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Abstract: Membrane microdomains/nanodomains are sub-compartments of the plasma membrane
enriched in sphingolipids and characterized by their unique protein composition. They play important
roles in regulating plant development and plant-microbe interactions including mutualistic symbiotic
interactions. Several protein families are associated with the microdomain fraction of biological
membranes such as flotillins, prohibitins, and remorins. More recently, GmFWL1, a FWL/CNR
protein exclusively expressed in the soybean nodule, was functionally characterized as a new
microdomain-associated protein. Interestingly, GmFWL1 is homologous to the tomato FW2-2 protein,
a major regulator of tomato fruit development. In this review, we summarize the knowledge gained
about the biological, cellular, and physiological functions of members of the FWL/CNR family across
various plant species. The role of the FWL/CNR proteins is also discussed within the scope of their
evolution and transcriptional regulation.
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1. Role of Plasma Membrane Micro/Nanodomain in Plant Biology

Eukaryotic biological membranes consist of bilayers of lipids embedded with proteins. The
lipid and protein compositions of biological membranes strongly influence their functions [1].
For instance, membrane micro/nanodomains (referred to in this review as microdomains) are
sub-compartments of biological membranes well-characterized for their unique lipid and protein
composition (i.e., microdomains are enriched in sterols and sphingolipids, and in specific classes of
proteins such as stomatin, prohibitin, flotillin, and HflK/C proteins (also known as SPFH proteins)) [2–4].
Microdomains are not static lipid/protein islands in the plasma membrane; their dynamic reallocation
in the plasma membrane plays a critical role in controlling cell morphology and physiology [5].

For instance, the polar accumulation of auxin in the root is under the control of auxin transporters
including the PIN1, 2, and 3 proteins [6,7]. The polar localization of PIN1 and 3 is regulated by the
sterol methyltransferase 1 protein [8], while the polar accumulation of the PIN2 transporter in the
plasma membrane depends on sterol-enriched components [9,10]. Microdomains play a critical role in
plant [11] and cell developments (e.g., polar elongation of specialized cells such as the tip growth of
the root hair cells and pollen tubes [12–14]). They also control intercellular communications: a specific
population of microdomains such as those enriched in the cell-signaling regulator tetraspanin are
closely associated with plasmodesmata [15–17]. Microdomains control plant response to microbial
inoculations including fungal and viral infections [18–24]. In the legume model Medicago truncatula, the
subcellular localization of the microdomain-associated protein FLOTILLIN2 (FLOT2) depends on the
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recognition of the symbiotic bacteria Sinorhizobium meliloti [25,26]. More specifically, upon microbial
inoculation or application of the bacterial signaling molecule named Nod factor, FLOT2 accumulates at
the tip of the Medicago root hair cell. This accumulation plays a critical role in promoting the infection
of the plant root hair cell by symbiotic bacteria [25,26]. Flotillin-like proteins also play a role in vesicle
trafficking during arbuscular mycorrhization, a symbiosis between plants and mycorrhizal fungi [27].
In M. truncatula, the SYMREM1 remorin regulates the infection of the root by S. meliloti as well as
nodule development [28]. Recently, a functional analysis revealed that the medicago FLOT4 and
SYMREM1 proteins interact with the receptor LYK3 to promote root hair cell infection by S. meliloti [29].
In soybean, two remorins, GmREM1.1 and GmREM2.1, have distinctive roles during the nodulation
process: GmREM1.1 is transiently expressed in nodule primordia while GmREM1.2 is specifically
expressed in the nodule during its entire development [30]. RNAi-mediated silencing also revealed that
GmREM1.2 controls nodule formation [30]. Similarly to M. truncatula FLOT2, another soybean protein,
GmFWL1 (FW2.2-LIKE 1), is also translocated at the tip of the soybean root hair cells in response to
the inoculation with Bradyrhizobium diazoefficiens, the soybean symbiotic nitrogen-fixing bacterium
inoculation [31]. The punctuate subcellular localization of GmFWL1 in the plant plasma membrane
and its interaction with many well-characterized microdomain-associated proteins including SPFH
proteins support that GmFWL1 is associated with the microdomain fraction of the soybean plasma
membrane [31].

2. Phylogeny of the FWL/CNR Gene Family in Plants

GmFWL1 belongs to the FWL/CNR gene family. Alpert et al. (1995) reported the biological
function of the first member of the FWL/CNR family through a genetic analysis of the tomato fw2.2
(fruit weight 2.2) quantitative trait locus (QTL) [32]. This gene acts as a major negative regulator of
tomato fruit size compared to other tomato fruit weight QTLs (i.e., up to 30% of the tomato fruit
weight [33–35]). The FW2.2 gene encodes a small protein (22 kDa) enriched in cysteine residues and
characterized by one transmembrane domain [31,36–38]. The functional characterization of the protein
suggests that FW2.2 acts as a negative regulator of cell division supporting the repressive role of FW2.2
in controlling tomato fruit size [34,39]. A closer analysis of the temporal transcriptional activity of
FWL2.2 suggests that the timing and the level of expression of FWL2.2 during fruit development
tomato contributes to regulate tomato fruit size [40]. In addition to its temporal regulation, the spatial
transcriptional activity of FW2.2 is restricted to the fruit epidermal and sub-epidermal cells. The
division rate of these two cell types is critical in regulating tomato fruit size [41].

Taking advantage of the most recent releases of plant genomic sequences and their enhanced
annotation [42], we looked for the FWL/CNR members across 13 different plant species (i.e., Arabidopsis
thaliana [43], Glycine max [44], Lotus japonicus [45], Medicago truncatula [46], Phaseolus vulgaris [47],
Vitis vinifera [48], Solanum lycopersicum [49], Populus trichocarpa [50], Ricinus communis [51], Oryza
sativa [52,53], Zea mays [54], Brachypodium distachyon [55], and Physcomitrella patens [56]). These
selected species cover different phyla of the plant kingdom including moss, monocotyledons, and
dicotyledons. We identified 134 members in the FWL/CNR family (i.e., BlastP, e-value ≤ 10e−20 and
score ≥100; Table S1). Among them, several members were characterized for their role in plant and fruit
development across several mono- and di-cotyledons (Figure 1, red boxes). Notably, the maize gene cell
number regulator1 (CNR1; ZmFWL6) negatively controls the overall plant size [57,58]. The biological
function of other FWL/CNR genes as negative regulators of cell division and fruit development has
also been described in Oryza sativa (OsFWL3; [38]), husk tomato (Physalis floridana CNR1; [37]), sweet
cherry (Prunus avium CNR12 and CNR20; [59]), and in avocado (Persea americana; [60]).
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Figure 1. Phylogenetic tree of the FWL/CNR family. Members of the FWL/CNR family were 
identified with BlastP analysis against the genomic sequence of 13 different plant species. The 103 
FWL/CNR protein sequences reported in Libault et al. (2010) [36] were used as queries in the 
Phytozome database (https://phytozome.jgi.doe.gov/; e-value ≤ 10e−20 and score ≥100). Alignment 
and phylogenetic reconstructions were performed using the function “build” of ETE3 v3.1.1 [61] as 

Figure 1. Phylogenetic tree of the FWL/CNR family. Members of the FWL/CNR family were identified
with BlastP analysis against the genomic sequence of 13 different plant species. The 103 FWL/CNR
protein sequences reported in Libault et al. (2010) [36] were used as queries in the Phytozome database
(https://phytozome.jgi.doe.gov/; e-value ≤ 10e−20 and score ≥100). Alignment and phylogenetic
reconstructions were performed using the function “build” of ETE3 v3.1.1 [61] as implemented on
GenomeNet (https://www.genome.jp/tools/ete/). The multiple sequence alignment was performed
using the CLUSTAL W Multiple Sequence Alignments Program with default parameters [62]. The tree
was constructed using fasttree with slow NNI (Nearest Neighbor Interchange) and MLACC (maximum
likelihood accuracy) = 3 (to make the maximum-likelihood NNIs more at nodes exhaustive) [63]. Values
are SH-like local support. Two Chlamydomonas reinhardtii proteins (Cre17.g738000 and Cre03.g155527)
were used to root the tree. The tree representation was generated using https://itol.embl.de/tree/. This
tree was divided into eight major clades (I to VIII). Among them, Clades V and VI were divided into
three distinctive subclades. Upon mining transcriptome atlases, we highlighted in red characters the
tissue/organ where each FWL/CNR gene was the most expressed.

https://phytozome.jgi.doe.gov/
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To enhance our understanding of the evolution of the biological functions of the 134 members
of the FWL/CNR family, we analyzed their phylogenetic relationships according to their amino acid
sequences. These genes are distributed in eight major clades. Clade II is composed of FWL/CNR genes
from all 13 species considered in this analysis, but the four P. patens FWL/CNR genes were clustered
separately from the angiosperm genes. This result suggests that a FWL/CNR common ancestor existed
before the speciation between angiosperms and mosses.

Interestingly, Clades V and VII are strictly composed of dicotyledon FWL/CNR genes. Upon
dividing Clade V into three subclades (i.e., Subclades Va, b, and c), we noticed that Clades Vb and Vc
were exclusively composed of non-legume and legume FWL/CNR genes (i.e., G. max, M. truncatula,
P. vulgaris, and L. japonicus), respectively. Similarly, Clade VI can be divided into three different
subclades: VIa, b, and c, which are exclusively composed of monocotyledonous genes, legume genes,
and non-legume dicotyledonous FWL/CNR genes, respectively. These observations suggest that
subsets of FWL/CNR genes evolved to likely gain unique biological functions in monocotyledons, and
in legume and non-legume dicotyledons. Exploring the role of the genes in these different subclades
(i.e., between Vb and c, and between VIa, b, and c) could provide interesting information regarding the
evolution of their biological functions. OsFWL3, ZmCNR1 (ZmFWL6), and SlFW2.2, three genes of
Clade VI, act as major regulators of plant and organ development (see above). GmFWL1, a regulator of
soybean nodule development and bacterial infection, belongs to Clade VIII. Interestingly, MtFWL7 is
evolutionary closely related to GmFWL1, suggesting that this M. truncatula gene might be the functional
ortholog of GmFWL1. To date, there is no report of the function of MtFWL7 during M. truncatula
nodulation; this may be a consequence of functional redundancies existing between members of the
M. truncatula FWL/CNR gene family expressed in nodules (see below; Figure 1)

3. Transcriptional Regulation of the FWL/CNR Genes

The biological function of the GmFWL1 protein during soybean nodulation [36] depends on
its interaction with many well-characterized microdomain-associated proteins including remorins,
flotillins, and prohibitins [31]. Among the GmFWL1 protein partners, several are encoded by nodule or
root-specific genes, suggesting a unique protein composition of the soybean nodule microdomain [31].
We assume that the differential transcriptional regulation of the genes encoding microdomain-associated
proteins between cell, tissues, and organs influences the protein composition of microdomains and
their biological activities. As a consequence, among other regulatory mechanisms, there is a need to
better understand the transcriptional pattern of microdomain-associated genes and their co-expression.

Taking advantage of the release of various plant transcriptome atlases accessible via Phytozome,
the Maize eFP Browser (http://bar.utoronto.ca/efp_maize/cgi-bin/efpWeb.cgi), the Lotus Base [64], the
Tomato Functional Genomics Database (http://ted.bti.cornell.edu/cgi-bin/TFGD/digital/search.cgi?ID=

D006), and targeted transcriptional studies (i.e., OsFWL genes [38]), we analyzed the transcriptional
pattern of members of the FWL/CNR family. Overall, a large number of the FWL/CNR genes were
mostly highly expressed in the root system of the plants. More rarely, these genes were significantly
expressed in the canopy of the plants (Figure 1). Taking into consideration that microdomains are
important regulators of the interactions between plant cells and microbes [23], the plant FWL/CNR
genes preferentially expressed in the root system might play critical roles in controlling the interaction
with soil microbes. Among them, a subset of the legume FWL/CNR genes, those preferentially
expressed in the nodules (i.e., GmFWL1, 3, 5, and 7, MtFWL1, 4, 6, and 7, LjFWL3, 4, and 9, and
PvFWL4), are likely specialized in regulating the interaction and infection of the legume root system by
nitrogen-fixing rhizobia. Notably, the LjFWL4 gene is preferentially expressed in the root hair cells upon
inoculation with symbiotic microorganisms. In soybean, GmFWL1 is also highly expressed in root hair
cells during the early stages of the nodulation process [36]. However, contrary to LjFWL4, GmFWL1
is also expressed later during nodule development, suggesting that in L. japonicus, different FWL
genes regulate the early and late stages of the nodulation process. Conversely, in soybean, GmFWL1
integrates both functions to promote the root hair cell infection by rhizobia and the establishment of

http://bar.utoronto.ca/efp_maize/cgi-bin/efpWeb.cgi
http://ted.bti.cornell.edu/cgi-bin/TFGD/digital/search.cgi?ID=D006
http://ted.bti.cornell.edu/cgi-bin/TFGD/digital/search.cgi?ID=D006
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the symbiosis between the plant nodule cells and the bacteria [31,36]. Looking at the phylogenetic
distribution of these legume nodule-specific genes, they belong to six different clades (e.g., Clades II,
III, IV, V, VII, and VIII). Hence, the nodule-specific legume FWL/CNR genes independently gained
their unique transcriptional patterns and biological function.

In Clade VI, SlFW2.2, ZmFWL3/CNR, and OsFWL3 were functionally characterized by their role
during fruit and seed development in tomato, maize, and rice, respectively [32,34,38,57,58], suggesting
that other FWL/CNR members of this clade could also contribute to the fitness and development
of other important crop species. By mining the transcriptome atlases, we noticed that many of the
members of this clade were expressed in the plant root system (e.g., PvFWL7, GmFWL9, and 12,
PtrFWL3, MtFWL8, and 9). Their putative role in root development should be further investigated.

The protein composition of the microdomains could fluctuate between organs, tissues, and
even cells based on the unique transcriptional activity of the genes encoding them (e.g., GmFWL1
protein partners are encoded by nodule and root-specific genes [31]). A more targeted analysis of
the transcriptional activity of plant genes encoding microdomain-associated proteins would help to
estimate the complexity and diversity of populations of microdomains in and between cell types,
according to their protein composition. This statement is supported by microscopic studies conducted
on plant plasma membranes [65]. The recent release of Arabidopsis root transcriptomes at a single-cell
resolution now allows for a deeper exploration of gene expression and co-expression [66–70]. As a first
attempt, we mined one of these Arabidopsis root single-cell transcriptomic datasets [68] to quantify the
level of transcriptional activity of the twelve members of the AtFWL family. Consistent with previous
bulk transcriptomic datasets showing that AtFWL2, 3, 10, and 11 are preferentially expressed in the
root system, we found these four genes ubiquitously expressed across many root cell types (Figure 2),
but with different levels of activity (i.e., AtFWL3 is more expressed than its three other homologs).
AtFWL1, 4, and 8 expression is limited to a smaller number of root cell-types (Figure 2). For instance,
AtFWL1 expression is strongly restricted to trichoblasts, atrichoblasts, and stele cells. Conversely,
AtFWL5, 6, 7, 9, and 12 were found to be weakly expressed and only in a few cell types (Figure 2).
AtFWL6 is exclusively expressed in trichoblasts (i.e., its transcript was detected in three out of the
four sub-populations of trichoblasts; Figure 2) while AtFWL7 is expressed in one sub-population of
atrichoblasts and in the root tip cells. The expressions of AtFWL5 and 9 were not detected in root cells,
suggesting that these two genes do not have a function in Arabidopsis root microdomains. Similar
analysis should be conducted for other families of genes encoding microdomain-associated proteins
such as those encoding remorin, flotillin, and prohibitins. The integration of the transcriptional patterns
of microdomain-associated genes at the single-cell level would help to estimate the complexity of
microdomain population between cell-types.Plants 2020, 9, x FOR PEER REVIEW 6 of 12 
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Figure 2. Expression level of the 12 Arabidopsis thaliana FWL/CNR genes in various root cell types.
Each dot represents the log10-transformed expression levels of each AtFWL/CNR genes across 21
different cell cluster/cell type. Each cell cluster/cell type is represented by a different color. Root
single-cell expression datasets were mined from Ryu et al., 2019 [65].
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4. Regulation of the Subcellular Localization of FWL/CNR Proteins

The sub-membrane localization of microdomain-associated proteins is influenced by external
and internal stimuli. For example, during the nodulation process, MtFLOT2 and GmFWL1 are both
characterized by their punctuate plasma membrane localization in the root hair cells of mock-inoculated
plants. However, upon rhizobia inoculation, both proteins accumulate at the tip of the root hair
cell [26,31]. This accumulation is critical to promote the infection of the root hair cells by the symbiotic
bacteria. These observations clearly highlight the influence of microbes in reshaping membrane biology
in order to promote plant cell infection by rhizobia.

Plant hormones also play an important role in controlling the translocation of microdomains
in specific regions of the plasma membrane. Treatment of transgenic soybean roots clearly revealed
that GmFWL1 and GmFLOT2 are both translocated at the tip of the root hair cells in response to
auxin and salicylic acid [71], hormones regulating nodulation and plant-microbe interactions [72–76].
Conversely, cytokinin inhibits this re-location [71] and the infection of root hair cell by rhizobia [77–80].
Consequently, it is tempting to speculate that plant hormones control plant-microbe interactions [81–86]
by controlling the distribution of microdomains in the plasma membrane.

5. Conclusions

Plant microdomains play critical roles in plant development and plant-microbe interactions. The
emergence of the FWL/CNR gene family as a new family of microdomain-associated genes and their
role in regulating plant development and plant-microbe interactions would justify a stronger focus
on characterizing the biological and biochemical functions of these genes and proteins. Specifically,
knowing that numerous crop FWL/CNR genes are preferentially expressed in the plant root system
(Figure 1), one potential field of investigation would be the characterization of the function of
FWL/CNR genes and the microdomains in controlling the interaction between the root cells and
the root microbiomes. We noticed that a diverse population of AtFWL/CNR genes were highly and
more specifically expressed in epidermal root cells (e.g., AtFWL4, 6, 8, and 12 are expressed in both
trichoblasts and atrichoblasts; Figure 2). These genes could play important roles in controlling the
interaction between plant and soil microbes, similarly to GmFWL1, which is a major regulator of
soybean nodulation.

From a functional point of view, there is also a need to characterize the regulatory
mechanisms controlling the activity of the FWL/CND proteins. Post-translational modifications
of microdomain-associated proteins control their subcellular localization and biological function.
For instance, the S-acylation of the rice remorin RbREM1 [87], the Arabidopsis receptor like-kinase
FLS2 [88], and the N-glycosylation of the RIM21 yeast protein [89] interfere with their localization in the
microdomains. In more detail, after binding to its ligand, the Arabidopsis FLS2 protein is deacylated,
leading to its re-localization and autophosphorylation. This active form of the FLS2 protein triggers
downstream signaling to promote the plant innate immune response [88]. Hence, we assume that
the reversibility of some post-translational modifications could also act as a major regulator of the
localization, conformation, mobility, and function of the FWL/CNR proteins, allowing a rapid adaptive
response to environmental stresses. For instance, post-translational modifications of the GmFWL1
protein could affect its interaction with other microdomain-associated proteins such as prohibitins.
Hence, there is a clear need to better characterize the biochemical properties of the FWL/CND proteins
to fully understand their role in plant cell biology.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/3/377/s1,
Table S1: Annotation and amino acid sequences of 134 FWL/CNR proteins identified across 13 different plant species.
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