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Abstract: Grifola frondosa (G. frondosa), generally known as hen-of-the-woods or maitake in Japanese
and hui-shu-hua in Chinese, is an edible mushroom with both nutritional and medicinal properties.
This review provides an up-to-date and comprehensive summary of research findings on its bioactive
constituents, potential health benefits and major structural characteristics. Since the discovery of the
D-fraction more than three decades ago, many other polysaccharides, including β-glucans and het-
eroglycans, have been extracted from the G. frondosa fruiting body and fungal mycelium, which have
shown significant antitumor and immunomodulatory activities. Another class of bioactive macro-
molecules in G. frondosa is composed of proteins and glycoproteins, which have shown antitumor,
immunomodulation, antioxidant and other activities. A number of small organic molecules such as
sterols and phenolic compounds have also been isolated from the fungus and have shown various
bioactivities. It can be concluded that the G. frondosa mushroom provides a diverse array of bioactive
molecules that are potentially valuable for nutraceutical and pharmaceutical applications. More in-
vestigation is needed to establish the structure–bioactivity relationship of G. frondosa and to elucidate
the mechanisms of action behind its various bioactive and pharmacological effects.
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1. Introduction

Grifola frondosa (G. frondosa) is a Basidiomycetes fungus that belongs to the family
of Grifolaceae and the order of Polyporales. In Japan its edible fruiting body is known
as maitake. In Japanese, mai means dance and take means mushroom. G. frondosa is
known as “hui-shu-hua” (grey tree flower) in Chinese, possibly due to its appearance.
G. frondosa grows around the stumps of broadleaf trees or trunks and is edible when young.
The environment of the northeastern part of Japan is suitable for the growth of G. frondosa.
The temperate forests in eastern North America, Europe and Asia are also ideal for its
growth. Meanwhile, it is a common mushroom in the Unites States and Canada, known as
sheep’s head, king of mushrooms, hen-of-the-woods, and cloud mushroom [1].

Japan was one of the countries that first started the artificial cultivation of G. frondosa
in the mid-1980s. There are in general three methods for the artificial cultivation of the
G. frondosa fruiting body, they are bottle culture, bag culture and outdoor bed culture.
Bag culture is the most popular cultivation method in Japan [2] because of its advantages
such as the low cost of plastic bags, small space requirements and easily-controlled indoor
environment. Bag culture can achieve higher yields of mature G. frondosa mushrooms than
bottle culture and requires a shorter cultivation time than outdoor bed cultures. As shown
in Figure 1 [2], the major steps of bag cultivation include substrate preparation, substrate
sterilization, mycelium inoculation and incubation. In addition to the fruiting body, there is
also an increasing demand for G. frondosa’s mycelium and its bioactive metabolites. Solid-
state fermentation (SSF) [3] and submerged fermentation [4] are two common methods of
mycelium cultivation. A common substrate for SSF is sawdust supplemented with rice bran
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or wheat bran [5]. Submerged or liquid fermentation is usually more efficient, providing a
higher mycelial productivity in a shorter time, requiring smaller plant space and allowing
for more effective product quality control [6]. A typical submerged fermentation process is
presented in Figure 2.
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G. frondosa is edible and is regarded as a healthy food because it is a good source
of protein, carbohydrates, dietary fiber [7–13], vitamin D2 (ergocalciferol) [13–15] and
minerals (K, P, Na, Ca, Mg) [7,9,12,15,16], with low fat content and caloric value [15].
G. frondosa is delicious, with a sweet and umami taste, which is mainly attributed to its
high trehalose, glutamic and aspartic amino acid and 5′-nucleotide content [10,11,13,17].
Due to its delicious and special taste, G. frondosa is not only used as a food ingredient,
but also as a food-flavoring substance in dried powder form. Apart from its high nu-
traceutical value, G. fondosa is reported to possess a wide range of pharmacological effects.
G. frondosa was first discovered to have antitumor activity in the 1980s from hot water
extracts of the G. frondosa fruiting body [16,17]. The major bioactive components were
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found to be β-glucans [17–20]. The D-fraction, a β-glucan complex with about 30% protein,
was first discovered by Nanba’s group in the late 1980s [21]. Since then, the D-fraction
has been widely studied and gradually developed into commercially available comple-
mentary medicines and healthcare products. In addition to the D-fraction, there are many
other bioactive polysaccharide fractions that are obtained from G. frondosa, such as the
MD-fraction [22], X-fraction [23], Grifolan [24], MZ-fraction [25] and MT-α-glucan [26].
The different polysaccharide fractions isolated from G. frondosa possess various bioactive
effects such as immunomodulation [24], antitumor [25], antivirus [27], antidiabetic [26] and
anti-inflammation [28]. In recent years, an increasing number of studies have attributed
or linked the health and therapeutic effects of G. frondosa polysaccharides to their capac-
ity for modifying gut microbiota, microorganisms that play an important role in human
health and diseases. In particular, gut microbiota play a role in maintaining immune
homeostasis, which may have a connection to the antitumor effects of polysaccharides [29].
The regulation of gut microbiota composition by G. frondosa polysaccharides has also been
suggested to contribute to the treatment of metabolic disorders such as non-alcoholic
fatty liver disease (NAFLD) [30] and diabetes [31], indicating their potential for prevent-
ing or treating hyperglycemia and hyperlipidemia. Apart from polysaccharides, other
molecular fractions isolated from G. frondosa fruiting bodies or mycelial biomass have
shown promising medicinal values as well. For instance, the protein components of G.
frondosa, including glycoprotein, have shown anti-tumor [32], immune-enhancing [33], anti-
diabetic, anti-hypertensive, anti-hyperlipidemic [34] and anti-viral effects [35]. Moreover,
other small biomolecules in G. frondosa have been found to possess health benefits such as
anti-inflammation [36], hypoglycemia [37], antitumor [38] and antioxidation [39].

This review gives an up-to-date and comprehensive summary and assessment of
the basic composition and bioactive components of G. frondosa, with an overview of their
structural characteristics and bioactivities. It has two major parts. The first part covers
the composition and nutritional effects of the G. frondosa fungus and the second part
focuses on its medicinal properties, involving major bioactive molecules, their structural
characteristics and bioactivities. Given that there are relatively few reviews in the literature
which provide an overall picture in terms of both the nutritional and medicinal values of
G. frondosa, this review may provide a useful and up-to-date reference for further research
on the constituents, properties and functions of G. frondosa and for development and
commercial applications in the form of new functional foods and therapeutic products.

2. Chemical and Nutritional Compositions
2.1. Proximate Composition

Generally, proximate composition is determined by the methods suggested by the
Association of Official Analytical Chemists (AOAC). The total carbohydrate content can be
calculated by subtracting the percentages of ash, crude fat and protein [7,40]. For the deter-
mination of crude protein, the nitrogen conversion factor is 4.38 instead of the usual 6.25,
due to the large amount of chitin that is usually contained within the fungus, a component
that may interfere with the correct calculation of the result of total nitrogen [41].

As shown in Table 1, G. frondosa is made up of around 83–96% moisture and 4–17%
dry matter in its fresh fruiting body [7–13] and mycelium [11,17,42], indicating the watery
texture of G. frondosa. Carbohydrates and protein are the major constituents contributing to
the dry weight of G. frondosa, taking up around 70–80% and 13–21%, respectively, of the
fruiting body. Based on the average values of component percentage, it could be found that
the mycelium of G. frondosa has a similar moisture content, a lower content of carbohydrate
and crude ash and a higher content of crude fat and protein, compared with the fruiting
body of G. frondosa.
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Table 1. Proximate composition of G. frondosa’s fruiting body and mycelium.

Components 1

(%)

Fruiting Body Mycelium

[8] * [9] # [12] # [10] 2,# [13] # [11] 2,# [7] 2,# Average [43] [44] 2 [11] 2 Average

Moisture 83.1 89.1 90.9 86.1 90.4 95.6 95.2 90.1 ± 4.5 84.8 96.7 92.3 91.3 ± 6.0
Dry matter 3 16.9 10.9 9.1 13.9 9.6 4.4 4.8 9.9 ± 4.5 15.2 3.3 7.7 8.7 ± 6.0

Carbohydrate 4 70.4 74.9 72.3 68.8 71.8 66.3 70.3 70.7 ± 2.7 66.3 45.0 60.4 57.2 ± 11.0
Crude ash 6.5 4.8 6.6 7.0 7.1 6.2 4.9 6.1 ± 0.9 6.4 4.0 4.7 5.0 ± 1.3
Crude fat 4.5 1.5 3.3 3.1 2.4 6.5 5.6 3.8 ± 1.8 4.2 24.7 6.5 11.8 ± 11.2

Crude protein 18.6 18.9 17.8 21.1 18.8 21.0 19.2 19.3 ± 1.3 23.1 26.4 28.4 26.0 ± 2.7
1 Moisture and dry matter were based on fresh weight; others were presented based on dry weight. 2 For easy comparison, only the mean
value is used. 3 The dry matter was represented by (1 − moisture/total) × 100%. 4 Amount of carbohydrate was calculated by subtracting
crude ash, crude fat and crude protein. * Fruiting body was grown naturally. # Fruiting body was grown artificially.

According to the research findings of Kurasawa and coworkers [8], the composition
of the G. frondosa fruiting body resembles that of normal cultivated mushrooms. It is worth
mentioning that the crude fat content of the G. frondosa fruiting body is generally lower
than the average crude fat content in cultivated mushrooms (4.3%), and the amounts of
protein and carbohydrates are slightly higher than the average of other mushrooms (17.2%
and 70.3%), indicating the excellent nutritional values of G. frondosa.

2.2. Soluble Sugar Content

The content of soluble sugar within G. frondosa is mostly determined by the method
described in the research work of Ajlouni and coworkers [42]. As shown in Table 2, the to-
tal sugar content in G. frondosa is higher in the fruiting body (90–190 mg/g) than in the
mycelium (70–90 mg/g). The content of total sugar in the fruiting body of G. frondosa
is also superior to some edible mushrooms such as Lactarius glaucescens and Craterellus
odoratus [45], which may be one of the reasons for the good taste of G. frondosa. Table 2 also
shows variations in both total soluble sugar content and individual sugar content among
different G. frondosa samples, which may be attributed to factors such as cultivation period
and cultivation environment. Trehalose, a disaccharide that comprises two molecules of
glucose, is the major sugar component of both the fruiting body and mycelia of G. fron-
dosa [9–11,43,44]. Compared with the amount in the mycelium (40–60 mg/g), the fruiting
body contains more trehalose than the mycelium, around 50–160 mg/g in dry weight.
In addition to trehalose, the fruiting body also contains glucose and mannitol, whereas the
mycelium has glucose and mannitol, together with arabitol and fructose.

Table 2. Soluble sugar content of G. frondosa fruiting body and mycelium in dry weight.

Component
Fruiting Body
(mg/g Dry wt.)

Mycelium
(mg/g Dry wt.)

[9] # [10] 1,# [11] 1,# [43] [44] 1 [11] 1

Arabinose n.d. 2 n.d. n.d. n.d. n.d. 5.37
Arabitol n.d. n.d. n.d. n.d. 12.65 2.01
Fructose n.d. n.d. n.d. 1.00 n.d. 2.99
Glucose 59.30 14.02 2.42 8.00 19.72 2.18
Lactose n.d. n.d. n.d. n.d. n.d. 0.93

Mannitol 7.20 9.36 1.00 n.d. 9.92 2.30
Mannose n.d. n.d. n.d. n.d. n.d. 1.92

Ribose n.d. n.d. 8.34 n.d. n.d. 4.04
Trehalose 45.80 161.83 99.94 65.00 41.60 65.32

Total 112.30 185.21 111.7 74.00 83.89 87.06

1 For easy comparison, only the mean value is used. 2 Not determined or not detected. # Fruiting body was
grown artificially.
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2.3. Free Amino Acid Content

The content of free amino acids in G. frondosa was quantitatively measured by the
method described in the research work of Mau and coworkers using HPLC [10,44]. Results
regarding the free amino acid content of G. frondosa are exhibited in Table 3. The total free
amino acid content in the fruiting body of G. frondosa is around 15–60 mg/g in dry weight,
which is higher than that in many other edible mushrooms, such as Dictyophora indusiata
and Tricholoma giganteum [10]. The mycelium of G. frondosa contains a relatively higher
total free amino acid content in comparison with the fruiting body. There is also a great
variety of amino acids in G. frondosa. There are around eighteen kinds of free amino acids,
including essential amino acids such as L-histidine and L-methionine, in both the fruiting
body and the mycelium of G. frondosa, indicating that G. frondosa is an excellent source of
amino acids.

Table 3. Free amino acid assay of G. frondosa’s fruiting body and mycelium in dry weight.

Component
(mg/g Dry wt.)

Fruiting Body Mycelium

[13] 1,# [11] 1,# [10] 1,# [44] [11] 1

In Sawdust In Log

L-Alanine 2.15 3.13 5.22 2.77 3.26 14.59
L-Arginine 3.02 3.21 1.66 0.64 0.97 12.39

L-Aspartic acid 1.61 1.25 1.88 0.42 2.75 19.40
L-Glutamic acid 8.01 9.10 12.62 0.67 3.76 2.10

GABA n.d. 2 n.d. 0.28 n.d. n.d. 17.09
Glycine 1.53 1.53 2.46 0.57 1.93 7.81

L-Histidine 3 1.53 0.94 19.50 0.59 4.10 n.d.
L-Isoleucine 3 0.12 0.12 0.56 0.33 2.80 6.67
L-Leucine 3 0.05 0.09 0.27 0.35 4.92 6.39
L-Lysine 3 1.56 1.28 5.70 1.11 0.22 23.49

L-Methionine 3 n.d. n.d. 4.50 1.40 0.67 n.d.
L-Phenylalanine 3 0.26 0.28 2.71 0.80 1.66 9.98

L-Serine 2.91 2.82 2.01 0.97 2.73 10.74
L-Threonine 3 1.43 1.44 n.d. 4.40 8.23 10.85

L-Tryptophan 3 n.d. n.d. n.d. 0.27 n.d. 12.01
L-Tyrosine 1.77 0.73 1.53 n.d. 2.15 17.99
L-Valine 3 0.96 0.91 0.39 0.60 4.13 9.41

Total 29.26 29.38 61.29 15.9 44.28 180.91
1 For easy comparison, only the mean value is presented. 2 Not determined or not detected. 3 Essential amino acid. # Fruiting body was
grown artificially.

However, large variations exist in the amount of each amino acid in G. frondosa.
For instance, Mau et al. (2001) and Tsai et al. (2006) found that threonine was the major free
amino acid in G. frondosa [10,44], whereas Huang and coworkers found that histidine and
glutamic acid were the major free amino acids in the fruiting body (>12 mg/g) and lysine,
aspartic acid and tyrosine were the major free amino acids in the mycelium (>17 mg/g) [11].
Huang and coworkers also obtained a larger amount of free amino acid from G. frondosa
than other groups in both the fruiting body and the mycelium, a result that might be due to
the different sources of the fruiting body and the preparation methods of the mycelium by
the different research groups. The choice in cultivation substrate was also found to affect
the variety and amount of amino acids in G. frondosa. As shown in Table 3, G. frondosa
fruiting bodies cultivated in sawdust and log substrates have different amounts of each
amino acid [13], although the total amino acid content was similar. Moreover, GABA (γ-
aminobutyric acid), a biologically active compound which is related to the therapeutic effect
of G. frondosa, is mainly detected in the mycelium but not in the fruiting body [11] (Table 3).
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3. Bioactive Ingredients
3.1. Polysaccharides

In the past 30 years, over 47 bioactive polysaccharide fractions have been isolated
and purified from the fruiting body, mycelium and cultured medium of G. frondosa using
different extraction methods. As previously reported, G. frondosa contains 3.8% water-
soluble polysaccharides on a dry weight basis, of which 13.2% was (1→3, 1→6)-β-D-
glucan [46], and others include heteroglycan or the heteroglycan/protein complex [47].
Among these bioactive polysaccharide fractions, the D-fraction and the MD-fraction (puri-
fied D-fraction) [22], which are regarded as the most important bioactive polysaccharides,
have been officially used as antitumor, anticancer and immunomodulatory agents [48].
Through structural characterization, Nanba and Kubo discovered the complex structure of
the β-D-glucan in the D-fraction. Unlike other mushroom-derived β-glucans that contained
a (1→3) main chain with (1→6) branches only, the β-D-glucan in D-fraction possessed both
a (1→6) main chain with (1→3) branches and a (1→3) main chain with (1→6) branches [22].
The high molecular weight of the D-fraction was considered a factor contributing to its
strong immunomodulatory effects [22]. Figure 3 shows a typical structure of the D-fraction.
The D-fraction and the MD-fraction could be extracted and fractionated from both the
mycelium and fruiting body of G. frondosa. Figure 4 is a general flowchart for the ex-
traction and purification of the MD-fraction as reported by Nanba and coworkers. The
MD fraction is typically extracted from the dried G. frondosa powder with boiling water
and then isolated by ethanol precipitation. The precipitate (crude MD fraction) is further
fractionated through column chromatography, including ion exchange and gel permeation
chromatography, to obtain the purified MD fraction.
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Apart from the D-fraction and the MD-fraction, other polysaccharide fractions have
also been derived from G. frondosa, with hot water being the most commonly used extraction
solvent. Ultrasound [51] and other solvents such as hot sodium hydroxide [18] and citrate
buffer [24] have also been utilized. Table 4 summarizes the chemical properties, sources
and extraction solvents of representative bioactive polysaccharide fractions isolated from
G. frondosa. The chemical properties listed include molecular weight, structure information,
as well as monosaccharide compositions. For instance, Kubo et al. extracted the X-fraction
from the fruiting body of G. frondosa, which was a (1→6)-β-glucan with (1→4)-α branches.
The X-fraction showed anti-diabetic activity, which was found to be directly associated with
insulin receptors [23]. Masuda et al. separated the MZ-fraction from G. frondosa, which had
similar structure to the MD-fraction but with a much smaller molecular weight, of around
20,000 Da (the molecular weight of MD-fraction was around 1–2 million Da). The MZ-
fraction showed immunomodulatory effects in vitro and antitumor activity in vivo [25].
Moreover, Grifolan (GRN), a gel-forming (1→6)-branched (1→3)-β-D-glucan, was found
in G. frondosa with immunomodulatory effects [24]. α-D-glucan could also be extracted by
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hot water from G. frondosa. Instead of antitumor activity, hypoglycemic, hypolipidemic,
antioxidative and immunomodulatory effects were discovered [26,52–54]. In recent years,
Liu’s group from China has isolated various polysaccharides from G. frondosa with the
names of GFP-A [55], LMw-GFP [51] and GFAP [56], all of which exhibited promising
anti-tumor activities. Due to variations in external factors such as the fungal source and
extraction temperature, the properties of polysaccharide fractions from different sources
may vary significantly.
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Table 4. Bioactive polysaccharide fractions isolated from G. frondosa with significant medicinal values.

Name of Active Fractions/
Purified PS MW Structure/Composition Monosaccharide

Composition * Extraction Solvent & Source Reference

Grifolan-7N 1200 kDa
(1→3)-linked β-D-glucan having a single
β-D-glucopyranosyl group attached to

position 6 of almost every 3rd backbone unit
Glc Hot sodium hydroxide,

Fruiting body [18]

GRN 500 kDa (Mw) (1→6) –branched (1→3)-β-D-Glucan Glc 0.5% citrate buffer, Mycelium [24]

X-fraction - β-1,6 glucan having alpha-1,4 branches Glc EtOEt-EtOH and then hot water,
Fruiting body [23]

D-fraction 1000 kDa
Isolated beta-glucan polysaccharide

compounds (beta-1,6 glucan and beta-1,3
glucan) with protein

Glc Hot water, Fruiting body [22,50]

MD-fraction 1000 kDa
Purified D-fraction with the same main

component where the glucan/protein ratio
is in the range of 80:20 to 99:1

Glc Hot water, Fruiting body [22]

MZ-fraction 20 kDa (Mw) β-1,6 main chain and a β-1,3 side chain Glc Hot water, Fruiting body [25]

GFPS1b 21 kDa

Backbone consisted of a-(1→4)-linked
D-galacopyranosyl and a-(1→3)-linked

D-glucopyranosyl residues substituted at
O-6 with glycosyl residues composed of

a-L-arabinose-(1→4)-a-D-glucose
(1→linked residues

Glc: Gal: Ara = 4:2:1 Hot water, Mycelium [57]

EX-GF-Fr. III 2.8 kDa -
Glc: Rib: Man: Gal: Rha:

Xylose =
3.98:1.44:1.34:1.00:0.41:0.15

Mycelium [58]

MZF 23 kDa

→6)-α-d-Galp-(1→(36.2%),→3)-α-l-Fucp-
(1→(14.5%),→6)-α-d-Manp-

(1→(9.4%),→3)-β-d-Glcp-(1→(10.1%),
α-d-Manp-(1→(23.2%), and
→3,6)-β-d-Glcp-(1→(6.5%)

Gal: Man: Fuc: Glc =
1.24:1:0.95:0.88 Hot water, Fruiting body [59]

GFPBW1 300 kDa

β-D-(1-3)-linked glucan backbone with a
single β-D-(1-6)-linked glucopyranosyl

residue branched at C-6 on every
third residue

Glc Hot water then 5% NaOH
solution, Fruiting body [60]
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Table 4. Cont.

Name of Active Fractions/
Purified PS MW Structure/Composition Monosaccharide

Composition * Extraction Solvent & Source Reference

GFPBW2 26.2 kDa

Backbone consisting of β-D-1,3- and
β-D-1,4-linked glucopyranosyl residues,

with branches attached to O-6 of
β-D-1,3-linked glucopyranosyl residues

Glc Hot water then 5% NaOH
solution, Fruiting body [61]

MT-α-glucan 40–45 kDa D-glucose with α-glucosidic bond Glc Hot water, fruiting body [26,52,53]

GFPW 15.7 kDa

Backbone of α-1,6-linked galactopyranosyl
residues with branches attached to O-2 of

α-1,3-linked fucose residues and
terminal mannose

Man: Fuc: Gal = 0.41:0.44:1 Hot water, fruiting body [62]

GFPs-F2 and F3 -
F2 with polysaccharide 62.5% and protein
37.5%; F3 with polysaccharide 78.3% and

protein 21.7%

F2: Glc: Man: Gal: Xyl: Ara:
Rha: Rib = 26.74:22.79:16.76:
16.02:14.29:2.05:1.35. F3: Ri:
Ara: Xyl = 74.74:14.20:11.08

Hot water, fruiting body [63]

GP11 6.9 kDa

→1)-d-Manp-(6→,→1)-d-Glcp-(4→,→1)-d-
Galp-(6→and→2,3,6)-d-Glcp-(1→, with

branches attached at O-2,3 of 1,2,3,6-linked
Glcp residues and terminal T-Glcp

Man: Glc: Gal = 1:5.04:2.61 Hot water, fruiting body [64]

GRP1 40.5 kDa
1,6-β-D-glucan backbone with a

single1,3-α-D-fucopyranosyl
side-branching unit

Glc: Fuc = 2.3:0.5. Hot water, mycelium [27]

GFP-A 848 kDa

Main chain consisted of (1→4)-linked and
(1→6)-linked α-D-glucopyranosyl, and

(1→3,6)-linked
α-D-mannopyranosyl residues

Rha: Ara: Xyl: Gal: Man: Glc
= 1.38:0.53:0.11:1.07:28.75:1.76 Hot water, fruiting body [54,65]

GFP-A 2484 kDa α-type rhamnopyranose, β-type
mannopyranose and α-type galactopyranose

Rha: Xyl: Man: Glc: Gal =
25.98: 9.32: 11.73: 4.74: 48.22

Ultrasound and hot water,
fruiting body [55]

Se-GP11 33 kDa - Man: Glc: Gal = 1:4.91:2.41 Hot water, fruiting body [66]

Se-GFP-22 4130 kDa
Backbone chain of 1,4-α-D-Glcp units with a

branched point at C6 of both
1,3,6-β-D-Manp and 1,4,6-α-D-Galp units

Man: Glc: Gal = 3.3:23.3:1 Hot water, fruiting body [67]
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Table 4. Cont.

Name of Active Fractions/
Purified PS MW Structure/Composition Monosaccharide

Composition * Extraction Solvent & Source Reference

GFP 155 kDa

(1→4)-linked methylation backbone, Glcp
residues were major structural

polysaccharide GFP units, accounting of the
polysaccharide backbone speculate GFP

every 3)-Glcp-(1→and one
3,4)-Glcp-(1→connected interval with a

small amount of 1→, 1→4,1→6
glycosidic linkage

Rha: Xyl: Man: Glc =
1.00:1.04:1.11:6.21 Hot water, fruiting body [68]

GFP30-2-a 2040 kDa Repeating unit of β D Glcp (1→[4) α D Glcp
(1→4) α D Glcp (1]m→4) α D Glcp Glc: Gal = 1:0.098 Hot water, fruiting body [69]

GFP-22 27.2 kDa
Backbone composed of 1,4-β-D-Glcp,

1,3-β-D-Glcp, 1,6-α-D-Glcp, 1,6-α-D-Galp,
1,4,6-α-D-Manp and 1,3,6-α-D-Manp units

Man: Glc: Gal = 2.8:15.2:1.0 Hot water, fruiting body [70]

GF70-F1 1260 kDa
(1→3),(1→6)-β-D-glucan &β-(1→4)-

linked backbone and
β-(1→6)-linked branches

Gal:Glc:Man = 1.24:56:1 Hot water, fruiting body [28]

LMw-GFP 1790 Da α-T-Glcp (28.26%), α-1→4-Glcp
(50.24%) and α-1→3,4-Glcp (21.50%) Glc 65 ◦C water with ultrasound,

fruiting body [51]

GFAP 644.9 kDa (1→3)-β-D-Glcp and (1→3)-α-D-Manp Gal: Glc:Man = 0.23:2.18:1 Water with ultrasound, fruiting
body [56]

GFP-N 1.26 × 107 Da
→2,6)-α-D-Manp-(1→4, α-L-Araf-C1→ and

→3,6)-β-DGlcp-(1→
Ara: Man: Glc =
3.79:1.00:49.70 Hot water, fruiting body [31]

* Ara: Arabinose; Fuc: Fucose; Gal: Galactose; Glc: Glucose; Man: Mannose; Rha: Rhamnose; Rib: Ribose; Xyl: Xylose.
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3.2. Proteins and Peptides

Several kinds of bioactive proteins and peptides have been isolated from G. frondosa
with notable health benefits and medicinal values, although studies on these aspects are
fewer than those on the bioactive polysaccharide fractions. Table 5 summarizes some
typical bioactive proteins and peptides isolated from G. frondosa. As shown in the table,
these bioactive proteins/peptides were extracted mainly from the G. frondosa fruiting body,
with average molecular weights around 20–88 kDa.

Table 5. Bioactive proteins and peptides isolated from G. frondosa with medicinal values.

Bioactive
Protein/Peptide MW Composition *,#/Structure

Extraction Solvent
& Source Ref.

GFL 30–52 kDa

Glycoprotein with 3.3% total sugar,
amino acids with a high content of

acidic and hydroxyl amino acids and a
low content of Met and His

2-Mercaptoethanol and
Ethylenediaminete-

traacetic acid (EDTA),
fruiting body

[71]

Glyco-protein 20 kDa

Protein to saccharide ratio from 75:25
to 90:10. Amino acid composition:

Asn, Gln, Ser, Thr, Gly, Ala, Val, Cys,
Met, Ile, Leu, Tyr, Phe, Lys. His, Arg

and Pro. Monosaccharide
composition: Gal, Man, Glc,

N-acetylglucosamine and Fuc

Ethanol then hot water,
fruiting body [34]

GFAHP 29.5 kDa N-terminal sequence consisted of an
11-amino-acid peptide. Hot water, fruiting body [35]

GFG-3a 88.01 kDa

Glycoprotein with O-glycosylation
and 6.20% carbohydrate composed of
Ara, Fru, Man and Glc in a molar ratio
of 1.33:4.51:2.46:1.00; predominantly
β-sheet glycoprotein with a relatively

small α-helical content

Water, mycelium [32]

GFPr 83 kDa Non-glucan heterodimeric protein
that consists of two 41 kDa subunits

Buffer containing acetic
acid, 2-mercaptoethanol,

and sodium chloride,
fruiting body

[33]

* Ala: alanine; Arg: arginine; Asn: asparagine; Cys: cysteine; Gln: glutamine; His: histidine; Gly: glycine; Ile: isoleucine; Leu: leucine; Lys:
lysine; Met: methionine; Phe: phenylalanine; Pro: proline; Ser: serine; Thr: threonine; Tyr: tyrosine; Val: valine. # Ara: arabinose; Fru:
fructose; Gal: galactose; Glc: glucose; Man: mannose; Fuc: fucose.

The N-acetylgalactosamine-specific lectin GFL isolated from the G. frondosa fruit-
ing body exhibited cytotoxicity against HeLa cells [71]. The protein designated GFAHP
showed a significant anti-herpes simplex virus (HSV) effect, as reported by Gu and cowork-
ers [35]. Glycoprotein is another type of bioactive protein in G. frondosa. Cui and coworkers
isolated the glycoprotein (containing 6.2% carbohydrates) from cultured mycelia of G. fron-
dosa and demonstrated its anti-tumor activity [32]. Zhuang and coworkers patented a
bioactive glycoprotein from G. frondosa, which showed obvious anti-hypertensive, anti-
obesity, anti-hyperlipidemic and anti-diabetic effects [34]. In addition to the glycoprotein,
Chan et al. found that chemical phosphorylation of G. frondosa polysaccharide-peptides
could remarkably enhance both tumor inhibition in vitro and adjuvant effects in vivo.
Meanwhile, modified and unmodified MPSP both showed an insignificant effect on normal
cells, indicating their potential application for anticancer therapy without significant side
effects [72].

3.3. Other Bioactive Molecules

Apart from the macromolecular components, such as polysaccharides and proteins/
peptides, bioactive small molecules have also been discovered in G. frondosa. Table 6 lists
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some bioactive small molecules in G. frondosa from representative research studies. The ma-
jor small molecules discovered with bioactivities mainly include fatty acids, ergosterols,
flavonoids, alkaloids, ascorbic acid and tocopherol.

Table 6. Bioactive small molecules isolated from G. frondosa.

Name of
Molecule/Fractions Composition Extraction Solvent &

Source Ref.

Fatty acid, Compounds
1,2,3

Fatty acid composed of as
palmitic, oleic, and linoleic

acids; ergosterol (1), ergostra-
4,6,8(14),22-tetraen-3-one (2),

1-oleoyl-2-linoleoyl-3-
palmitoylglycerol

(3)

Hexane, mycelium [73]

HE-5-5 o-orsellinaldehyde Ethyl acetate,
mycelium [38]

Polyphenolics, flavonoids,
ascorbic acid and
α-tocopherol

-
Hot water/cold
water/ethanol,
fruiting body

[39]

AGF - Acetone, mycelium [36]

Grifolaone A

(S)-methyl
2-(2-hydroxy-3,4-dimethyl-5-
oxo-2,5-dihydrofuran-2-yl)

acetate

Ethyl acetate,
mycelium [74]

GF-3
Pyrrolefronine, seven pyrrole

alkaloids and nine
ergosterols

Ethanol, fruiting
body [37]

Ergosterol peroxide - Methanol, fruiting
body [75]

As reported by Zhang and coworkers, fatty acids and three compounds, namely ergos-
terol (1), ergostra-4,6,8(14),22-tetraen-3-one (2) and 1-oleoyl-2-linoleoyl-3-palmitoylglycerol
(3), were extracted from the cultured mycelia of G. frondosa by hexane. The fatty acid
fraction, together with all three compounds, exhibited cyclooxygenase (COX) enzyme
inhibitory and anti-oxidant activities [73]. He and coworkers extracted a furanone named
grifolaone A from G. frondosa, which showed specific antifungal activity against the oppor-
tunistic human pathogen of Pseudallescheria boydii and some plant pathogens [74]. Han and
Cui isolated agaricoglycerides (AGF) from the fermented mycelium of G. frondosa. Their
study suggested a promising possibility of using AGF as medicine for inflammatory pain
with 500 mg/kg as the optimal dosage [36]. Chen et al. extracted three fractions, GF-1 to
GF-3, from G. frondosa and discovered the inhibitory effect of GF-3 against the proliferation
of human tumor cells and α-glucosidase. The major bioactive compounds in GF-3 were
detected to be alkaloids (first found in G. frondosa), ergosterols and a new compound
named pyrrolefronine. Since α-glucosidase was involved in the hydrolysis of starch into
disaccharide sugars, inhibition of its activity indicated possible reduction of blood glucose
level [37]. o-orsellinaldehyde, which showed obvious tumoricidal activity, especially se-
lective cytotoxic effect against Hep 3B cells through apoptosis, was also extracted from a
submerged culture of G. frondosa by Lin and Liu [38]. In addition, other bioactive molecules
in G. frondosa, such as polyphenolics, α-tocopherol, ascorbic acid and flavonoids, were
reported to have anti-oxidant properties [39].
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4. Biological Activities and Medicinal Properties
4.1. Antitumor Effects

Previous studies over the past 30 years have strongly suggested that there are three
possible ways by which G. frondosa exerts its anticancer effect—they are protection of
healthy cells, prevention of tumor metastasis and inhibition of tumor growth. In other
words, G. frondosa can fight against tumors both directly and indirectly via enhancement
of the immune system. This section will mainly focus on the direct antitumor function of
G. frondosa, whereas the immunomodulatory effect will be discussed in the next section.

The antitumor activity of G. frondosa was first reported by Miyazaki et al. in 1982 [16],
followed by their further study on the chemical structure of glucans extracted from the
G. frondosa fruiting body and their antitumor activity against Sarcoma 180 tumors in Insti-
tute of Cancer Research (ICR) mice [17]. Nanba’s group obtained different polysaccharide
fractions and reported the D-fraction for the first time in 1988 [21]. Unlike many other
antitumor polysaccharides derived from Basidiomycetes, which may become ineffective
if administered orally, the D-fraction exhibited promising prospects, because it could be
administered orally, intravenously and intraperitoneally [21]. Nanba and Kubo conducted
a nonrandomized clinical study to assess the effects of the D-fraction from G. frondosa on
165 advanced cancer patients who received the D-fraction as crude powder tablets alone or
in addition to chemotherapy. Results showed that G. frondosa was effective against breast,
liver and lung cancers, but less effective against leukemia, stomach and bone cancers [22].
Further studies conducted by Alonso et al. demonstrated that the D-fraction was able to
function on mammary tumor cells directly through the modulation of different cellular
processes during cancer development [48]. Zhao and coworkers found that a combination
of the D-fraction (0.2 mg/mL) and vitamin C (0.3 mmol/L) resulted in a 70% reduction
in the viability of human hepatocarcinoma SMMC-7721 cells [76]. Further purification of
the D-fraction yielded the MD-fraction, which, as described in the patent of Nanba and
Kubo, showed even better results than the D-fraction in terms of the inhibitory effect on
mouse tumor growth [22]. In addition to intraperitoneal injection in Nanba and Kubo’s
test, the MD-fraction has also been demonstrated to inhibit tumor growth in mice via oral
administration [77]. Both the D-fraction and the MD-fraction were proven safe, with low
or no toxicity.

Apart from the D and MD-fractions, other polysaccharide fractions have also exhibited
anti-tumor activity. As reported by Bie et al. [65], the polysaccharide GFP-A, isolated
from G. frondosa, was able to inhibit the proliferation of human colon cancer HT-29 cells
in vitro, with 180 µg/mL as the most effective concentration. Li and Liu reported that the
polysaccharide fraction GFP-4, extracted from G. frondosa, showed an inhibitory effect on
human lung cancer cells at 4 ◦C. The inhibitory effect became lower after heat treatment
at over 30 ◦C due to structural changes [78]. Alonso and coworkers explained that the
polysaccharides in G. frondosa could regulate gene expression involved in the apoptosis of
breast cancer cells so that cell proliferation was inhibited and the cell cycle was blocked [79].

In addition to polysaccharide fractions, the ergosterol derivatives from non-polar
extracts of G. frondosa were also found to have anti-proliferative effects on human tumor
cells [37]. Moreover, the o-orsellinaldehyde component of submerged cultures of G. frondosa
exhibited tumoricidal activity against Hep 3B cells via apoptosis [38]. Some glycoproteins
isolated from G. frondosa, such as GFL and GFG-3a, exhibited antitumor effects as well
due to their anti-proliferative activity against cancer cells [32,71]. Table 7 summarizes the
testing methods and potency of antitumor activity based on reported studies on G. fron-
dosa. The testing methods for in vivo studies mainly include microscopy observation and
assessment of the inhibition rate by measuring tumor weight, whereas for in vitro studies,
the MTT assay is commonly used to determine cells’ viability. It is worth mentioning that
G. frondosa was able to achieve an inhibition ratio of over 90% for the treatment of MM46
liver carcinoma, BEL 7402 cells and TMK-1 gastric cancer cells.
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Table 7. Bioactivity potency and testing methods of major bioactive molecules isolated from G. frondosa.

Bioactivity Bioactive Components Name of Fraction Testing Method Potency of Bioactivity Ref.

Anti-tumor

PS D-fraction
In vivo counting of the number of tumor
foci metastasized using stereoscope wide

field microscopy

1 mg/kg/day for 17 days against MM46
liver carcinoma, 91.3% inhibition ratio [80]

PS GFP-A In vitro testing of cancer cell viability using
MTT assay

150 µg/mL at 48 h, 50% inhibition (IC50) of
human colon cancer cells [65]

PS MD-fraction In vivo assessing of inhibition rate by
measuring tumor weight

0.1 mg/kg at 10 times after transplanting
MM46 carcinoma, 94.3% inhibition ratio [22]

PS MZ-fraction In vivo assessing of tumor inhibition by
measuring tumor weight

4 mg/kg/day against MM46 carcinoma,
70.3% inhibition ratio [25]

PS GFP-A In vivo assessing of tumor inhibition rate in
mice inoculated with S180 sarcoma cells

Oral administration of 50, 100 and
200 mg/kg for 15 days, tumor inhibitory

rates were 17.1%, 28.3% and 52.2%
respectively

[55]

PS LMw-GFP In vivo assessing of tumor inhibition rate in
mice inoculated with H22 hepatoma cells

Oral administration of 200 mg/kg for
15 days, tumor inhibitory ratio was 40.1% [51]

PS GFAP In vivo assessing of tumor inhibition rate in
H22 hepatoma cell-bearing mice

Intragastric administration of 100 and
200 mg/kg for 15 days, tumor inhibitory
rate was 16.36% and 36.72% respectively

[56]

Glycoprotein GFG-3a In vitro testing of cancer cell viability using
MTT assay

20 µg/mL against sarcoma 180 cells, 92%
inhibition ratio; 60 µg/mL against BEL

7402 cells, 95% inhibition ratio
[32]

Water soluble extract - In vitro counting under a phase-contrast
microscope

10% w/v Maitake extract against TMK-1
gastric cancer cell lines for 3 days, 90%

inhibition ratio
[81]

Immuno-
modulatory

PS D-fraction In vitro evaluation of cytokine production
using ELISA

4.0 mg/kg/day, 3000 pg/mL
IL-12 production [82]

PS GRN
In vitro evaluation of cytokine production
and activity of macrophages using ELISA

and MTT assay

100 µg/mL, 11.050 ng/mL IL-6 production
and 14.458 ng/mL TNF-α production by

RAW264.7 cells
[24]
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Table 7. Cont.

Bioactivity Bioactive Components Name of Fraction Testing Method Potency of Bioactivity Ref.

PS GP11
In vitro evaluation of cytokine production
and activity of macrophages using ELISA

and MTT assay

1000 µg/mL, 81.84 pg/mL TNF-α,
229.07 pg/mL IL-1β level [64]

PS MZ-fraction In vitro determination of TNF-α or IL-12 by
ELISA

500 µg/mL, around 85 pg/mL IL-12 and
50 ng/mL TNF-α by J774.1 macrophage [25]

PS GFP

In vitro macrophage proliferation
assessment using MTT assay; concentration

of cytokine and chemokine measured by
multiplex magnetic bead panel kit

40 µg/mL, 150% cell viability for 36 h [68]

PS Fr. I and II In vitro human blood cytokine
concentrations determined by ELISA

0.1 mg/mL Fr. II, around 3700 pg/mL
TNF-α, 360 pg/mL IFN-γ and 4400 pg/mL

IL-6
[83]

Antiviral/
antibacterial

PS D-fraction

In vivo determination of the survival rate of
Listeria monocytogenes by estimating

colony-forming units (CFUs);
In vitro HBV DNA and viral antigen
analysis using quantitative real-time

polymerase chain reaction and end-point
titration in radioimmunoassays, respectively

10 mg/kg/d, survived rate of
L. monocytogenes = 67%;

IC50 for HBV DNA in cells = 0.59 mg/mL;
IC50 for HBV polymerase = 1.38 mg/mL;

[84,85]

PS GFP1 In vitro EV71-infected cell inhibition rate
determination using CCK-8 assay

250 µg/mL extract, inhibition rate = 20%
after 10 h [27]

Protein GFAHP

In vitro HSV-1 virus quantity analysis using
plaque reduction assay;

In vivo HSV-1 virus measurement using
plaque assay

IC50 for HSV-1 replication = 4.1 µg/mL;
150 µg/mL, mean virus titer 12.7%

compared to control after 24 h
[35]

Antidiabetic

PS F2/F3
In vivo fasting serum glucose (FSG) level

measurement using glucose oxidase method
in diabetes rat model

Intake 100 mg/kg/d F2 or 50 mg/kg/d F3
for two weeks, inhibits a rise in FSG level [63]

PS MT-α-glucan In vivo glucose oxidase method using
reflective glucometer on KK-Ay mice

Intake 150 mg/kg/d for two weeks,
decrease around 23% FSG [26]
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Table 7. Cont.

Bioactivity Bioactive Components Name of Fraction Testing Method Potency of Bioactivity Ref.

n-hexane extract GF-H

In vitro α-amylase inhibition assay and
α-glucosidase inhibition assay;

In vivo glucose level measurement by the
glucose oxidase method in high-fat-diet and

streptozotocin (HFD + STZ)-induced
hyperglycemic mice

IC50 of α-amylase and α-glucosidase:
3.75 mg/mL and 0.04 mg/mL respectively;

Intake 600 mg/kg, blood glucose level
decrease 28%

[86]

Glycoprotein SX-fraction In vivo FBG measurement on type 2
diabetic patients Intake 2–4 weeks, 30–63% decline in FBG [87]

Small molecules Ergosterol peroxide
In vitro assessment of antidiabetic activity in
palmitate-induced murine C2C12 skeletal
muscle cells by measuring glucose uptake

At 5 µM, the increase in the glucose
absorption rate was as good as that of the

insulin-treated cells
[75]

Lipid metabolism/
hypertension

Dry Maitake powder -
In vitro testing using a commercial kit

(cholesterol E-Test, Phospholipid B-Test
Triglyceride E-Test)

Liver weight 0.68 times lower than control;
Triglyceride, total cholesterol and free

cholesterol reduced by 0.46 times, 0.54 times
and 0.65 times in liver with diet containing

20% maitake for 11 d

[88]

Dry Maitake fiber -

In vitro total cholesterol, HDL cholesterol
and triglyceride concentrations in the serum,
determined enzymatically by commercially

available reagent kits

Serum total cholesterol concentration
reduced by 11% than control by 50 g/kg

maitake for 4 weeks
[89]

Water extract -
In vivo systolic blood pressure (SBP) level

measurement using tail plethysmography in
aging female rats

Intake 350 mg/kg for 120 d, significantly
lower SBP level [90]

PS IZPS

In vitro access of hydroxyl radical, DPPH
radical, superoxide radical and hydrogen

peroxide scavenging ability, reducing power
and Fe2+chelating activity by

chemical methods

EC50 scavenging •OH, DPPH• and O2− are
204 mg/L; 211 mg/L and 525 mg/L; At
1000 mg/L, H2O2 scavenging rate 95%;

reducing power (abs at 700 nm) 0.38;
Fe2+chelating activity 51%

[91]
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Table 7. Cont.

Bioactivity Bioactive Components Name of Fraction Testing Method Potency of Bioactivity Ref.

Antioxidant

PS G-2/G-3

In vitro assessment of the superoxide
scavenging activity by chemical assay;

In vitro assessment of free radical
scavenging activity after UV irradiation in

HDF cells

At 0.2% w/v, inhibit 90% (G2) and 75% (G3)
O2−; decreased free radicals (formed after

UV irradiation) by 20% for both G2 and G3
[92]

PS GFP-1, GFP-2/GFP-3

In vitro assessment of of hydroxyl radical,
DPPH radical and superoxide radical

scavenging ability and Fe2+chelating activity
by chemical methods

At 3.0 mg/mL, the scavenging rate of
DPPH•, •OH, O2−•: 49, 48 and 45%

(GFP-1); 78, 53 & 53% (GFP-2) & 66, 93 &
83% (GFP-3); At 5 mg/L, Fe2+chelating rate:
91% (GFP-1); 98% (GFP-2) and 80% (GFP-3)

[93]

PS Se-GFP-22 In vitro assessment of DPPH radical
scavenging ability At 1000 µg/mL, 46% scavenging rate [67]

Protein GFHT-4

In vitro assessment of DPPH radical
scavenging ability, Fe2+chelating activity,
reducing power and inhibition of linoleic

acid autoxidation power by
chemical methods

At 2.5 mg/mL, inhibits 90% DPPH•, chelate
80% Fe2+, reducing power close to 1.5 mg

ascorbic acid/mL; At 0.5 mg/mL, inhibition
of linoleic acid autoxidation power

equivalent to BHA (0.5 mg/mL)

[94]

Small molecule

Ergosterol,
ergostra-4,6,8(14),

22-tetraen-3-one, &
1-oleoyl-2-linoleoyl-3-

palmitoylglycerol

In vitro assessment of antioxidants by
liposome oxidation model

At 100 µg/mL, 79, 48% and 42% inhibition
rate, respectively [73]

PS GFP
In vivo measurement of gut microbiota in

high-fat-diet-fed rats by
high-throughput sequencing

For GFP (400 mg/kg day)-treated group,
significant increase in the relative

abundance of Helicobater, Intestinimonas,
Barnesiella, Parasutterella, Ruminococcus and

Flavonifracter, and decrease in
Clostridium-XVIII, Butyricicoccus and

Turicibacter. Similar gut microbiota
composition to that of the normal group.

[95]
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Table 7. Cont.

Bioactivity Bioactive Components Name of Fraction Testing Method Potency of Bioactivity Ref.

Microbiota
regulation

PS GFP-N
In vivo determination of intestinal

microflora in a diabetes rat model using
single-molecule real-time sequencing

For GFP-N-fed group (75 and 150 mg/kg
day), significant increase of the relative
abundances of Porphyromonas gingivalis,

Akkermansia muciniphila, Lactobacillus
acidophilus, Tannerella forsythia, Bacteroides

acidifaciens and Roseburia intestinalis. Similar
gut microbiota composition to that of the

normal group.

[31]

PS GFP
In vivo access of gut microbiota in high-fat
diet-fed and streptozotocin-treated mice by

high throughput sequencing.

For GFP-treated (900 mg/kg day) group,
significant increase in the relative

abundance of Alistipes and Bacteroides, and
decrease in Enterococcus.

[96]

PS GFP
In vivo evaluation of gut microbiota in

high-fat-diet-fed rats by high-throughput
next-generation 16S rRNA gene sequencing.

For GFP-treated (150 mg/kg day) group,
significant increase in the relative

abundance of Allobaculum, Bacteroides,
Bifidobacterium and other cecal microbiota

compared with the HFD-fed group.

[30]

PS GFWE
In vivo access of gut microbiota in

high-sucrose- and high-fat-diet-fed rats by
real-time sequencing.

For GFWE-treated (150 mg/kg day) group,
increase in the relative abundance of caecal

bacteria Oscillibacter and Barnesiella.
[97]

Small molecule

GF95 (mainly
4-hydroxyhippuric acid,

flavone derivatives,
luteolin, luteolin
6,7-dimethoxy &

jaceosidin or
5,7,4-trihydroxy-3)

In vivo access of gut microbiota in
high-fat-diet-fed rats by

real-time sequencing

For GF95 (150 mg/kg day)-fed group,
a higher relative abundance of Intestinimonas

and Butyricimonas than that fed with
HFD only.

[98]
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4.2. Immunomodulation

Immunomodulation is the most well-known effect of G. frondosa components and has
been confirmed by many studies. These immunomodulatory components have been shown
to enhance the actions of macrophages and many other immune-related cells, such as cyto-
toxic T-cells and natural killer (NK) cells [99]. Furthermore, G. frondosa components could
increase the secretion of cytokines, which are signaling molecules, including interferons
(IFN), interleukins (IL), tumor necrosis factors (TNF) and lymphokines with antiprolifera-
tive activity, causing apoptosis and differentiation in tumor cells, thus further increasing
the efficiency of immune-related cells.

Polysaccharides have been recognized as the major immunomodulating components
of G. frondosa. The D-fraction, in addition to its direct antitumor effect as mentioned previ-
ously, is also a major polysaccharide fraction of G. frondosa with significant immunomod-
ulatory activity. Kodama and coworkers suggested that the D-fraction could activate
NK cells through upregulating their expression of TNF-α and interferon-gamma (IFN-γ)
proteins. Meanwhile, the D-fraction were also able increase macrophage-derived IL-12,
which further activated NK cells, implying that the D-fraction could provide long-term
tumor-suppressive effects [49,82]. Further investigation by Kodama et al. found that the
application of the D-fraction could reduce the effective dosage of the chemotherapeutic
agent, mitomycin-C (MMC) by increasing the proliferation, differentiation and activation
of immunocompetent cells. It could also reduce the immunosuppressive activity caused by
MMC [80].

Apart from the D-fraction, other polysaccharide fractions with immunomodulatory
activity have also been isolated from G. frondosa. Ishibashi and coworkers isolated in-
soluble and a high-molecular-weight soluble forms of Grifolan (GRN) from G. frondosa,
both of which can activate macrophages through triggering cytokine secretion to produce
TNF [61,100]. Similarly, Mao et al. observed increased levels of TNF-α, IL-2, IL-1β and nitric
oxide (NO) in the serum with the dosage of polysaccharide GP11 from G. frondosa, suggest-
ing the activation of macrophages and the stimulation of tumoricidal activity [64]. Masuda
and coworkers found that the anti-cancer activity of the polysaccharide fraction MZF from
G. frondosa was associated with the activation of cell-mediated immunity resulting from
the induction of macrophage proliferation, increasing levels of IL12, IL2, IFN-γ and TNF-α,
as well as enhancement of NK cells and cytotoxic T lymphocytes [25,59]. The GFP fraction
isolated by Meng et al. promoted the production of cytokines and chemokines such as IL-6,
IFN-γ and TNF-α, and also effectively enhanced the proliferative activity of fibroblasts,
contributing to strong immune-stimulating activity [68]. Table 7 presents the common
testing methods and potency indices of immunomodulatory effects. In vitro testing is
usually performed with cytokine production evaluated based on ELISA and macrophage
activity by MTT assay.

4.3. Antiviral and Antibacterial Effects

There have been a number of studies reporting the beneficial effects of G. frondosa
in the treatment of viral infections, including those caused by hepatitis B virus (HBV),
enterovirus 71 (EV71), herpes simplex virus type 1 (HSV-1) and human immunodeficiency
virus (HIV). Mayell and coworkers reported a study on patients with chronic hepatitis
B. The results showed that patients who took G. frondosa fruiting body polysaccharides
showed positive signs, specifically a higher recovery rate compared with the control
group [1]. Nanba et al. reported that the MD-fraction from G. frondosa could fight against
HIV through several pathways, including direct inhibition of HIV, stimulation of the
natural defense system against HIV and a reduction in vulnerability to opportunistic
infections [50]. The GFP1 fraction extracted by Zhao and coworkers was found to fight
against EV71, the causative pathogen of hand-foot-and-mouth disease. The researchers
found that G. frondosa could hinder EV71 viral replication, suppressing genomic RNA
synthesis and protein expression, and thus could be used as a promising therapeutic
compound for EV71 treatment [27]. In addition to polysaccharide fractions, the protein
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fraction GFAHP purified from G. frondosa by Gu et al., has also shown anti-viral effects.
It significantly inhibited HSV-1 replication in vitro and reduced HSV-1 induced symptoms
such as blepharitis in a murine model [35].

In addition to antiviral effect, the D-fraction isolated from G. frondosa has also shown
antibacterial effects. Kodama and coworkers found that the mechanism of antibacterial
action of D-fraction was related to the immune-stimulating activity. The D-fraction could
activate immuno-competent cells and induce the production of cytokines, which further
lead to the activity enhancement of splenic T cells to kill Listeria monocytogenes [84]. Unlike
the antibacterial mechanism, the antiviral action of the D-fraction is not directly related to
the immune system. According to Gu et al., the D-fraction interfered with HBV replication
through the inhibition of HBV polymerase [85].

4.4. Antidiabetic Activity

The hypoglycemic effects of G. frondosa extracts have been demonstrated in multiple
animal studies. To test the antidiabetic activity of active ingredients in G. frondosa, in vivo
fasting serum glucose (FSG) or fasting blood glucose (FBG) measurements are generally
performed after feeding the bioactive ingredients to animal models for 2 to 4 weeks
(Table 7). A high FSG level is one of the characteristics of diabetes mellitus sufferers and the
influence on FSG level could directly indicate the antidiabetic effect of active ingredients in
G. frondosa.

The hypoglycemic mechanisms of these polysaccharide fractions are most likely to
be linked to insulin activity. For instance, F2 and F3 polysaccharides and SX glycoprotein
fractions have been suggested to exert hypoglycemic effect through insulin signal path-
way [63,87]. Konno et al. reported that the SX-fraction could facilitate glucose uptake,
leading to activation of the insulin receptor (IR) and insulin receptor substrate 1 (IRS-1),
and eventually resulting in increased insulin secretion. In a normal situation, a high glucose
level would lead to low glucose uptake, but the SX-fraction overcame this suppressive
effect and impaired the insulin signaling pathway [87]. The hypoglycemic mechanisms
of F2 and F3 polysaccharides were also related to IR and IRS-1. Xiao et al. reported that
they could improve insulin sensitivity and decrease FSG levels by increasing protein levels
of IR and decreasing protein levels of IRS-1 [63]. The anti-diabetic effects of MT-α-glucan,
such as ameliorating insulin resistance of peripheral target tissue and improving insulin
sensitivity, were also reported to be associated with IR [26].

In addition to the enhancement of insulin activity, the hypoglycemic effects of G. fron-
dosa may be generated through the inhibition of α-glucosidase activity, because an anti-
α-glucosidase effect could prevent starch hydrolysis into disaccharides and decrease the
blood glucose level. Shen and coworkers examined the hyperglycemic effects of non-polar
fractions in G. frondosa both in vivo and in vitro. Research findings showed that G. frondosa
exhibited strong anti-α-glucosidase activity in vitro, and could significantly lower the
blood glucose level in high-fat-diet-fed and streptozotocin-induced hyperglycemic ani-
mals [86]. Chen et al. attributed the anti-α-glucosidase effect to the pyrrole alkaloids and
ergosterols extracted from G. frondosa [37], whereas Wu et al. suggested that the ergosterol
peroxide isolated from G. frondosa contributed to its anti-diabetic effect [75]. However,
Su and coworkers concluded that the strong anti-α-glucosidase activity was mainly at-
tributed to the oleic acid and linoleic acid, rather than ergosterol and ergosterol peroxide
in G. frondosa [101]. Some previous studies suggested that the anti-diabetic activity of
G. frondosa originated from its regulatory effect on gut microbiota, which shall be discussed
later in this paper.

4.5. Lipid Metabolism Regulation and Anti-Hypertension Effects

The effects of G. frondosa on lipid metabolism regulation and anti-hypertension have
been shown in many reports. Kubo and Nanba found that with the G. frondosa fruiting body
as the feed, the triglyceride, cholesterol and phospholipid levels in the serum of rats were
suppressed by 30–80% compared with those of the control group of animals. Meanwhile,
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the weight of the extirpated liver was also 60–70% lower than that of the control group,
and the corresponding cholesterol excretion ratio in feces increased by 1.8 times with
G. frondosa treatment, further demonstrating that G. frondosa treatment helped improve
lipid metabolism and inhibit increases in liver lipid and serum lipid after the ingestion of
high-fat feed [88]. Similar results were obtained by Fukushima and coworkers, who showed
that serum total cholesterol concentrations and very-low-density lipoprotein (VLDL) levels
in rats fed with 50 g/kg G. frondosa were lowered compared with those of the control group
(50 g/kg cellulose powder), and the fecal cholesterol excretion was significantly higher
compared with the control group [89].

The antihypertensive effects of the active ingredients of G. frondosa have been deter-
mined mainly through the measurement of systolic blood pressure (SBP) in animal models,
as summarized in Table 7. Kabir et al. conducted an experiment on hypertensive rats with a
diet containing 5% G. frondosa or Lentinus edodes (L. edodes) mushroom powder. The results
showed that both G. frondosa and L. edodes treatment could result in a significant decrease
in the SBP of spontaneously hypertensive rats. The reduction in SBP level was similar for
G. frodosa and L. edodes, which was around 15 mmHg after 63 days of a mushroom diet
compared with the control group [102]. Their further research showed that G. frondosa
could not only suppress the development of hypertension (preventive effect), but also
lower elevated blood pressure (treatment effect) [103]. Preuss and coworkers compared
rats fed with two commercially-available fractions of SX and D with a control group fed on
a baseline diet and found that G. frondosa fractions could lessen age-related hypertension
partly via their effects on the renin-angiotensin system [90].

4.6. Antioxidant Activities

Several components in G. frondosa, including polysaccharides, proteins, fatty acids
and some other constituents, have shown notable antioxidant activities. The common
activity assay methods and anti-oxidant potencies are summarized in Table 7. As shown
in this table, the common antioxidant activity assays include the scavenging abilities of
hydroxyl radicals, DPPH radicals, superoxide radicals and hydrogen peroxide; as well as
the reducing power and Fe2+ chelating activity. Lee and coworkers suggested that polysac-
charides from G. frondosa could be potential ingredients for cosmetic applications due to
their antioxidant activity, radical scavenging activity after UV irradiation, proliferation of
fibroblasts and collagen biosynthesis [92]. Similar findings were obtained by Chen and
coworkers, who showed that the crude polysaccharide GFP, extracted from G. frondosa
fruiting bodies, possessed significant inhibitory effects on hydroxyl, superoxide and DPPH
radicals [93].

The antioxidant activity of G. frondosa polysaccharides could be further enhanced by
incorporation of zinc or selenium. Zhang and coworkers used the strain of G. frondosa as a
vector of zinc biotransformation to produce zinc-incorporated intracellular polysaccharides,
which showed notable antioxidant and anti-aging activities compared with the correspond-
ing non-zinc-incorporated intracellular polysaccharides [91]. Li and coworkers purified
crude Se-polysaccharides (Se-GFP) from the fruiting bodies of Se-enriched G. frondosa and
obtained a heteropolysaccaride of Se-GFP-22 with more remarkable antioxidant effects
than that of non-Se-incorporated GFP-22. The antioxidant activity might be affected by the
degree of branching, molecular weight and configuration, as well as the synergistic effect
of polysaccharide and Se [67].

Other than polysaccharides, proteins, fatty acids and other molecules from G. frondosa
such as phenols and flavonoids also showed antioxidant activities. Dong and coworkers
hydrolyzed protein from the G. frondosa fruiting body using different proteases and found
that trypsin hydrolysate had the strongest antioxidant potential, especially the GFHT-4
fraction, with a molecular weight lower than 3 kDa [94]. Moreover, according to Zhang et al.,
the inhibition levels of cyclooxygenase (COX)-1 enzyme and COX-2 enzyme activities by
a fatty acid of G. frondosa were 98% and 99%, respectively. Moreover, the inhibition of
liposome peroxidation by the fatty acid was also as high as 79% [73]. Yeh and coworkers



Foods 2021, 10, 95 22 of 28

obtained several antioxidant components including flavonoids, phenols, α-tocopherol and
ascorbic acid from the ethanol, cold-water and hot-water extracts of G. frondosa. All of
these extracts exhibited various antioxidant activities, including reducing power, chelating
ferrous ions and scavenging DPPH and superoxide anions [39].

4.7. Gut Microbiota Regulation

In recent years, there has been growing evidence of the important role of gut micro-
biota in the mediation/action of the various health benefits of mushrooms, especially their
polysaccharide components [104]. Many studies have investigated the regulation of gut
microbiota by the bioactive polysaccharides from edible and medicinal mushrooms such
as G. frondosa because the biological macromolecules of polysaccharides, which cannot be
directly absorbed, can be utilized by intestinal flora [105]. Friedman reviewed mushroom
polysaccharides and their anti-obesity, anti-diabetes, anti-cancer and antibiotic properties,
and suggested that the regulation of gut microbiota by polysaccharides was the major
mechanism behind these properties [106]. Specifically, the maintaining of gut microbiota
homeostasis has been found to be related with improved treatment of type 2 diabetes
mellitus (T2DM) [107] and non-alcoholic fatty liver disease (NAFLD) [108]. To evaluate
the microbiota regulation activity of bioactive components, in vivo measurement of gut
microbiota is usually preferred by high throughput sequencing, as shown in Table 7.

Very recently, Chen and coworkers reported the regulatory efficacy of a novel G. fron-
dosa polysaccharide GFP-N on the intestinal microflora of diabetic groups in vivo using
single-molecule real-time sequencing technology (SMRT) [31]. There were significant dif-
ferences exhibited in the composition of microbial populations in gut microbiota between
the GFP-N-treated group and the diabetic control group. The relative abundance of some
bacterial species such as Lactobacillus acidophilus (L. acidophilus) and Bacteroides acidifaciens
(B. acidifaciens) was increased with GFP-N treatment. L. acidophilus has been shown to
delay the progression of high fructose-induced diabetes in rats [96], and B. acidifaciens has
shown the potential for treatment of metabolic diseases such as obesity and diabetes [109].
Guo et al. obtained similar results, showing that GFP could regulate intestinal microflora
by significantly elevating the relative abundance of Alistipes and Bacteroides and reducing
Enterococcus, which was associated with the improved hyperlipidemia and hyperglycemia
in T2DM induced by streptozotocin and a high-fat diet (HFD) [107]. The same research
group also developed G. frondosa polysaccharide-chromium (III) (GFP-Cr(III)) through
chelation because chromium (III) was the most important trace mineral for T2DM treatment.
Compared with inorganic chromium, organic chromium (III) has been found to have much
better effects, with lower toxicity and genotoxicity. The researchers found that GFP-Cr(III)
not only had the effects of GFP as shown in their previous work but also significantly
increased the relative abundance of Enterorhabdus and Coriobacteriaceae due to the presence
of Cr(III) [110].

Additionally, GFP has also been found to regulate the gut microbiota of rats with
non-alcoholic fatty liver disease (NAFLD). Li and coworkers found that GFP could partly
recover the HFD-induced alteration of cecal microbiota structure [30]. GFP treatment could
decrease the Firmicutes to Bacteroidetes ratio, indicating a lower possibility of lipid produc-
tion from undigested carbohydrates [108]. Friedman also suggested in his review that the
ratio decrease of the two major classes of gut bacteria, namely, Firmicutes and Bacteroides,
could have fat-lowering effects in obesity treatment [106]. In addition, GFP supplementa-
tion significantly increased the proportion of Allobaculum, Bacteroides, Bifidobacterium and
some other microbial groups in the cecal microbiota, which might boost the immune sys-
tem of the host and the defense against NAFLD [30]. The boosting of the immune system
may contribute to the anti-tumor and anti-inflammatory effect of GFP as well [29,111].
Nevertheless, the functions of gut microbiota on the various bioactivities of G. frondosa
polysaccharides and other components still require further exploration.
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5. Conclusions

Edible and medicinal fungi or mushrooms are among the most common sources of
health foods and nutraceutical products. G. frondosa is one of the most widely explored
fungal species for nutraceutical and therapeutic compounds. The fungal biomass of G. fron-
dosa displays a high content of proteins and carbohydrates and a relatively low content
of fat compared with other commonly cultivated mushrooms. The crude water extracts,
isolated fractions and purified components have shown a number of bioactivities, includ-
ing antitumor, immunomodulatory, antiviral, antibacterial, antidiabetic, lipid metabolism
regulation, hypertension control and antioxidation. Some of these health effects may be
associated with the regulation of the human gut microbiota. Polysaccharides, which rep-
resent the most significant bioactive components of G. frondosa, contribute to many of its
bioactivities and health benefits. The most successful and valuable health products from
this fungal species are represented by the polysaccharide fractions and polysaccharide
protein complexes, including the D-fraction or the MD-fraction and Grifolan, which have
been approved for human use in immunotherapy and complimentary treatment of cancers
with chemotherapy and radiotherapy.

Although some of the constituents of G. frondosa have been widely used in health foods
or dietary supplements, very few have been used in prescribed medication, which requires
more rigorous assessment and clinical trials. For a wider and more reliable application of
the various components in nutraceutical and therapeutic products, it is fundamental to
gain a better understanding of the structure–bioactivity relationship and the underlying
mechanisms of action in the human body. Structural modification of the polysaccharides
is another feasible strategy to attain enhanced bioactivity and novel bioactive molecules.
As for many food and medicinal products, good manufacturing practice (GMP) should be
implemented in the production process and systems, and standardized protocols should be
established and followed for the preparation and quality control of the useful components.
With increasing public concern about health threats from food contamination, environmen-
tal pollution and new infectious organisms such as the COVID-19 virus, the protection of
human health through the immunomodulatory and health-promoting functions of G. fron-
dosa constituents is even more attractive and promising. Therefore, it is worthwhile to put
more effort into the research and development of this edible fungal species.
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