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Abstract

Techniques using machine learning for short term blood glucose level prediction in patients

with Type 1 Diabetes are investigated. This problem is significant for the development of

effective artificial pancreas technology so accurate alerts (e.g. hypoglycemia alarms) and

other forecasts can be generated. It is shown that two factors must be considered when

selecting the best machine learning technique for blood glucose level regression: (i) the

regression model performance metrics being used to select the model, and (ii) the prepro-

cessing techniques required to account for the imbalanced time spent by patients in different

portions of the glycemic range. Using standard benchmark data, it is demonstrated that dif-

ferent regression model/preprocessing technique combinations exhibit different accuracies

depending on the glycemic subrange under consideration. Therefore technique selection

depends on the type of alert required. Specific findings are that a linear Support Vector

Regression-based model, trained with normal as well as polynomial features, is best for

blood glucose level forecasting in the normal and hyperglycemic ranges while a Multilayer

Perceptron trained on oversampled data is ideal for predictions in the hypoglycemic range.

Introduction

Type 1 Diabetes (T1D) is an autoimmune disease where the pancreas produces little to no

insulin [1]. Conventional therapy requires patients to inject themselves with insulin multiple

times per day. However, with more recent advancements in technology, specifically systems

known as artificial pancreases (APs), improved glycemic control is now possible [2].

The standard AP consists of three main components. Firstly, there is a continuous glucose

monitor (CGM) which monitors glycemic levels via a small sensor inserted subcutaneously in

either the forearm or the abdomen. The second component is an insulin delivery system, typi-

cally a continuous pump, which delivers insulin at either a user-specified or an automatically

determined basal rate, also subcutaneously. Thirdly, there is a micro-controller linking the two

devices together wirelessly, whose main purpose is regulating the insulin pump rate such that

time spent in normoglycemia is maximised. Additionally, a dedicated reader or a smartphone
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may also be used so the patient can observe their current and recent past glucose levels, along

with the status of the pump, in real time or on-demand.

Despite these technological improvements, most patients with T1D are still not able to

achieve near-normal glycemia, and remain at risk of severe hypoglycemia and diabetic ketoaci-

dosis [3, 4], albeit with a lower probability than patients undergoing non-AP treatment. This

risk is primarily due to the insulin pumps themselves not responding adequately to changing

glycemia, one dimension of which is the inability of the controller to accurately forecast short

term future glycemic levels.

Consequently, several studies have reported on the benefits of being able to predict hypo-

glycemia in patients with T1D as a way to improve clinical outcomes [5–7], and alerts can eas-

ily be built into existing monitoring software if the patient is using a CGM only or a full AP [8,

9]. In this paper, the focus is on the application of machine learning for predicting glycemic

levels which can then be used for generating alerts. Examples of the current level of interest in

applying artificial intelligence and machine learning techniques to this problem are illustrated

by two recent extensive survey papers on the topic [10, 11].

The main contributions of this paper are as follows. Firstly, the predictive performance met-

rics used for assessing different machine learning techniques and selecting the best single tech-

nique are considered. It is shown, via an extensive set of experiments, that the best metric

should focus on the portion of the range where the highest accuracy is desired. For example, if

the ultimate aim is to generate alerts whenever a patient is at risk of hypoglycemia (<70 mg/dl

blood glucose level), then the chosen metrics should focus on this range in addition to the

overall range. In contrast, recent works in the literature (e.g. [12] as well as those covered in

the survey articles [10, 11]) usually compute accuracy over the entire glycemic range, which

may lead to misleading conclusions. A solution to this problem is to break the glycemic range

into meaningful parts and then analyse each subrange separately.

Secondly, once the importance of this approach is established, further analysis in this paper

then shows that the naive application of machine learning models to the data does indeed lead

to bias. This is because most T1D patients spend most of the time in the normal range. Since

there is very little work in the literature on the problem of imbalanced regression [13], an

adaptation of standard preprocessing techniques for imbalanced labelled data, applied to

blood glucose level regression, is proposed here. This in turn leads to demonstrated increases

in accuracy on particular subranges of the glycemic range.

Materials

The data analysed is reviewed in this section and then the machine learning and preprocessing

methods used are summarised. Finally, typical metrics for assessing blood glucose level predic-

tors from the literature are described.

Ohio T1D dataset and prediction task

The University of Ohio T1D Dataset [14] is a publicly available benchmark dataset comprising

data from six T1D AP users taken over a period of approximately eight weeks. The dataset is

nontrivial in size and consists of detailed information from the patients including interstitial

glucose levels recorded by a Medtronic Enlite CGM, records of doses of basal and prandial

insulin administered by a Medtronic 530G insulin pump (including temporary basal rate

changes and corrective boluses), physiological data recorded by a Basis Peak fitness band (e.g.

heart rate) and a variety of self-reported data (such as self-reported sleeping times and food

intake estimates). A period of approximately eight weeks is covered for each patient which in
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turn is split chronologically into two parts: approximately the first six weeks of data are

reserved for training, and approximately the last two weeks are reserved for testing.

In this paper, the focus of analysis is on the timestamped CGM portion of the data. An

example of this type of data is given in Fig 1 which shows a fragment of CGM trace for one

patient over a period of approximately twenty hours. The horizontal lines on the graph are at

70 mg/dl and 180 mg/dl respectively which are are the thresholds for level 1 hypoglycemia and

level 1 hyperglycemia [15]. The normoglycemic range lies between these ranges.

A typical issue when dealing with this type of CGM data is gaps in the CGM trace which

may occur frequently and for multiple reasons. For example, sensor replacement necessarily

leads to a gap in the data of a varying amount of time; likewise forgetting to swipe a flash-type

sensor within eight hours may also lead to a gap. Both types of data gap are understandable

and expected.

However, dealing with these gaps can be problematic from a machine learning point of

view. Currently, it is not clear how to impute missing CGM trace data. Previous works have

addressed the problem of gaps by applying time series imputation methods, e.g. Kalman

Smoothing [12], but such methods may lead to bias since they require information from the

future before the imputation can be performed. Similarly, simple methods such as “last value

carried forward” may also induce bias.

In this work, the missing value problem is circumvented by considering only complete

trace fragments. To construct examples for the training and testing data, a sliding prediction

window technique is used. The prediction window length is 120 minutes (equivalent to 24 con-

secutive CGM readings at an interval of five minutes between readings) with the target value

for each prediction window being CGM reading 30 minutes after the end of the prediction

window. If a sliding prediction window has less than 24 readings, it must contain a gap and

therefore it is discarded. Table 1 gives the number of examples in the training and testing data-

sets for each patient after this process. The table also shows the patient identifiers from the

Fig 1. A sample of a few hours of CGM data from one patient. The horizontal red line indicates the boundry

between normoglycemia and hyperglycemia according to [15]. Note (i) the two gaps in the trace, one shorter and one

longer; and (ii) maximum possible sensor reading of 400 mg/dl, even though glucose levels can exceed this amount.

This patient experienced hypoglycemia just after 1am followed by severe hyperglycemia later in the morning.

https://doi.org/10.1371/journal.pone.0225613.g001
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Ohio T1D dataset as well as the randomly-shifted date ranges that each dataset covers to

emphasise that the test data occurs after the training data.

In the Introduction, it was mentioned that the CGM data is imbalanced across the different

glycemic ranges because T1D patients spend most of their time in normoglycemia. This is

illustrated in Fig 2, which depicts a frequency histogram over CGM sensor readings across the

entire Ohio dataset. The figure clearly shows that the bulk of the sensor readings are normogly-

cemic with only 2,141/63,622 (3.4%) being hypoglycemic and 21,707/63,622 (34.1%) being

hyperglycemic. Therefore imbalance is a serious issue in this data, and consequently it can be

expected that most models learned using machine learning algorithms will be biased towards

predicting values in the normoglycemic range.

Machine learning regression models

In this section, ten different machine learning algorithms used for training regression models

are outlined. These models are well known in the literature, and where appropriate citations

are provided. The models are described in approximate order from the most interpretable (i.e.

Table 1. Number of examples in each training set after processing the CGM traces with the sliding window technique, along with the start and end dates (randomly

shifted) for each dataset.

Patient Training Size Train Dates Testing Size Testing Dates

559 9,517 7/12/21–17/1/22 2,163 18/1/22–27/1/22

563 11,500 13/09/21–28/10/21 2,460 29/10/21–7/11/21

570 10,364 7/12/21–16/1/22 2,453 17/1/22–26/1/21

575 9,821 17/11/21–1/1/22 2,289 2/1/22–11/1/21

588 12,332 30/8/21–14/10/21 2,701 15/10/21–24/10/21

591 10,088 30/11/21–13/1/22 2,621 14/1/22–23/1/22

https://doi.org/10.1371/journal.pone.0225613.t001

Fig 2. Frequency histogram showing counts of CGM sensor readings for all patients in the training data. Different

colours indicate whether or not the sensor reading is normoglycemic or not.

https://doi.org/10.1371/journal.pone.0225613.g002
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so-called “transparent” or “white box” models) to the least interpretable (so-called “black box”

models).

Dummy. The dummy model constantly predicts the mean blood glucose level of the

patient, computed from that patient’s training data. As such, it is not a “true” model and poor

predictive performance is expected, but it is included as a baseline method for comparison

with the other approaches.

Lasso. The Lasso algorithm constructs a sparse linear predictive model [16, 17]. The

model is sparse in that it uses L1 regularisation to set as many model coefficients to zero as pos-

sible. It is well known that blood glucose dynamics are distinctly non-linear and therefore

Lasso in its naive direct application would not be suitable for this problem. The Lasso algo-

rithm is therefore modified to enable it to capture non-linear dynamics by creating additional

“polynomial” features from the original features, and training the model on this expanded set

of features. Eq 1 illustrates this, with b̂g tþ30 being the model’s thirty minutes ahead prediction,

xi being the ith CGM sensor reading in the sliding prediction window, and βi being the ith
coefficient of the model.

b̂g tþ30 ¼ b0 þ b1x1 þ b2x2 þ � � � þ b24x24

þb25x2
1
þ b26x1x2 þ � � � þ b48x1x25

þb49x2
2
þ b50x2x3 þ � � �

� � �

ð1Þ

Eq 1 shows that the first twenty five terms correspond to a linear model consisting of an

intercept and one coefficient per input variable. However, subsequent terms correspond to

non-linear inputs which are either squares of each individual input or interactions calculated

by taking feature products. While a Lasso model trained on normal and polynomial features

has a significantly higher dimensionality than a model trained using normal features only, the

tendency towards sparsity induced by L1 regularisation should produce a model that is both

accurate and concise.

Support vector regression (linear kernel). An alternative method for training an additive

linear model on a set of features and their polynomial combinations is to use the support vec-

tor regression (SVR) [18] instead. Support vector machines were originally formulated for

binary class (i.e. positive vs. negative) classification. The basic idea is to find via an optimisa-

tion process the so-called “maximum margin hyperplane” that separates examples from the

two classes with the widest possible margin. This idea can also be applied to regression, but

instead of maximally separating examples, the hyperplane that best fits the target values of the

examples is found instead. Predictions are made by evaluating this hyperplane at new points.

In this approach, L1 regularisation is still utilised so that as many polynomial features are elim-

inated as possible. SVR-based linear models often produce significantly more accurate models

than other linear regression approaches such as Lasso.

Decision tree. A decision tree is a non-parametric approach to learning a regression

model [19]. The basic idea is to repeatedly learn simple decision rules, each rule focusing on a

single basic feature in the data. For example, if x3 represents the CGM reading twenty minutes

ago in a prediction window, then a simple decision rule involving this feature is “if x3 > 140

mg/dl then predict 160 mg/dl else predict 150 mg/dl”. Multiple decision rules can be stacked

on each other, producing a decision tree. Fig 3 illustrates a very simple decision tree. Advan-

tages of decision trees include simplicity, ease of understanding, and the relative straightfor-

wardness of algorithms for learning such a tree from data. On the other hand, decision tree
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learning algorithms may produce models that are overly complex and/or biased if the data is

imbalanced.

K-Nearest Neighbour. Like decision tree learning algorithms, the K-Nearest Neighbour

algorithm is relatively simple. The idea is that instead of building a model explicitly, the entire

training dataset is simply memorised. When a prediction for a new example is required, the K

closest examples to the new example are determined using a particular distance function.

Since these examples are labelled with their own b̂g tþ30 values, then a new prediction is formed

by averaging (either simply or in a weighted fashion) over the K closest predictions.

Support vector regression (radial basis function kernel). An alternative formulation of

SVR is to replace the simple linear kernel with a more complex non-linear kernel. A frequently

used choice for this is a radial basis function (RBF) kernel. Since the model itself is non-linear,

SVR with an RBF kernel can be surmised to more naturally model the blood glucose dynamics

in the data. Consequently, polynomial feature construction is not performed for this approach.

The model is also trained differently using the nuSVR algorithm proposed by [20]. It is not

expected that models produced via this approach will be interpretable compared to those pro-

duced by the linear kernel approach.

Multilayer Perceptron (single hidden layer). Multilayer Perceptions (MLPs) are another

common method for learning complex non-linear models from data. An MLP for glucose

Fig 3. Illustration of a decision tree used for regression. Intermediate nodes represent tests of the features and leaf

nodes are predictions for b̂g tþ30.

https://doi.org/10.1371/journal.pone.0225613.g003
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level prediction is depicted by Fig 4. The inputs (CGM sensor readings x0, x1, . . .) are aggre-

gated and non-linearly transformed at intermediate points known as hidden nodes (the hi
nodes in the figure) before being aggregated and transformed again to produce the final pre-

diction b̂g tþ30. In contrast to sparse linear models, MLPs are typically not interpretable due to

the complexity of the model.

In an MLP, each edge in the graph represents a distinct numeric parameter that must be

optimised by the training process. Note also that some of the edges from the diagram: further

edges connecting a constant input to each non-input node are also usually present. The

ADAM algorithm [21] is used to train the MLPs.

Multilayer Perceptron (two hidden layers). An MLP capable of learning more complex

patterns in the data is one that comprises two hidden layers. A two hidden layer variant is

therefore also included in the experiments that follow.

Random forest. In contrast to a single decision tree, a random forest [22] is an ensemble

of decision trees. In the ensemble, each individual tree makes its own predictions, which are

averaged or otherwise aggregated across the entire ensemble to produce a final overall predic-

tion. A key point about the random forest ensemble is that each decision tree is trained on a

different randomly selected subset of the input features. This produces a diverse set of individ-

ual decision trees. When the predictions of an ensemble are aggregated, the aggregated predic-

tion is generally more accurate than any single decision tree. A distinct drawback is that like

MLPs, random forest models are often complex and difficult to interpret due to the number of

Fig 4. Illustration of a MLP with a single hidden layer of size five.

https://doi.org/10.1371/journal.pone.0225613.g004
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decision trees and their size. In contrast, a single decision tree such as that shown in Fig 3 is

often relatively straightforward to understand provided it is not too large.

Gradient boosting. Gradient boosting approaches [23] offer an alternative means of con-

structing a decision tree ensemble in which each decision tree is trained in sequence instead of

independently. The idea is for each consecutive decision tree to learn from the prediction

errors of the earlier decisions trees. Predictions from each individual decision tree are then

aggregated via weighted summation with appropriately selected weights. Because gradient

boosting learns individual decision trees in sequence rather than independently, it can be

slower than random forests (in which decision trees can be learned in parallel), but it is often

more accurate in practice.

Oversampling techniques

Oversampling techniques are one method of addressing the data imbalance problem in

machine learning. The data imbalance problem occurs because machine learning algorithms

make the implicit assumption that the data used for training is balanced across all likely cases.

If the data is not balanced, then some algorithms will produce models with significant bias.

To illustrate, suppose there are examples belonging to three sets: hypoglycemic, normogly-

cemic, and hyperglycemic. An ideal dataset would have a ratio of 33.3% from each range.

However, as Fig 2 shows, a more realistic situation is that the groups are imbalanced to a

significant degree. For example, 20%:40%:20% is a minor degree of imbalance that most

algorithms should cope with. However in the case of Fig 2 the ratio is more extreme at

3.4%:62.5%:34.1%. In this case, the data should be artificially balanced to prevent bias in the

model. Two such general approaches are possible: data can be either discarded (which would

mean removing the majority of data from the normoglycemia subset and most of the data

from the hyperglycemia subset), or synthetic data can be added to the smaller subsets to

increase their size. In this paper, this latter group of techniques known collectively as oversam-

pling algorithms is the focus, since initial experiments with discarded data yielded very poor

results.

These techniques all apply to labelled data and are usually used for approaching imbalanced

classification problems as opposed to regression problems. Therefore additional steps are

required to prepare the data before they can be applied in the context of blood glucose level

prediction. These steps are discussed in the next section. Note also that in all experimental situ-

ations the oversampling is applied only to the training data.

Random oversampling. The first technique, random oversampling, creates random

duplicates of examples in the dataset. This is performed for the non-majority subsets, which in

the case of T1D blood glucose level data is the hypoglycemic and hyperglycemic data. In both

cases, examples from these sets are randomly duplicated until the size of both subsets is equal

to the size of the normoglycemia subset.

Synthetic minority oversampling technique. The second approach, Synthetic Minority

Oversampling Technique (SMOTE) [24] is based on the assumption that the minority class

examples occur relatively close together in the space of examples. This is usually true when the

data contains clusters. Rather than randomly duplicating examples, SMOTE instead creates

entirely new “artificial” examples based on this assumption of clustered data. The process

involves taking an initial randomly selected minority class example (e.g. an example from the

hypoglycemia subset) and then locating nearby similar examples from the same subset. The

artificial example is then created by interpolating randomly between the initial example and

one of the nearby similar examples, with the amount of interpolation again selected randomly.

Fig 5 illustrates this graphically.
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In the figure, the nodes represent a group of neighbouring minority class examples in the

space of examples that are similar to xi, and xj is randomly selected from amongst them. The

procedure for creating xnew is basic linear interpolation between xi and xj as shown by Eq 2,

with a randomly selected parameter λ used to control the degree of contribution that each of

the examples makes to the new example. In this way new synthetic minority classes can be gen-

erated until the classes are more balanced.

xnew ¼ xi þ lðxj � xiÞ; l 2 ½0; 1� ð2Þ

Adaptive synthetic oversampling technique. The third and final approach, Adaptive

Synthetic (ADASYN) [25], takes a similar approach as SMOTE. However, ADASYN addition-

ally distinguishes between examples that are “easy” to learn vs. those that are “hard” to learn in

the choice of which real examples to use for generating the synthetic examples. The “difficulty”

of a real example is determined by comparing the example with its K nearest neighbours (in a

fashion similar to the K Nearest Neighbours algorithm described previously), the intuition

being that if most of the neighbours are the same, then the example is easy, whereas if most of

the neighbours are different, the example if difficult. The fraction of the K nearest neighbours

Fig 5. Illustration of SMOTE’s artificial example generation technique.

https://doi.org/10.1371/journal.pone.0225613.g005
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that are from the same minority subset or class are therefore calculated and becomes a proxy

for the difficulty of the example.

Next, the synthetic examples are generated from real examples. Whereas SMOTE treats all

examples as equal, in ADASYN the number of synthetic instances that a particular minority

class example is used to generate is proportional to that example’s difficulty. Therefore, in Fig

5, it can be assumed that the real examples xi is most likely to be a difficult example.

Metrics for assessing predictive performance

Two different but complementary metrics are often used in literature relating to CGM data.

The first, Mean Absolute Relative Difference (MARD), is a measure of predictive error and is

defined by Eq 3.

MARD ¼
100

N

XN

t¼1

jb̂g tþ30 � bgtþ30j

bgtþ30

ð3Þ

In the equation, N is the number of predictions made, b̂g tþ30 is the predicted blood glucose

level thirty minutes in advance at time t, and bgt+30 is the actual blood glucose level that

occurred. The errors are converted to a percentage and averaged to give an overall measure of

predictive performance. This approach is especially useful for the analysis of blood glucose

level predictions because the significance of different absolute prediction errors varies depend-

ing on where in the glycemic range the prediction is made. For example, in the hypoglycemic

range an error of 10% is much smaller (in absolute mg/dl units) than the same percentage

error in the hyperglycemic range. In contrast a significant number of papers in this area use

alternative metrics such as root mean squared error (e.g. see the survey paper [11] and recent

papers on the blood glucose prediction competition [26]) which are based on absolute units of

mg/dl and may result in biased performance estimates.

The second means of assessing predictive performance is the Clarke Error Grid Analysis

(EGA) [27], a more clinically oriented approach. Although EGA was originally devised for

assessing the accuracy of CGMs themselves by comparing such devices to different reference

devices with known accuracy, they can also be used for assessing the predictions made by

regression models.

Fig 6 depicts the grid used for EGA. As the figure shows, if the prediction/ground truth

pairs fall on a 45˚ line that passes through the origin, then the predictions are perfect. Since

most predictions are not perfect, however, the idea behind Clarke EGA is that different errors

will have different clinical consequences depending on where they fall in the range as well as

their magnitude. In contrast, MARD is only concerned with the size of the error regardless of

location.

In a Clarke grid, the most preferred errors lie in Zone A which, as Fig 6 shows, is either the

area where the patient will be hypoglycemic (<70 mg/dl blood glucose level) and the predic-

tion is hypoglycemic, or the prediction is within 20% error of the ground truth. Zone B is simi-

lar to Zone A, but excludes the hypoglycemic region and permits a larger percentage error.

The theory is that the patient would self-administer correct treatment if the error is in Zone A,

while the treatment would be “not inappropriate” in Zone B.

Conversely, Zones C, D and E represent prediction errors potentially leading to clinical

errors. Specifically, Zone C errors are likely to lead to unnecessary treatments (e.g. the patient

will be normoglycemic but predicted to be hyperglycemic) while Zone D and E represent

errors that could lead to potentially dangerous treatments (e.g. the patient will be hypoglyce-

mic but is predicted to be hyperglycemic). Therefore a good strategy for model selection

Glycemic-aware metrics and oversampling techniques for predicting blood glucose levels using machine learning
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involves maximising the number of prediction errors falling into Zone A while minimising the

number of errors in the other zones. A disadvantage of this approach is that involves analysing

five metrics (i.e. the percentage of errors in each zone) as opposed to one metric, but these

numbers provide additional insight.

Methods

In this section the methods and experimental setup used are described.

Glycemic-aware metrics and oversampling techniques

Based on the unique nature of the glycemic range and the fact that errors in different parts of

the range have considerably different impacts, variants of the standard MARD metric are pro-

posed in this section.

Errors in the hypo-/hyperglycemic ranges are much more significant than errors in the nor-

moglycemic range. The MARD formula from Eq 3 can therefore be generalised by selecting

only specific ground truth values bgt+30 and performing the MARD calculation on those. It is

assumed that there is some criteria C available such that C(bgt+30) is true for some ground

Fig 6. Clarke error grid analysis, reproduced from [28].

https://doi.org/10.1371/journal.pone.0225613.g006
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truth sensor values and false otherwise. A revised version of the MARD formula therefore is

given in Eq 4.

MARDC ¼
100

NC

XN

t¼1

jb̂g tþ30� bgtþ30j

bgtþ30
if Cðbgtþ30Þ ¼ true

0 otherwise

8
<

:
ð4Þ

In Eq 4, C denotes a criteria while NC is the number of predictions for which the criteria is

true, and the rest of the symbols are defined as previously. The criteria is used to split the pre-

dictions into three specific subsets: predictions whose ground truth is in the hypoglycemic

range (MARD<70); predictions whose ground truth is normal (MARDnorm); and predictions

whose ground truth is in the hyperglycemic range (MARD>180). Overall MARD calculated

according to Eq 3 will now be referred to as MARDall.

Next, glycemic-friendly variants of the oversampling techniques are proposed. Since glu-

cose level prediction is a regression problem, there are no class labels as such. Instead, exam-

ples are labelled with a numeric target value bgt+30. Oversampling techniques such as those

described previously cannot therefore be applied directly to the data.

To solve this problem, fake or “pseudolabels” for the examples are generated and used. The

pseudolabels, like the MARD variants above, can be specifically designed for the glycemic

range by discretising the target value into three parts (i.e. hypo-, normo- and hyperglycemic).

The range then determines the pseudolabel. Table 2 illustrates the process for six examples

from the dataset. The pseudolabels can be discarded after the oversampling procedure is

complete.

Note that a key novel difference between the oversampling proposed here and standard

oversampling techniques is that the numeric targets (i.e. the bgt+30 values) are also synthetically

generated with the features. In contrast, standard approaches usually only synthetically gener-

ate the features of each example while keeping the labels fixed.

Experimental setup

To evaluate the range of machine learning algorithms described in the previous section against

the Ohio T1DM dataset, the following experiment was devised. Firstly the ten machine learn-

ing algorithms (dummy, Lasso, decision tree, etc) were combined with four oversampling

options. The four oversampling options were no oversampling (as a baseline), random over-

sampling, SMOTE, and ADASYN. This yielded a total of forty different combinations.

Next, each of the forty combinations was trained six times, against each individual patient’s

training data. The resulting models were then tested against each patient’s corresponding test

dataset (see Table 1 as a reminder of the size of each dataset). Thus, a total of 240 train/test

experiments were performed.

Table 2. Examples of feature vectors constructed from the CGM traces. Features x1 to x24 are consecutive CGM sen-

sor readings occurring over a period of 120 minutes; bgt+30 is the glucose value observed 30 minutes after x24. The pseu-

dolabel for each example, which is only used if an oversampling method is employed, is also shown.

x1 x2 . . . x23 x24 bgt+30 Pseudolabel

215 209 . . . 158 151 125 Lnormal

149 137 . . . 109 113 133 Lnormal

165 163 . . . 171 174 187 L>180

154 158 . . . 217 217 234 L>180

65 70 . . . 71 70 60 L<70

105 109 . . . 64 64 65 L<70

https://doi.org/10.1371/journal.pone.0225613.t002
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Once test data predictions were recorded, performance metrics were calculated. The met-

rics were MARDall, MARD<70,MARD>180 and MARDnorm, along with the percentage fre-

quencies of prediction errors falling into all five zones of the Clarke error grid.

In terms of preprocessing and hyperparameters used, feature-wise standardisation (with

the mean and standard deviation calculated based on the training data) was used to scale the

data before any of the machine learning algorithms were applied. For the Lasso model, five-

fold cross validation on the training data was used to select the optimal alpha parameter; for

the Lasso, SVR, and MLP models, the number of iterations was set at 100,000; and for the deci-

sion tree ensembles, the number of trees was set at 500. The MLP models additionally had the

size of each hidden layer fixed at five units, and the activation function for each hidden node

was tanh. All other parameters and settings were defaults as set in the sci-kit learn [29] v 0.20.3

and imbalanced learn [30] v 0.4.3 APIs.

Results

Complete and detailed tables of results with mean and standard deviation performances by

algorithm, oversampler and metric are given in S1 Appendix. In this section, summarised

results are primarily presented along with the results of various statistical tests.

However, it is prudent to note that an examination of the raw result tables shows that some

zones of the Clarke error grid are not useful for the purposes of selecting the best model. To

illustrate, consider Table D in S1 Appendix. In this table, the dummy method records 0% fre-

quency of prediction errors in EGA Zones C and E, which is the lower than all of the nine

other options in the table. Under the assumption that a lower error rate in these zones is

“safer”, this would imply that the dummy classifier has reasonably good predictive perfor-

mance. However, the error rates in Zone A show that the dummy classifier achieves only 33%

compared to 74% for the next best method. In other words, selecting a model based on the fre-

quencies of errors in Zones C and E is unreliable and these metrics should be given less weight

than the other metrics.

Table 3 gives the first summary of the results. In this table, all of the predictive model/over-

sampling combinations are ranked by overall MARDall and averaged across patient. The table

shows the top five algorithms in the ranking. Surprisingly, all of the best models are linear

models, but trained using the additional polynomial features. Linear SVR and no oversampling

achieves the best overall average value for MARDall.

The story is different when considering the proposed alternative range-specific MARD met-

rics, however. Table 4 presents the same ranking, but this time for the MARD<70, MARD>180

and MARDnorm metrics. The table shows that linear SVR’s excellent overall performance is pri-

marily due to accurate predictions being made in the normal range. In contrast, outside the

normal range (in both the hypo- and hyperglycemic subranges) an MLP with two hidden lay-

ers combined with some form of oversampling records the best prediction accuracy.

Table 3. Top five model and resampler combinations based on overall MARD.

Combination MARDall

Lin. SVR 10.19

Lasso + SMOTE 10.29

Lasso + Random 10.31

Lin. SVR + SMOTE 10.37

Lin. SVR + Random 10.39

https://doi.org/10.1371/journal.pone.0225613.t003
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To further investigate this, a standard paired t-test comparing the six MARD<70 values of

the best MLP classifier (MLP(5,5)+ADASYN) against the linear SVR approach was performed.

The linear SVR approach performed well overall (see Table 3), but poorly according the

MARD<70 metric, having an average error of 26.01 while the table shows that the best MLP

approach scored 12.46. This difference in mean performance was found significant at 95%

confidence with p = 0.025.

A similar comparison using the MARD>180 metric was also performed. Again, linear SVR

was compared to the best MLP classifier (MLP(5,5)+ADASYN this time) where the mean

errors were 8.74 and 8.19 respectively (see S1 Appendix for linear SVR’s MARD>180 result).

This time no significant difference at 95% confidence was found between the means with

p = 0.1795. The difference is significant at an 80% level of confidence, however.

Next, results from the Clarke EGA were examined. The top ranked algorithms as deter-

mined by percentage frequencies are given by Table 5. For Zone A, a higher percentage is

Table 4. Top five model and resampler combinations based on alternative MARD metrics.

Combination MARD>180 Combination MARDnorm

MLP(5,5) + Random 8.19 Lin. SVR 10.88

MLP(5,5) + SMOTE 8.23 MLP(5,5) 10.94

MLP(5) + SMOTE 8.27 GB 11.12

MLP(5) + Random 8.31 MLP(5) 11.17

MLP(5,5) 8.45 Lasso + Random 11.26

Combination MARD<70

MLP(5,5) + ADASYN 12.46

MLP(5,5) + SMOTE 13.20

MLP(5) + ADASYN 14.02

MLP(5,5) + Random 14.18

MLP(5) + SMOTE 14.85

https://doi.org/10.1371/journal.pone.0225613.t004

Table 5. Top five model and resampler combinations based on EGA metrics (excludes the dummy predictor).

Combination EGAA Combination EGAB

Lin. SVR 87.17 Lin. SVR 11.59

Lasso + Random 86.97 MLP(5,5) 11.76

Lasso + SMOTE 86.94 Lasso 11.86

Lasso + ADASYN 86.89 MLP(5) 12.01

Lin. SVR + SMOTE 86.73 GB 12.15

Combination EGAC Combination EGAD

KNN + Random 0.00 MLP(5) + Random 0.51

KNN + ADASYN 0.00 MLP(5) + ADASYN 0.52

KNN 0.01 MLP(5) + SMOTE 0.55

KNN + SMOTE 0.01 NuSVR + Random 0.57

NuSVR + ADASYN 0.02 NuSVR + SMOTE 0.57

Combination EGAE

DT 0.00

KNN 0.00

KNN + Random 0.00

KNN + SMOTE 0.00

KNN + ADASYN 0.00

https://doi.org/10.1371/journal.pone.0225613.t005
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better since this represents the most benign class of error; for other zones, a lower rate is better.

This table tells a similar story to that of the MARD-based analysis: linear SVR achieves the best

results in terms of Zone A and B errors, while the MLP approach with oversampling is most

effective at minimising the more dangerous Zone D errors. For the Zone C and E errors,

results from the dummy method were excluded and consequently decision trees and KNN

achieve the best performance in these zones. However, like the dummy method, decision trees

and KNN perform poorly according to the other metrics, and therefore the Zone C/E frequen-

cies are excluded from further analysis.

Table 6. Friedman test p-values after testing for the null hypothesis that all classifiers perform equally well.

Metric p value

MARDall 1.573e-05

MARD<70 0.1309

MARDnorm 0.0001133

MARD>180 0.001298

EGAA 0.004514

EGAB 0.0004646

EGAD 0.007071

https://doi.org/10.1371/journal.pone.0225613.t006

Fig 7. Examples of a prediction made by linear SVR for one patient. The first 120 minutes of the plot (unfilled

circles) are the inputs to the model; the last reading at 150 minutes is the prediction (unfilled) and what actually

happened (filled). This figure depicts a Type A error.

https://doi.org/10.1371/journal.pone.0225613.g007
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A Friedman test [31] comparing all forty machine learning/oversampler combinations

across all six patients was also performed. The Friedman test is a statistical test for determining

if all the prediction methods perform the same or differently. The test was performed once for

each metric, and the p-values are given in Table 6. These values indicate that in all cases except

MARD<70, there is a strongly significant difference (more than 99% confidence) between the

predictive accuracies. For the MARD<70 case, confidence is more than 80% but less than 95%.

A further posthoc Nemenyi test [32] was also performed in order to isolate the best subset of

equivalent methods, but this test failed to produce significant results. This is most likely due to

the small number of patients in the dataset.

Finally, some examples of predictions made by the linear SVR method are shown in Figs 7

and 8. In both situations, the prediction is that the patient will be hypoglycemic in the next

thirty minutes; in one case the prediction is correct (a Type A error) and in the second case it

is seriously wrong (a Type E error). One possible explanation for the Type E error is that the

patient ate something in the interval between the end of the prediction window and the predic-

tion point thirty minutes later.

Discussion

There are two main takeaways from the results presented here. Firstly, relying on a single over-

all metric for model selection (often a standard approach in machine learning) is unlikely to be

sufficient since it will not reveal information on the predictive accuracy of a method in sub-

ranges that are rarely visited. The main illustration here is the<70 mg/dl range where

Fig 8. Similar example to that depicted in Fig 7, but depicting a Type E error.

https://doi.org/10.1371/journal.pone.0225613.g008
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performance of the best overall method was significantly poorer than another method. Analy-

sis should instead follow an approach similar to that performed here: break the overall error

metric down into its constituent parts and analyse each constituent part separately. Alternative

clinical metrics such as those derived from Clarke EGA are also extremely useful and could

even be the primary method of evaluation.

The second important takeaway is that the datasets used for training the model will be

imbalanced, and it is shown here that techniques addressing imbalance improve accuracy.

Again, prior works will often ignore this issue and therefore the results they present are most

likely biased.

To conclude, some recommendations for the most appropriate approaches for predicting

blood glucose levels can be made. The results show that if the application is hypoglycemia

alerting, an MLP trained in conjunction with an oversampling method produces the best accu-

racy. On the other hand, for general forecasting of blood glucose levels over the� 70 mg/dl

range, a linear SVR trained on prediction window sensor readings plus polynomial features

calculated from the original readings is the closest approach to optimal. Thus, the choice of

best algorithm to use depends on where in the glycemic range it will be applied. In contrast,

most other works in the literature do not perform this kind of breakdown analysis of predic-

tions across different regions of the glycemic range. A strong recommendation therefore for

future work is to analyse model errors by subrange, using both numeric metrics such as

MARD and clinical metrics such as EGA. Additionally, if general purpose prediction across

the entire range is required, researchers could consider the use of multiple models, each model

optimised for its own particular glycemic subrange.

Supporting information

S1 Appendix. Complete and detailed tables of results with mean and standard deviation

performances by algorithm, oversampler and metric.

(PDF)
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