE cutoffs used in the mean value calculation. d0 for these calculations was based 
on the PAE cutoff. The set of 40 PDB entries is: 7f4p, 7qii, 7sck, 7t5p, 7tj4, 7wmv, 7wwq, 7ytu, 7zd5, 8a51, 8a82, 8bfj, 
8blw, 8cdp, 8dqv, 8fbd, 8fzz, 8g0p, 8gs1, 8guo, 8hi7, 8hk0, 8ir4, 8jj9, 8jmq, 8jzd, 8orn, 8ows, 8q4h, 8qvc, 8r5i, 8s2m, 
8vjl, 8vx9, 8wx5, 8xfb, 8y2n, 8ypu, 8zlz, 9dk1. 

 
Comparison with actifpTM 
 
Varga et al. (20) identified the same problem with the ipTM score as we have discussed above – 
that disordered regions depress the ipTM score when they are not part of the binding interface 
between two proteins. They gave four example systems of protein-peptide complexes: PDB 
entries 1ycr (MDM2 and P53 peptide), 2a25 (E3 ubiquitin ligase SIAH1 and Calcyclin binding 
protein peptide), 3zgc (KEAP1 and NF2L2 peptide), and 4h3b (MAPK10 and SH3 domain-binding 
protein 5 peptide). We ran AlphaFold-Multimer v2.3 on the Colabfold Jupyter notebook, which 
calculates the actifpTM values, using the full-length Uniprot sequences of both chains (instead of 
the PDB constructs or short elongations of these, used in the actifpTM preprint). The calculations 
were performed with two seeds, no templates, and 3 recycles. We calculated ipSAE at different 
PAE cutoffs on the rank001 models from Colabfold. The results are shown in Table 1. For three 
of the targets, AlphaFold produces good models where the binding peptide is correctly placed on 
the folded domain, even though the full-length Uniprot sequence was provided to Colabfold. After 
superposition onto the folded domain from the PDB structure (chain A in all cases), the RMSDs 
were 1.32, 0.72, and 1.12 Å for entries 1ycr, 2a25, and 3zgc. For these three entries, the actifpTM 
values were quite high, ranging from 0.93 to 0.97. The ipSAE values were lower with values 
around 0.68, 0.55, and 0.73 Å respectively (at PAE cutoff 10 Å). 
 

Table 1. Comparison of actifpTM targets with their ipTM and ipSAE values 
 1ycr 2a25 3zgc 4h3b RAF1kd/LysC RAF1/RIPK1 

RMSD 1.324 Å 0.715 Å 1.191 Å 99.948 Å --- --- 
       
ipTM 0.298 0.669 0.719 0.443 0.388 0.277 
actifpTM 0.943 0.928 0.972 0.690 0.467 0.462 
       
ipSAE (5 Å) 0.702 0.547 0.801 0.000 0.000 0.000 
ipSAE (10 Å) 0.684 0.551 0.733 0.019 0.012 0.000 
ipSAE (15 Å) 0.661 0.519 0.694 0.155 0.058 0.006 
ipSAE (20 Å) 0.641 0.516 0.650 0.198 0.084 0.113 
ipSAE (25 Å) 0.610 0.512 0.642 0.198 0.086 0.117 
ipSAE (32 Å) 0.230 0.491 0.614 0.197 0.087 0.137 

Full-length Uniprot sequences were used for all complexes, except RAF1kd/LysC where only the kinase domain was used for RAF1. 
RAF1kd/LysC and RAF1/RIPK1 are not known to be true complexes and are not in the PDB. Values are given for the rank001 
model (out of 10) from the Colabfold Jupyter notebook with no templates, two seeds, and 3 recycles. 

 
The 4h3b structure is quite different. AlphaFold places the wrong peptide from SH3BP5 into the 
inhibitory binding site on the kinase domain MAPK10. In the PDB structure, residues 341-350 
bind to the kinase domain. But in the model from full-length Uniprot sequences, the 341-350 
segment is 100 Å away. Instead, residues 425-439 bind to the kinase domain in the SH3BP5 
binding site. The ipTM from AlphaFold is 0.443, and the actifpTM value is 0.690, while the ipSAE 
values range from 0.0 (no PAE pairs less then 5 Å) to 0.20 (PAE cutoff 25 Å). 
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We also ran Colabfold calculations of the RAF1 kinase domain with a presumably non-interacting 
protein, chicken lysozyme C (LYSC_HUMAN), and full-length RAF1 with RIPK1. For LYSC, The 
ipTM value was 0.388 and the actifpTM was 0.467. The ipSAE scores successfully identify the 
non-interaction with ipSAE values from 0.0 to 0.1 (Table 1, last column). For RIPK1, ipTM was 
0.277, actifpTM was 0.462, and ipSAE was 0.0 (PAE cutoffs ≤ 15 Å). 

 

 
Figure 8. Top-ranked ColabFold AlphaFold-Multimer v2.3 models of protein complexes from full-length 
Uniprot sequences. PDB entries 1YCR, 2A25, 3ZGC, and 4H3B were used as examples in the preprint of Varga et 
al. RAF1 kinase domain plus chicken Lysozyme C and full-length RAF1 with RIPK1 are examples of non-interacting 
proteins and their resulting scores. 
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Discussion 
 
We have proposed an ipTM-like score based on the output of AlphaFold2. The ipSAE score is 
calculated over interchain residue pairs that pass a PAE cutoff, thus eliminating the effect of 
disordered regions in both chains and/or accessory domains that AlphaFold2 does not predict to 
be part of the binding interface. On a benchmark of 40 heterodimer complexes in the PDB not 
very similar (at 40% sequence identity) in the AlphaFold2 training set and 70 non-interacting 
sequence pairs from the same set, models based on full-length Uniprot sequences showed 
greater discrimination between true and false dimers with the ipSAE score compared to ipTM. We 
also showed that in some cases, our score behaves better at discrimination true than false 
interactions than the recently proposed actifpTM score of Varga et al. A true comparison would 
require a much larger set of targets. 
 
Like ipTM in AlphaFold3 output and the actifpTM score, the ipSAE score can be calculated for 
every pair of chains in a multi-chain complex from AlphaFold2 output. We calculate the 
asymmetric values (A→B is different from B→A, where the first chain contains the aligned 
residues and the second chain contains the scored residues in the PAE values), as well as the 
maximum over all residues in both chains. It is possible there is insight to be gained in considering 
both values, rather than just the maximum, particularly for protein-peptide complexes. 
 
While we have shown that ipSAE is able to distinguish true from false interacting pairs, even in 
the presence of substantial disorder and non-interacting accessory domains, additional 
benchmarking is certainly required to demonstrate that the ipSAE metric is able to rank the 
structural accuracy of models of a given complex.  
 
Further comparison is needed to other scores presented in the literature that account for the flaws 
in ipTM in various ways. We made a few comparisons to the actifpTM score (20), which like ipSAE 
limits (and weights) the contribution of pairwise ipTM matrix elements to the resulting score. Kim 
et al. presented to the Local Interaction Score (26), which is obtained from the by converting PAE 
scores to a score from 0 to 1.0 and averaging over all interchain residue pairs with PAE ≤ 12 Å. 
The pDockQ (27) and pDockQ2 (17) scores are based on the pLDDT and PAE scores of interface 
residues, and also attempt to improve on the ipTM score from AlphaFold. 
 
The d0 parameter in the TM expressions presents challenges for short peptides. In the original 
TM score paper, no individual structures were compared that were shorter than 40 amino acids. 
d0 becomes negative when the protein length is less than 19 amino acids, with a resulting d0 value 
of 0.17 when the length is 19. But in that case, the denominator of the pTM expression blows up 
and becomes very low, not matter how accurately the position of a peptide bound to a folded 
domain is predicted. To avoid this, we chose to set a minimum value of d0 to 1.0, which is a peptide 
length of approximately 27 amino acids. But this is somewhat arbitrary and needs to be 
investigated further. 
 
Finally, the method for calculating the ipTM in the AlphaFold programs relies on the maximum 
ipTM over the residues in both chains. But many protein pairs have multiple domain-domain 
interactions separated by disordered regions. In these cases, the ipTM only scores one domain-
domain pair (which ever scores highest) and the other(s) do not contribute. Examination of the 
PAE plot is helpful in identifying such cases. Models can then be produced with shorter constructs 
to estimate the ipTMs of each domain-domain interaction. Outputting ipSAE values from different 
aligned residues (not just the maximum value) may be useful in deriving a more useful metric than 
the methods described here and elsewhere. Our script, described below, outputs a file with the 
by-residue values of ipSAE which may be used for this purpose. 
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Usage and Output 
 
The code is written in Python3 and takes as input a json file from AlphaFold2 or AlphaFold3 and 
corresponding PDB-format or mmCIF-format files for the coordinates respectively. The 
commands to use are: 
 
python ipsae.py  <path_to_json_file>  <path_to_af2_pdb_file>  <pae_cutoff> <dist_cutoff>                                                                                                                     

python ipsae.py  <path_to_json_file>  <path_to_af3_cif_file>  <pae_cutoff> <dist_cutoff>                                                                                                                     

 
 
For example: 
 
python ipsae.py RAF1_KSR1_scores_rank_001_alphafold2_multimer_v3_model_4_seed_003.json  \ 

RAF1_KSR1_unrelaxed_rank_001_alphafold2_multimer_v3_model_4_seed_003.pdb 15 15 

  

python ipsae.py fold_raf1_ksr1_mek1_full_data_0.json fold_raf1_ksr1_mek1_model_0.cif 15 15 

    
The output from the second command is given in Figure 9. 

 
Figure 9. Output of ipsae.py on an AlphaFold3 model of a ternary complex of full-length human RAF1, 

KSR1, and MEK1 (Uniprots: RAF1_HUMAN, KSR1_HUMAN, MP2K1_HUMAN). The asymmetric values of the 
ipSAE metrics are given in rows with type equal to “asym.” The maximum value of each metric (over X→Y and Y→X 
asymmetric values) is given in the row labeled “max” (shown in bold type). Bottom: (left) top ranked AlphaFold3 
model with chains labeled by color: RAF1 (chain A: magenta), KSR1 (chain B: blue), MEK1 (chain C: green). Middle: 
After coloring all three chains gray, PyMOL script alias “color_A_B” colors magenta and blue all residues in chains A 
and B respectively that have one or more interchain PAE values less than the cutoff (15 Å). Right: color B_C colors 
residues blue and green if they have interchain PAE values less than the same cutoff. 

 
The code reads the overall ipTM from the AlphaFold2 json file, which has one value for any size 
protein complex. Given the name of the AlphaFold3 “full_data” json file, the code will read the 
chain_pair_iptm from the corresponding “summary_confidences” json file, if it exists. In this 
example, that would be named fold_raf1_ksr1_mek1_summary_confidences_0.json. In the output, 

these scores are called ipTM_af. For AlphaFold2, all chain pairs have the same value of ipTM_af. 
For the example in Figure 9, AlphaFold3 calculate ipTM pairwise values for 0.46 for RAF1-KSR1 
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(chains A and B), 0.51 for RAF1-MEK1 (chains A and C), and 0.77 for KSR1-MEK1 (chains B and 
C).  
 
To calculate the ipSAE and other metrices, the code reads the PAE values from the respective 
json files. AlphaFold2 provides a square PAE matrix with row and column dimensions of the length 
of the combined protein sequences. The rows are aligned residues and the columns are scored 
residues. AlphaFold3 structure predictions may include post-translationally modified amino acids 
as well as ligands. The standard amino acids have single tokens and therefore single rows or 
columns in the PAE matrix in the json file. Modified amino acids, however, have one token per 

atom (e.g., phosphoserine, residue type SEP, has 10 tokens). We use the C atom as the 

appropriate token for the PAE matrix, so we can construct a square PAE matrix covering only one 
row or column per amino acid (whether modified or not). Ligands are excluded (label_seq_id=”.”). 
 
Since AlphaFold2 does not calculate pairwise ipTM scores for multi-protein complexes and 
AlphaFold3 provides only the symmetric (maximum) pairwise ipTM scores, we use the PAE matrix 
to calculate pairwise ipTM scores. To calculate d0 for the ipTM calculation, we use the sum of the 
full-length protein sequences for each sequence pair, as AlphaFold2 does (for dimer complexes) 
and AlphaFold3 does for all chain pairs. This metric is called ipTM_d0chn, where d0chn indicates 
that d0 is calculated from the chain lengths. The values for the complex in Figure 9 are 0.443, 
0.429, and 0.752 respectively (compare the ipTM_af values of 0.46, 0.51, 0.77 respectively).The 
small differences arise from using the PAE values in the pairwise pTM matrix (Equation 7), instead 
of the expectation value over the probability distribution of PAE (Equation 6). 
 
With the PAE matrix and PAEcutoff value, we can calculate the asymmetric ipSAE scores 
(Equation 14) and the overall ipSAE score (Equation 16), which is the maximum value of the two 
asymmetric scores for each chain pair. For the regular ipSAE score, we use d0 based on the 
number of residues in the scored chain that have PAE<PAEcutoff, given the aligned residue in 
the aligned chain. The number of residues (n0res) and the value of d0 (d0res) are given in the 
output. For the example in Figure 9, the ipSAE values are: 0.563, 0.261, and 0.636. The columns 
nres1 and nres2 provide the number of residues in the first and second chains that have interchain 
PAE values (for the same pair of chains) less than the cutoff (15 Å in this case). In the asym lines, 
these are for the aligned residues and scored residues respectively. In the “max” lines, they are 
the maximum of the two asymmetric values. Thus, RAF1 and KSR1 have maximum values 
(scored or aligned) with PAE less than the cutoff of 280 and 292 residues respectively.  
 
The next two columns, dist1 and dist2, provide the number of residues with PAE less than the 

cutoff and C-C distance less than the distance cutoff set by the user (15 Å in this case). RAF1 
does not contact MEK1 in the model, and the dist1 and dist2 values are both 0 for chains A+C. 
The ipSAE value is correspondingly only 0.261, while the ipTM_af value is 0.51 (probably because 
RAF1 can also interact with MEK1 but does not do so in this model). 
 
The ipsae.py script outputs a PyMOL script with aliases to color residues in each pair of chains 

with PAE less than the cutoff. These residues are highlighted in magenta and blue in the middle 
structural figure in Figure 9 for RAF1+KSR1 and the right-side structural figure in blue and green 
for KSR1+MEK1.  
 
The script also calculates two other forms of ipSAE for comparison purposes: ipSAE_d0chn and 
ipSAE_d0dom. ipSAE_d0chn uses the same PAE cutoff as ipSAE but calculates d0 from the sum 
of the two full-length sequence lengths (n0chn, d0chn). ipSAE_d0dom uses a value of d0 from the 
number of residues in the two chains that have any interchain PAE values less than the PAEcutoff 
(nres1, nres2). 
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Finally, for plotting figures like Figures 5 and 6 (e.g., the residue- and chain-pair specific values 
for ipSAE), the script outputs a file with name like: 
 
fold_raf1_ksr1_mek1_model_0_15_15_byres.txt  

 
with columns:   
 
i, AlignChn, ScoredChain, AlignResNum, AlignResType, AlignRespLDDT, n0chn, n0dom, 

n0res, d0chn, d0dom, d0res, ipTM_pae, ipSAE_d0chn, ipSAE_d0dom, ipSAE.  

 
The value i is the residue number across all chains (from 1 to total number of residues in model). 
The aligned chain refers to the chain with residues i in the pTM expressions, the scored chain 
covers residues j. n0res and d0res are residue-specific values for the number of residues with 
PAE less than the chosen cutoff and the corresponding d0 value. The other values are all chain-
pair specific. 
 
 
Code availability: A python3 script is available at github.com/dunbracklab/IPSAE. 
 
 
Acknowledgments. I thank my lab members and members of the Fox Chase Cancer Center 
Molecular Modeling Facility for helpful discussions, including Mark Andrake, Sven Miller, Qifang 
Xu, Joan Gizzio, Pragya Priyadarshini, Brianna Trankle, and Xiyao Long.  This work was funded 
by NIH grants R35 GM122517 (R.L.D.) and P30 CA006927 (Fox Chase Cancer Center). 
 
 
Statement: 

 
 
  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2025. ; https://doi.org/10.1101/2025.02.10.637595doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.10.637595
http://creativecommons.org/licenses/by-nd/4.0/


References 
 

1. R. Evans et al. Protein complex prediction with AlphaFold-Multimer. BioRxiv  (2021). 
2. J. Jumper et al. Highly accurate protein structure prediction with AlphaFold. Nature 

596, 583-589 (2021). 
3. J. Abramson et al. Accurate structure prediction of biomolecular interactions with 

AlphaFold 3. Nature 630, 493-500 (2024). 
4. R. D. Schaeffer, L. Kinch, A. Kryshtafovych, N. V. Grishin. Assessment of domain 

interactions in the fourteenth round of the Critical Assessment of Structure 
Prediction (CASP14). Proteins 89, 1700-1710 (2021). 

5. L. T. Alexander et al. Protein target highlights in CASP15: Analysis of models by 
structure providers. Proteins 91, 1571-1599 (2023). 

6. V. Mischley, J. Maier, J. Chen, J. Karanicolas. PPIscreenML: Structure-based 
screening for protein-protein interactions using AlphaFold. bioRxiv  (2024). 

7. R. Yin, B. Y. Feng, A. Varshney, B. G. Pierce. Benchmarking AlphaFold for protein 
complex modeling reveals accuracy determinants. Protein Sci. 31, e4379 (2022). 

8. H. Bret, J. Gao, D. J. Zea, J. Andreani, R. Guerois. From interaction networks to 
interfaces, scanning intrinsically disordered regions using AlphaFold2. Nature 
communications 15, 597 (2024). 

9. G. Pándy-Szekeres, L. P. Taracena Herrera, J. Caroli, A. A. Kermani, Y. Kulkarni, G. M. 
Keserű, D. E. Gloriam. GproteinDb in 2024: new G protein-GPCR couplings, 
AlphaFold2-multimer models and interface interactions. Nucleic Acids Res. 52, 
D466-D475 (2024). 

10. F. Homma, J. Lyu, R. A. van der Hoorn. Using AlphaFold Multimer to discover 
interkingdom protein–protein interactions. The Plant Journal 120, 19-28 (2024). 

11. I. Mitic, K. A. Michie, D. A. Jacques. Assessing the Validity of Leucine Zipper 
Constructs Predicted in AlphaFold2. bioRxiv, 2024.2010. 2014.618350 (2024). 

12. J. Martin. AlphaFold2 predicts whether proteins interact amidst confounding 
structural compatibility. Journal of Chemical Information and Modeling 64, 1473-
1480 (2024). 

13. N. Banhos Danneskiold-Samsoe et al. AlphaFold2 enables accurate 
deorphanization of ligands to single-pass receptors. Cell Syst 15, 1046-1060 e1043 
(2024). 

14. C. Y. Lee et al. Systematic discovery of protein interaction interfaces using 
AlphaFold and experimental validation. Mol. Syst. Biol. 20, 75-97 (2024). 

15. R. Yin, B. G. Pierce. Evaluation of AlphaFold antibody–antigen modeling with 
implications for improving predictive accuracy. Protein Sci. 33, e4865 (2024). 

16. G. Bellinzona, D. Sassera, A. M. Bonvin. Accelerating protein–protein interaction 
screens with reduced AlphaFold-Multimer sampling. Bioinformatics Advances 4, 
vbae153 (2024). 

17. W. Zhu, A. Shenoy, P. Kundrotas, A. Elofsson. Evaluation of AlphaFold-Multimer 
prediction on multi-chain protein complexes. Bioinformatics 39 (2023). 

18. E. W. Schmid, J. C. Walter. Predictomes: A classifier-curated database of AlphaFold-
modeled protein-protein interactions. bioRxiv  (2024). 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2025. ; https://doi.org/10.1101/2025.02.10.637595doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.10.637595
http://creativecommons.org/licenses/by-nd/4.0/


19. Y. Zhang, J. Skolnick. Scoring function for automated assessment of protein 
structure template quality. Proteins: Structure, Function and Genetics 57, 702-710 
(2004). 

20. J. K. Varga, S. Ovchinnikov, O. Schueler-Furman. actifpTM: a refined confidence 
metric of AlphaFold2 predictions involving flexible regions. arXiv preprint 
arXiv:2412.15970  (2024). 

21. M. Mirdita, K. Schütze, Y. Moriwaki, L. Heo, S. Ovchinnikov, M. Steinegger. 
ColabFold: making protein folding accessible to all. Nat. Methods 19, 679-682 
(2022). 

22. N. R. Michaud, M. Therrien, A. Cacace, L. C. Edsall, S. Spiegel, G. M. Rubin, D. K. 
Morrison. KSR stimulates Raf-1 activity in a kinase-independent manner. 
Proceedings of the National Academy of Sciences 94, 12792-12796 (1997). 

23. T. Rajakulendran, M. Sahmi, M. Lefrançois, F. Sicheri, M. Therrien. A dimerization-
dependent mechanism drives RAF catalytic activation. Nature 461, 542-545 (2009). 

24. G. Wang, R. L. Dunbrack, Jr. PISCES: recent improvements to a PDB sequence 
culling server. Nucleic Acids Res. 33, W94-98 (2005). 

25. J. M. Dana, A. Gutmanas, N. Tyagi, G. Qi, C. O’Donovan, M. Martin, S. Velankar. 
SIFTS: updated Structure Integration with Function, Taxonomy and Sequences 
resource allows 40-fold increase in coverage of structure-based annotations for 
proteins. Nucleic Acids Res. 47, D482-D489 (2019). 

26. A.-R. Kim, Y. Hu, A. Comjean, J. Rodiger, S. E. Mohr, N. Perrimon. Enhanced protein-
protein interaction discovery via AlphaFold-Multimer. bioRxiv, 2024.2002. 
2019.580970 (2024). 

27. P. Bryant, G. Pozzati, A. Elofsson. Improved prediction of protein-protein interactions 
using AlphaFold2. Nature communications 13, 1265 (2022). 

 
 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2025. ; https://doi.org/10.1101/2025.02.10.637595doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.10.637595
http://creativecommons.org/licenses/by-nd/4.0/

