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Introduction

The use of fluorescence microscopy has grown increasingly 
common throughout the biological sciences with continu-
ous improvements in sensitivity, resolution, and applications. 
Fluorescence-based microscopy is routinely used to answer ques-
tions about where in a cell a given protein can be found, which 
organelle(s) it transits through, which other proteins are found in 
the same locations or in the same traffic pattern. These questions 
are increasingly important to cell signaling research, in which 
soluble proteins may be recruited to membrane surfaces, often 
in a highly regulated and transient fashion. In such cases the 
percentage of one protein co-localizing with another can change 
dramatically and rapidly. Co-localization, or the quantification 
of the amount of overlap between two fluorophores, within two 
dimensional dual-colored images has been an important and 
powerful tool in determining a protein’s location and its poten-
tial for acting at specific sites or with specific binding partners. 
Localization of a protein to discrete structures (e.g., centrosomes, 
nuclear pores and ER exit sites) can provide striking evidence 
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of co-localization with markers of those structures (γ-tubulin, 
lamin B and Sec13, respectively) that often do not require sta-
tistical analyses. In contrast, other structures (e.g., the Golgi 
and endosomes) are irregular in morphology, vary in their three 
dimensional structures across individual cells within a popula-
tion and contain within them multiple overlapping domains that 
require more sophisticated statistical analyses. This variability in 
organelle morphology and within the sampled population also 
introduces a much greater potential for focal plane bias that can 
unintentionally skew the later analyses or images used to portray 
results. These concerns are ameliorated by the collection of data 
from the entire cell and multiple cells within the population but 
require specific statistical analyses to draw conclusions regarding 
differences between conditions in the experimental design. How 
the imaging data are collected and processed is obviously critical 
to those analyses.

All images contain both in focus and out of focus light, poten-
tially confounding quantitative analysis. Confocal microscopy, 
in which the use of a laser light source and pinhole apertures filter 
unwanted light from the sample (for reviews, see refs. 1 and 2) 
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relationships among objects (clustered vs. dispersed, etc.), and 
regional differences within objects based upon intensity.8,9

We wanted to be able to generate irregularly shaped three 
dimensional ROIs that are defined by the presence of a marker 
of a specific cellular compartment and evaluate pixel intensities 
within those volumes, or isosurfaces. Isosurfaces are computa-
tional, three dimensional representations of a structure within 
an image stack and can be generated using a number of methods 
that are designed to detect boundaries between regions of signal 
and non-signal. Such methods include watershed segmentation, 
gradient detection, or iterative selection.

Watershed segmentation uses a theory first described 100 
years ago10 and imagines water falling onto or flooding from the 
bottom of a topological representation of pixel intensities within 
an image to determine where water would pool on the topology 
map. It then defines objects by drawing borders around areas 
from which the theoretical water was shed.11 The user can set 
the amount of theoretical water allowed to fall in the system, 
and determine the amount of “land” identified as “object” in 
the image. Gradient detection calculates intensity differences 
between two pixels and uses that information to identify objects. 
Contiguous pixels with small intensity differences that are above 
a certain user-defined threshold define an object. Software pack-
ages (e.g., Imaris Bitplane Scientific Software) use watershed and 
gradient detection as methods of identifying objects. Some meth-
ods use combinations of these approaches to automatically iden-
tify and count objects, such as the freely available ImageJ plug-in 
“WatershedCounting3D.”12 WatershedCounting3D is very good 
at detecting areas of local contrast over a wide range of pixel 
intensities and when dealing with strong signal that is clearly dis-
tinct from background. However, this approach employs thresh-
olding, and images that contain diffuse, cytosolic staining can 
result in the identification of objects in areas that are distinctly 
background or cytosolic staining.

Finally, iterative pixel selection, or the Calvard method,13 and 
its variations, evaluates an image a number of times (Imaris soft-
ware default is four times), each time scoring pixels as “object” 
or “non-object.” It calculates two populations of pixel intensities, 
maximizing the statistical differences between them and defines 
pixels within the higher population to be those containing sig-
nal that corresponds to an object, and the lower population to 
comprise noise. It then generates a map, or mask, of pixels that 
were identified as object and applies it to the original image. The 
process is then repeated on pixels that fall into the region defined 
by the mask. Each iteration results in a more refined object, each 
time optimizing the statistical difference between the two popu-
lations to result in the largest possible difference between fore-
ground (object) and background (non-object). This approach is 
advantageous because it (a) retains all information in the data set, 
i.e., does not throw out data below any limit, (b) does not require 
thresholding prior to object identification and therefore evaluates 
all pixel intensities within the raw image, (c) is dynamic in that it 
can be applied equivalently to images that vary in their intensity 
profiles (may be dimmer or brighter than other images in a data 
set, or have more background, etc.) and (d) can be applied auto-
matically to all images included in an analysis. In a comparison of 

can greatly reduce the amount of out of focus light in an image. 
But confocal microscopy requires a relatively strong signal, can 
suffer from rapid photobleaching of the sample, and can require 
multiple passes (averaging) over the sample to obtain the image.1 
Alternatively, widefield microscopy illuminates the entire sample 
simultaneously (with a lower energy light source) and the image 
is acquired using a charged coupled device (CCD) camera, allow-
ing for less photobleaching and much more rapid data acquisi-
tion.2 However, the resultant image contains light originating 
from throughout the entire sample, i.e., out of focus light is pres-
ent in each slice of the stack. Algorithms have been developed to 
deconvolve the image, to remove out of focus light and reassign 
it to its point of origin (for review, see ref. 3). This process can be 
applied to two dimensional images, or stacks of images collected 
on either confocal or widefield systems.4 For detailed reviews of 
deconvolution see references 3, 5 and 6.

Once images are acquired and deconvolved, most methods of 
quantification require the images to be thresholded, or processed 
to discard noise, which includes low intensity, background sig-
nal, or signal contributed by the electronics within the system 
itself (often referred to as Poisson noise).7 Thresholding effec-
tively removes noise by disregarding pixels with intensities that 
fall below a specified value, often determined by visually inspect-
ing the intensity profile or a histogram of intensities within the 
image. Thresholding can affect the outcome of the analysis by 
inadvertently removing low intensity signal that should have been 
included. While the method of thresholding should always be 
carefully considered it is particularly important when the source 
of the signal under study is present in both diffuse, soluble (cyto-
plasmic) and particulate, membrane-associated forms, such as 
proteins (adaptors, kinases, lipid modifiers, etc.) whose binding 
to membranes is transient and regulated. Images of this nature 
often benefit from statistical analysis of a collection of images 
because of the potential for thresholding-induced bias, the irreg-
ular, three dimensional structure being observed, the large area 
over which the protein of interest may be recruited and the revers-
ible nature of the interactions.

Co-localization, or quantification of the amount that two 
fluorophores correlate or overlap, is commonly used to evalu-
ate location when one is a previously characterized marker of an 
organelle/structure. There are several ways to statistically analyze 
co-localization, including, but not limited to, Pearson’s correla-
tion coefficient (PCC) and Mander’s overlap coefficient (MOC). 
These measures are commonly applied to confocal images, and 
work very well with fluorophores of comparable, strong pixel 
intensities. However, co-localization methods require threshold-
ing and well-defined regions of interest (ROI), the more tightly 
defined the ROI the better the analysis. Additionally, the output 
of a co-localization analysis yields a single, correlative value for 
each image that contains far less information than is available 
from using other methods. Further statistical analyses of multiple 
images and their corresponding co-localization scores produce a 
mean correlative score from which one can conclude the extent 
of overlap. In contrast, other methods make use of the informa-
tion available in three dimensional data sets and allow users to 
extract more spatial information, including numbers of objects, 
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The classical measure of co-localization is the Pearson’s 
Correlation Coefficient (PCC) and is the origin for most co-
localization measures used today.15,16 A PCC value of -1 would 
be interpreted as inverse correlation (where pixels in one chan-
nel are brighter than the mean, pixels in the other channel are 
likely to be dimmer than the mean pixel intensity) while a PCC 
value of 0 would indicates no correlation (there is no relation-
ship between the two channels), and a PCC value of +1 indi-
cates perfect correlation (where pixels in one channel are brighter 
than the mean, pixels in the other channel are also brighter than 
the mean). While the PCC indicates how well or how poorly 
two channels vary with one another, some questions are better 
answered with information about the degree to which two chan-
nels overlap, rather than how well their intensities co-vary. To 
obtain an equation that monitors overlap of pixels, the PCC is 
modified to evaluate absolute pixel intensity rather than devia-
tion from the mean intensity, and results in the Mander’s Overlap 
Coefficient (MOC).16,17 Because the MOC evaluates absolute 
intensities rather than the co-variance of two channels it elim-
inates the possibility of a negative correlation. The MOC can 
be further rearranged to give two scores, one for each channel, 
rather than one score for an entire image. These coefficients are 
referred to as M1 and M2 and indicate how much “red signal is 
also green,” or vice versa.

To illustrate these issues, PCC and MOC measures were cal-
culated for two slices isolated from a single stack of deconvolved 
wide field images to evaluate the degree of co-localization in two 
spatially distinct regions of the same cell. Stacks of images were 
collected from fixed HeLaM cells expressing a protein contain-
ing the lumenal and transmembrane domains of CD8 fused 
to the cytoplasmic tail of furin (CD8-furin), which (like furin 
itself) localizes predominantly to the Golgi.18,19 Fixed cells were 
labeled with antibodies directed against TGN46, a marker of 
the trans-Golgi network (TGN) compartment (Fig. 2A, red), 
and to CD8, to detect the cargo (Fig. 2A, green). Stacks were 
deconvolved with Huygens SVI software, the two channels were 
merged and a montage was generated (Fig. 2A). The sixth and 
the sixteenth images were arbitrarily selected, extracted from the 
stack and evaluated for co-localization using the “Co-localization 
Threshold” plug-in (http://pacific.mpi-cbg.de/wiki/index.php/
Colocalization_Threshold) from FiJi (Fig. 2B). This plug-in 
calculates the PCC as well as the MOC and thresholded M1, 
M2 (tM1, tM2) scores for each channel. The PCC and tM1/
M2 measures were calculated for the two slices and are shown 
in Figure 2B, along with a scattergram of overlapping intensities 
where the colder/darker pixels represent less frequent occurrences 
of a given pixel intensity, while warmer/yellow colors indicate a 
higher frequency of occurrence. The amount of co-localization, 
as determined by either PCC or tM, differs quite a bit between 
the two, spatially distinct slices. This variation results from dif-
ferent focal planes will certainly add to the variation between 
samples, e.g., when averaging a correlative score among differ-
ent cells from a single population, and can even alter conclusions 
drawn from the data set. Allowing the user to select by visual 
inspection one image from the z-stack for comparison to other 
cells increases the potential for introducing unintentional bias. 

multiple methods of object identification, iterative selection was 
the only approach that was determined to be a suitable replace-
ment for manual inspection.14

We present a method specifically designed for the quantifi-
cation of three dimensional data sets that identifies volumetric 
structures and evaluates signal intensity information within those 
structures using three dimensional (3D) image-based isosurface 
generation and intensity analysis (3D3I). We believe this method 
provides a useful addition to imaging data analyses with the spe-
cific advantages of (a) automatic object identification that can be 
applied easily to many images of comparable or disparate inten-
sity profiles (i.e., applicable to strong localized signal or diffuse 
cytosolic staining), (b) eliminating the need for thresholding, (c) 
generating real values rather than correlative ones, (d) allowing 
for the statistical detection of outliers based on the characteristics 
of the image and (e) being particularly well suited for analyses of 
protein recruitment to membranes but can be applied to other 
changes in protein distribution in cells.

Results

Procedure for 3D3I image analysis. Z-stacks of wide field images 
using a 60× objective were collected for two channels from the 
entire volume of the cell using a step size of 0.2 μm, as described 
under Materials and Methods. Exposure times of 200 ms were 
used for each channel. This method can accommodate the use of 
either confocal or wide field imaging systems, however we chose 
to use wide field to minimize problems resulting from photo-
bleaching. The acquired stack of images was then deconvolved to 
remove out of focus light. The deconvolved stacks were imported 
into Imaris. The channel used to identify a cellular structure 
(e.g., Golgi marker) was automatically segmented using the 
iterative selection method as implemented with Imaris software, 
and an isosurface, or computational volume that represents the 
intensities within the channel used to generate it, was generated. 
Intensity values for both channels within the isosurface were then 
exported to Excel. This output includes a list of each isosurface 
identified in the image, their volumes, and intensities of signal 
in each. Figure 1 highlights the workflow for quantification of 
isosurfaces from cells.

Problems arising from the collection and analysis of three 
dimensional data sets. The ability to collect images at differ-
ent z-positions throughout the volume of the cell allows the gen-
eration of three dimensional reconstructions that provide much 
more information than that present in a single two dimensional 
image but raises an important issue that is worthy of specific 
elaboration. The analysis of one image from a single plane of 
focus can result in unintentionally biased results, termed focal 
plane selection bias. Collecting and using data from an entire 
cell volume should effectively eliminate such bias. This is appar-
ent when two spatially separated images collected from the same 
cell are evaluated for co-localization. Co-localization methods 
can evaluate how well two channels correlate in their intensities 
(e.g., bright pixels on one channel coincide with bright pixels on 
the other), or how well two channels overlap (e.g., where there is 
signal on one channel there is signal on another).
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which cells expressing CD8-furin were fixed and stained for 
TGN46, a marker of the trans-Golgi network and CD8, we com-
pared the regions identified as objects/structures using watershed 
segmentation to those identified using 3D3I. The images used 
have a linear range of pixel intensities as shown for the TGN46 
marker in Figure 3A (CD8 staining intensities not shown), with 
no easily identifiable, discrete populations of pixel intensities, 

The use of three dimensional data sets avoids focal plane bias 
by using data from throughout the cell but require optimized 
methods for analysis.

Image segmentation using WatershedCounting3D and 
3D3I. We compared objects identified using 3D3I analysis 
to those identified using a similar method, watershed segmen-
tation.12 Using the same stack of images shown in Figure 2 in 

Figure 1. 3D3I workflow. Steps in the performance of 3D3I to quantify staining in fixed adherent cells in culture are illustrated. We describe through-
out the use of one well defined organelle marker (e.g., giantin, TGN46, etc.) to define the isosurface into which the other antigen is compared but any 
two antigens can be compared in the same way. Wide field images were collected in z-series throughout the volume of the cell to create an image 
stack. This stack is imported into Huygens SVI software and deconvolved to remove out of focus light. The deconvolved stack is imported into Imaris 
and an isosurface is built, based upon staining of the organelle marker. An important aspect of this method is that the isosurface is generated without 
thresholding the stack in any way. Information about the isosurfaces generated by Imaris is then exported to Excel for use. Each object within the 
isosurface is assigned an identification number with corresponding volumes, sum channel intensities within each object, maximum intensities per 
object, intensity mean, intensity minimum, standard deviation of intensity and surface areas. This list of exported values is not comprehensive but rep-
resentative. The return loop is intended to show that the process can be repeated on as many cells as required for the statistical tests used.
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the biological structures that contain TGN46. This conclusion 
was further supported by the observation that the staining seen 
in the upper right quadrant of the images shown in Figure 3 
is coming from the nucleus, which is expected to lack TGN46. 
The mask was then falsely colored blue, and applied to the three 
dimensional intensity plot (Fig. 3D). Comparing Figure 3B to 
Figure 3D (Fig. 3D is the addition of Fig. 3B and 3C), it is 
clear that while the WatershedCounting3D algorithm is excel-
lent at detecting areas of local contrast over a wide range of pixel 
intensities, its ability to detect areas of local contrast resulted in 
the identification of objects containing very low-intensity pixels 

making them difficult to threshold manually. The merged CD8 
and TGN46 stacks were mapped onto a three dimensional 
intensity plot to represent intensities of the two channels  
(Fig. 3B). Note the gray, textured regions of low intensity, illus-
trating variations in background signal, and corresponding to 
low-intensity pixels seen in the histogram shown in Figure 3A. 
WatershedCounting3D segmentation was applied to the TGN46 
channel and a mask of the segmented regions was generated12 
(Fig. 3C). We believe that (perhaps because there is a linear range 
of pixel intensities) the Watershed method identifies a large num-
ber of discrete isosurfaces; far more than would be expected for 

Figure 2. Focal plane bias in use of single images. (A) Stacks of images were collected from HeLaM cells expressing CD8-furin and stained for both 
CD8 and TGN46, as described under Materials and Methods. Z-stacks (one for each channel) were then deconvolved, the deconvolved stacks opened 
in ImageJ, merged and a montage created that shows 18 individual images at different depths in the z-plane. (B) Choice of focal plane can affect 
results of quantification of co-localization. The sixth and the sixteenth slices within the z-stack were arbitrarily selected for co-localization analysis. The 
two slices were evaluated for PCC, and thresholded Mander’s coefficients (tM1 and tM2) and intensity histograms generated.
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Figure 3. Comparison of image segmentation using WatershedCounting3D and 3D3I. The same HeLaM cell, expressing CD8-furin and stained for CD8 
and TGN46, shown in Figure 2 was used for analyses. (A) Histogram of intensities from a z-stack of deconvolved images of TGN46 staining; the maxi-
mum intensity projection is shown in the inset. (B) The three dimensional surface plot of pixel intensities for TGN46 (red) and CD8 (green) is shown 
as the merged image. Height indicates relative intensity. (C) WatershedCounting3D was used to identify objects and create a mask based on TGN46 
staining. (D) The mask shown in (C) was false-colored blue and imported into the three dimensional intensity plot shown in (B). Blue regions indicate 
areas contained in the segmented mask. Arrows highlight regions of the mask that occur in areas of low intensity. (E) We used the same deconvolved 
z-stack of TGN46 (red) staining to generate an isosurface using Imaris (shown in green) as described under Materials and Methods. Isosurface genera-
tion results in fewer objects being identified in the regions of low signal intensity [e.g., compare panel (E) to (C)].
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endosomes and lysosomes, with similar results to those obtained 
for Golgi proteins.

Development of the 3D3I method for quantifying recruit-
ment of adaptors to irregular, three-dimensional structures, 
such as the Golgi and endosomes. Because the Golgi and endo-
somes are irregularly shaped structures that can appear quite dif-
ferent between cells and in different focal planes of the same cell, 
we sought a method that is inclusive of all staining in each cell 
used for quantification. A related issue is that diffuse, cytosolic 
staining can be difficult to appropriately threshold and depending 
upon how it is handled, can result in exaggerated or understated 
co-localization scores (see below). To address these issues, we 
wanted a method that would allow for the identification of three 
dimensional objects without discarding cytosolic staining. To this 
end, we used wide field imaging with deconvolution followed by 
analyses using Imaris software, as described under Materials and 
Methods. Organelle marker staining (e.g., giantin for the Golgi) 
was used to generate isosurfaces and the staining of the adaptor 
Mint3 was determined within those isosurfaces. Note that this 
method allows for the identification of multiple, discrete objects 
within the same cell and outputs include numbers and volumes of 
all objects (see Fig. 1). Though many parameters are calculated for 
each isosurface, we chose to score images as a ratio of total pixel 
intensity of adaptor per unit volume of isosurface (defined by the 
marker of the Golgi) from each cell in the units, intensity/μm3. 
We chose this metric (intensity/μm3) because it best addressed the 
question “how much Mint3 is on the Golgi?” and allowed us to 
compare the answers from different cell populations in a statisti-
cally rigorous fashion. However, the 3D3I method can be tailored 
to evaluate other questions that are better described using other 
metrics. For example, if one is interested in fragmentation 3D3I 
can address that simply by arranging the values that are exported 
to best describe the question. The isosurface serves as a tightly 
defined three dimensional ROI, or volume within which we wish 
to monitor changes. This method has a number of advantages:  
(1) all data included are defined by a biologically relevant marker 
used to define the isosurface (avoiding over-estimates result-
ing from correlational co-localization methods), (2) we monitor 
changes throughout the entire volume of the cell and thus avoid 
sampling or focal plane bias and (3) we perform statistical analy-
ses on a number of cells, comparing intensity per unit volume 
in control vs. experimental conditions, as opposed to perform-
ing statistical analysis on mean correlational scores. Importantly, 
because all data are included, including low intensity signal 

(Fig. 3D, arrows). These low-intensity objects can be removed 
by thresholding the image prior to analysis. However, to do so 
we must manually assign a cutoff intensity that may or may not 
be applicable over large numbers of image stacks. In compari-
son, we generated an isosurface based on TGN46 signal using the 
iterative selection method implemented in Imaris (Fig. 3E, green) 
and compared it with the TGN46 channel (Fig. 3E, red). It is 
evident by simple inspection that the isosurfaces generated using 
the iterative selection method (Fig. 3E, green) faithfully capture 
the overwhelming majority of the staining seen in the primary 
data (Fig. 3E, red).

A comparison of the isosurface in Figure 3E to the blue 
regions identified in Figure 3D revealed that far fewer objects 
(discrete isosurfaces) were identified using the Imaris isosurface 
generation approach than in watershed segmentation. Due to file 
format incompatibility we were unable to project the Imaris iso-
surface onto the ImageJ three dimensional intensity space. Given 
our current understanding of the TGN compartment we believe 
that many of the low peaks seen in Figure 3D (e.g., arrows) do 
not faithfully identify the TGN. Because the iterative selection 
method maximizes the statistical difference between signal and 
non-signal pixels, and effectively utilizes the dynamic range of 
pixel intensities within an image, the overall intensity of a sig-
nal is less of an issue in identifying isosurfaces. In addition, in 
our hands each image evaluated using WatershedCounting3D 
required continuous adjustments to the settings to filter out the 
objects identified in regions of low signal intensity. We also noted 
that two dimensional confocal images resulted in better segmen-
tation using the WatershedCounting3D method but the use of 
three dimensional data sets, and the individual settings necessary 
to analyze each image, make this method prohibitive to the analy-
sis of large numbers of images. For studies that will use statistical 
analyses comparing different conditions or data sets, a method is 
required that involves as little image processing as possible, and 
yet is robust enough to be applicable over a wide range of signal 
profiles. In summary, a direct comparison of 3D3I to watershed 
counting reveals that fewer objects are identified in regions of 
low contrast (refer to Fig. 3A) using 3D3I and, at least in the 
case of this marker of the TGN, give us higher confidence that 
we are quantifying the biologically relevant compartment under 
study. Further testing and comparisons should be performed to 
determine if this holds up over a wider array of organelle mark-
ers; though we have used this method for quantification of trans-
ferrin receptor containing vesicles (recycling endosomes), early 

Figure 4 (See opposite page). Comparison of 3D3I to other co-localization methods. HeLaM cells were fixed and labeled with antibodies against gi-
antin and Mint3. (A) Images were collected using widefield imaging and a step size of 0.2 μm. Stacks were deconvolved using Huygens deconvolution 
software (left two panels) and Imaris was used to generate the co-localization mask of the two channels (third panel), as described under Materials and 
Methods. A merge of the two channels and the colocalization mask are shown (fourth panel). Maximum intensity projections are shown. (B) Pearson’s 
and thresholded Mander’s (tM) coefficients were calculated using Imaris and ImageJ, as described under Materials and Methods. (C) Imaris was used 
to generate a scatter plot of pixel intensities using the merged giantin and Mint3 channels shown in (A). (D) The same deconvolved images shown 
in (A) (left two panels) were opened in Imaris and merged (third panel). The giantin channel (red) was used to create the isosurface (right panel). (E) 
The isosurface generated in panel (D) is color-coded as a heat map of Mint3 intensities contained within each object in the isosurface. Representative 
values describing the isosurface are shown in the panel to the right of the color-coded isosurface. Note the variations in Mint3 intensity within the gi-
antin isosurface, based on the color-coding shown. (F) The co-localization mask shown in (A) was falsely-colored green, and the isosurface generated 
in (D) was falsely-colored red. The two are displayed simultaneously in the merged image. The isosurface is a more tightly defined volume as the two 
representations overlap, but the co-localization mask highlights regions not identified by the isosurface.
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Figure 4. For figure legend, see page 182.
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suggests that thresholding be approached cautiously, and used 
sparingly. However, both methods generate the same rank order 
of tM coefficients in that giantin is higher than Mint3 under each 
treatment. In summary, the manner in which co-localization cal-
culations are implemented within a given software package can 
influence substantially the quantification of an image.

We wanted a method to generate values containing absolute 
intensity information about a given channel within a defined 
three-dimensional region of interest as opposed to an entire 
image or cell. To do this, the same images used in Figure 4A 
were analyzed with the Imaris software package using the itera-
tive selection method to automatically define an isosurface that 
was representative of all giantin staining (Fig. 4D). From this 
surface, a heat map of Mint3 intensities was generated to illus-
trate the point that not all giantin staining has a uniform amount 
of Mint3 staining. Instead there are regions of the isosurface 
that have high (white) or low (dark red) levels of Mint3 intensity  
(Fig. 4E). This level of spatial detail is lost when the image is 
evaluated using co-localization, or statistical correlation meth-
ods. Data describing the isosurface, such as total isosurface vol-
ume, and the pixel intensities of Mint3 and giantin contained 
within that volume are shown (Fig. 4E, right). When expressed 
as a ratio of sum intensity per isosurface volume, the informa-
tion can be used to make comparisons across many groups and 
are suitable for statistical analysis. We then wanted to compare 
the region of pixels that were determined to co-localize with the 
region that was defined by the isosurface (Fig. 4F). The isosur-
face (red) and the co-localization mask (green) were displayed 
simultaneously in Imaris (merge), and exported as a .tif file. From 
the merged image it is clear that there are regions defined by the 
co-localization mask that do not also contain regions defined by 
the isosurface. However, all of the isosurface volume contains 
volumes defined by the co-localization mask.

3D3I Applications. 3D3I analysis can be used to analyze 
data from many different types of experiments and is par-
ticularly well suited to making comparisons across multiple 
conditions. To illustrate this point, 3D3I was used to analyze 
Mint3 recruitment to isosurfaces defined by the presence of the 
amyloid precursor protein (APP; Fig. 5A). The cytosolic tail 
of APP interacts with the adaptor protein Mint3 at the Golgi 
for packaging and export.20-22 APP is a transmembrane protein 
that transits both the secretory and endocytic pathways and is 
proteolytically processed in the process. This can lead to dif-
ficulties in interpretation when using N- or C-terminal directed 
antibodies or tags on APP as they may become separated as 
a result of protease activities. For this reason, we compared 
our results of expressed wild type human APP to those of a 

throughout the cell, we typically observe smaller fold-changes in 
response to experimental manipulations using 3D3I than those 
found in more commonly used co-localization methods.

An example of the use of 3D3I to quantify adaptor recruitment 
is shown in Figure 4, with comparison to co-localization meth-
ods. Wide field images of control HeLaM cells were collected and 
deconvolved using Huygens’ Deconvolution software (SVI Inc.). 
Deconvolved images were opened in Imaris and analyzed for 
co-localization using automatic thresholding. A co-localization 
mask, or a graphical representation of pixels that overlap, was 
generated (Fig. 4A, “Co-localization Mask”). Imaris calculated 
a Pearson’s coefficient of 0.5211, as well as thresholded Mander’s 
coefficients of 0.7605 and 0.3871 for giantin and Mint3, respec-
tively (Fig. 4B). These coefficients were calculated for the entire 
stack though the images shown are maximum intensity projec-
tions. We then performed the same type of analysis using ImageJ 
and compared the results to those obtained using the colocal-
ization calculator in Imaris. The same deconvolved images were 
opened in ImageJ and converted to 16-bit images, which were 
used to generate the values in Figure 4B, and a frequency plot 
of intensities (Fig. 4C) using the “Mander’s Calculator” plug-in 
from the MacMaster Biophotonics Facility (www.macbiophoton-
ics.ca/imagej). The overall shape of the scattergram indicates a 
positive correlation between giantin and Mint3 pixels. It is clear 
that there are more Mint3 pixels that do not have giantin sig-
nal in them (see the clustering of warm colors along the y-axis) 
than giantin pixels devoid of Mint3 intensity as indicated by the 
absence of a similar lobe of intense pixels along the x-axis. That 
is, most giantin positive pixels are also positive for Mint3 but not 
all Mint3 positive pixels are positive for giantin. Such incomplete-
ness in overlap is not surprising, given the complex organization of 
the Golgi itself and the extensive documentation that markers of 
this organelle display regions of non-overlap (i.e., giantin stains a 
portion of the Golgi but not all of it, and Mint3 is present on sur-
faces of the Golgi as well as endosomes). We interpret this partial 
overlap as evidence of Mint3 recruitment to the Golgi, including 
some areas that are giantin positive and some that are not. The 
Pearson’s coefficient generated using the ImageJ software is simi-
lar to that obtained from Imaris. Mander’s coefficients obtained 
from both methods determined that most of the giantin intensity 
was also positive for Mint3 (compare the Imaris value of 0.7605 
to the ImageJ value of 0.979) while there were fewer Mint3 posi-
tive pixels that were also positive for giantin (compare the Imaris 
value of 0.3871 to the ImageJ value of 0.678). The differences 
between values generated by ImageJ and Imaris most likely arise 
from the manner in which each software package handles thresh-
olding. Though neither value is more correct than the other, it 

Figure 5 (See opposite page). Example of a 3D3I application. Temperature block increases the recruitment of Mint3 to APP at the Golgi. HeLaM cells 
were transfected with empty plasmid or ones directing expression of full length human APP (A), (B) or CD8-APP (D) and the next day were fixed with 
or without imposition of the temperature blockade, as described under Materials and Methods. Cells were then stained for (A) APP and Mint3 or (B) 
Mint3 and giantin. Maximum intensity projections of widefield images are shown with isosurface generation using APP (A) or giantin (B) staining. Heat 
maps indicate the intensity of Mint3 staining within those isosurfaces. (C) The amount of Mint3 staining per APP volume was determined under the 
conditions shown in panel (A). (D) Control HeLaM cells, or cells expressing CD8-APP were maintained 37°C or temperature blocked prior to fixation, 
and stained with antibodies directed against Mint3 or CD8. Bars in (C and D) show the average from n ≥ 7 cells per condition, representative of at 
least three independent experiments. Error bars indicate standard error of the mean (SEM). Asterisks indicate a p < 0.01, each compared with control, 
steady-state staining.
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Figure 5. For figure legend, see page 184.
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Discussion

We conclude that the use of three dimensional isosurface gen-
eration and of intensities contained within that volume (termed 
3D image-based isosurface generation and intensity analysis, 
or 3D3I analysis) generates non-correlative, raw values suitable 
for statistical analysis of large numbers of cells and confined to 
marker-defined, physiologically relevant regions or structures. As 
such we believe this method is a valuable alternative to correla-
tive values when information about a three dimensional structure 
is of interest. This method is particularly suited to irregularly 
shaped organelles and ones that can appear so different between 
cells in the same population, like the Golgi and endosomes, but 
is flexible enough to be used to address a variety of types of ques-
tions that may be relevant to any site or cellular organelle.

Materials and Methods

Cell culture. HeLaM cells were maintained at 37°C and 5% 
CO

2
 in 10% fetal bovine serum (GemCell, 100–500) in DMEM 

medium (GIBCO, 11965). Temperature blockade was performed 
as previously described24-27 and involved aspirating off medium 
from cells grown on coverslips, replacing it with DMEM con-
taining 20 mM HEPES, pH 7.4 with 10% fetal bovine serum, 
pre-warmed to 19.5°C, and maintaining cells in a water bath at 
the same temperature for four hours. Cells were then either fixed 
and processed immediately or allowed to recover by return to 
37°C for the times indicated, as described below.

Plasmids and transfections. The pIRESneo parent plasmid 
used to express the lumenal and transmembrane domain of CD8 
fused to the cytoplasmic domain of furin, termed CD8-furin, 
was a generous gift from Dr. Matthew Seaman (University of 
Cambridge).28 Expression of full-length human amyloid precur-
sor protein, APP695, was achieved as described in Shrivastava-
Ranjan et al.20 We also generated a plasmid encoding the CD8 
lumenal and transmembrane domains fused to the cytoplasmic 
tail of APP, consisting of the 46 C-terminal residues (residues 
650–695), termed CD8-APP. The APP tail was inserted into 
pIRESneo-CD8 using NotI and AflII restriction sites.

Cells were plated at ~80% confluence and the next day were 
rinsed with pre-warmed, serum free Opti-MEM (GIBCO, 11058) 
and then placed in 1.0 mL of pre-warmed Opti-MEM. Fugene 
transfection reagent (6 μL; Roche, 11814443001) was added to 
OptiMEM (93 μL) in a microfuge tube. DNA (1 μg) was then 
added to the Opti-MEM/Fugene solution, tapped gently to mix, 
and incubated at room temperature for 20 min. The transfection 
mixture was then added drop wise to one well of a 6-well plate 
and placed at 37°C for 5 h. The transfection was stopped by rins-
ing cells once with pre-warmed Trypsin-EDTA (GIBCO, 25300) 
and then adding 0.5 ml 0.05% Trypsin-EDTA and incubating 
at 37°C for ~5 min. Cells were triturated off the plate using  
3.5 mL of pre-warmed growth medium and plated onto 6 cm 
dishes containing Matrigel (BD Biosciences, 356234)-coated 
coverslips and allowed to attach overnight.

Immunocytochemistry. Cells plated onto coverslips the 
night before were fixed with 2% paraformaldehyde diluted in 

recombinant protein consisting of the lumenal and transmem-
brane domain of CD8 and the cytoplasmic tail of APP (CD8-
APP) that is completely comparable to the CD8-furin construct 
used above. Use of the CD8-APP construct also allows us to 
monitor traffic of a protein independently of lumenal domain 
interactions, which have been described previously for APP.23 
We obtained the same results whether full length APP or CD8-
APP was expressed so examples of each are presented in Figure 
5. We also used the previously characterized temperature block 
protocol, in which cells were maintained at 20°C for 4 h, 
during which time protein synthesis and export from the ER 
continued (albeit at slower rates than if cells are cultured at 
37°C) but export from the Golgi/TGN was compromised.24-27 
HeLaM cells were transfected with a plasmid directing expres-
sion of human APP695 (Fig. 5A–C) or CD8-APP (Fig. 5D) 
and the next day were either maintained at 37°C or the tem-
perature block was imposed. Cells were then fixed and stained 
with the antibodies indicated, as described under Materials and 
Methods. Stacks of wide field images were collected and decon-
volved using Huygens SVI software. Deconvolved images were 
opened with Imaris and isosurfaces were generated based on 
APP staining (Fig. 5A and C) or based on giantin staining (Fig. 
5B and D). The amount of Mint3 staining within those isosur-
faces was compared between conditions.

The increased recruitment of Mint3 to APP isosurfaces in 
response to imposition of the temperature block is easily seen 
in the heat map at the bottom of Figure 5A and quantified in  
Figure 5C. We quantified the amount of Mint3 signal within 
isosurfaces defined by APP staining and compared the results 
obtained from cells maintained at 37°C and 20°C (Fig. 5C). 
Sum intensity values were expressed as the ratio of Mint3 per 
isosurface volume and the data from at least seven cells were aver-
aged and used in statistical analyses. Results demonstrated that 
the temperature block led to a statistically significant increase (p 
< 0.01) in Mint3 within APP isosurfaces.

We predicted that the temperature blockade would lead to 
an increase in APP at the Golgi due to the decrease in antero-
grade traffic from the Golgi under this condition and asked 
whether the Mint3 adaptor was being recruited to that site. 
Thus, in a parallel set of experiments Mint3 recruitment to the 
Golgi (defined by giantin staining) was quantified in control 
cells and compared with those expressing CD8-APP, with or 
without temperature block (Fig. 5D). It is evident from the bar 
graph (Fig. 5D) that imposition of the temperature block alone 
does not cause an increase in Mint3 at the Golgi. In contrast, 
expression of CD8-APP does increase Mint3 at the Golgi and 
this effect is further increased upon imposition of the tempera-
ture block.

We evaluated sum intensity within an isosurface in these 
examples, but many other parameters can be measured using 
3D3I; including isosurface volume, number of isosurfaces, 
number of voxels within an isosurface, mean intensity and 
intensity standard deviation. These parameters are more tan-
gible than the correlative measures generated in co-localization 
analyses and retain the spatial information present in the origi-
nal image.
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just out of focus on both the top and bottom of the cell. Images 
were recorded as a series of .tif files with dimensions of 1,316 × 
1,035 pixels and a file-depth of 16 bits. Stacks of images were 
collected for two channels with a step-size of 0.2 μm. Exposure 
times of 200 ms were used for both channels. Serial images, 
composing the stack of images for each channel, were opened in 
Huygens SVI Deconvolution software, and were deconvolved 
using settings appropriate for Alexa594 and Alexa488 fluoro-
phores with a total image change threshold of 0.1, block pro-
cessing on, and a maximum iteration value of 40. Deconvolved 
images were returned in .ics format. Images were not processed 
in any other way prior to the performance of the calculations 
described.

Image analysis. Images were analyzed using Imaris6.4 soft-
ware. For comparison, calculations performed using Imaris 
were repeated using ImageJ software where indicated. It is of 
note that after version 7.1, the iterative selection method of 
object identification is no longer the default setting. For ImageJ 
analysis, deconvolved .ics files were opened and converted to 
16-bit files. The Co-localization Threshold plugin (http://
pacific.mpi-cbg.de/wiki/index.php/Colocalization_Threshold) 
and the Mander’s Calculator plugin (www.macbiophotonics.
ca/downloads.htm) were used to calculate Pearson’s, Mander’s 
M1 and M2 and tM1 and tM2 coefficients. For co-localiza-
tion analysis performed using Imaris, the deconvolved .ics files 
were opened and the pixel dimensions were assigned to those 
corresponding to the wide field microscope described above 
(0.113 × 0.113 × 0.2 μm per voxel). The merged image was 
analyzed using the “Co-localization” function and the result-
ing co-localization coefficients were copied into a text file and 
saved. A mask of co-localizing pixels, and the scattergram of 
pixel intensities was later exported. For isosurface generation 
within Imaris, the image was loaded as described above. The 
“Generate Isosurface” function within Imaris, in which the 
user indicates the channel of interest, was launched and used to 
define the object. We generated isosurfaces using the “absolute 
intensity” settings without filtering. The tabular results were 
then exported to Excel and a “snapshot” of the scene containing 
the isosurface was saved. See Figure 1 for workflow. Statistical 
analyses were performed by importing the tabular results from 
Imaris into GraphPad Prism 5.0 and analyzed using the meth-
ods indicated.
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phosphate buffered saline (PBS; 137 mM NaCl, 2.7 mM KCl, 
10 mM sodium phosphate dibasic, 2 mM potassium phosphate 
monobasic, pH 7.4) for 20 min at room temperature. Fixative 
was aspirated off and cells were rinsed four times for 5 min each 
with PBS. Non-specific staining was blocked by incubating cells 
in 200 μL of blocking solution [1% bovine serum albumin 
(Sigma, A3059) and 0.05% saponin (Sigma, S5881)] in PBS for 
20 min at room temperature. Antibodies against human TGN46 
(Serotec, AHP500, 1:1,000), APP (Synaptic Systems, 127002, 
1:500), Mint3 (BD Transduction, 611380, 1:200), or giantin 
(Covance, prb114c, 1:1,000) were diluted in blocking solution 
and applied to the cells overnight (~16 h) at 4°C. The following 
morning, cells were washed four times for 5 min each in 0.05% 
saponin (Sigma, S5881) in PBS (SAP) at room temperature. 
Secondary antibodies (Alexa 594 and Alexa 488; Invitrogen, 
A11016 and A11008, respectively) were diluted 1:500 in block-
ing solution and applied to the cells for one hour at room tem-
perature, protected from light. Cells were then washed twice in 
SAP, 5 min each. When indicated, FITC-conjugated anti-human 
CD8 (Ancell Corp., 153-040) was diluted 1:1,000 in blocking 
solution and ~150 μL was added for 1 h at room temperature, 
protected from light. Coverslips were then washed two times  
5 min each in SAP. Hoechst dye was diluted 1:5,000 in blocking 
solution and applied to cells for 5 min. Cells were washed twice 
more in SAP, rinsed once in PBS, 5 min each. Coverslips were 
mounted onto slides using Mowiol (CalBiochem, 475904), pre-
pared as described in Valnes and Brandtzaeg.29

Wide field image acquisition and deconvolution. Stacks of 
images were collected using a Nikon TE300 microscope with 
a 60 × 1.4 NA oil immersion objective with a Photometrics 
Quantix camera. Cells were randomly selected for imaging if 
they (1) expressed CD8-furin or other cargo at a level that did 
not (obviously) alter its normal localization, (2) contained no 
other obvious abnormality (and thus was deemed representa-
tive of the population) and (3) was not dividing, as evidenced 
by Hoechst staining. We study effects of transmembrane cargo 
on adaptor protein recruitment so it is important to use minimal 
recombinant protein expression to mimic the endogenous cargos. 
Thus, a fourth criterion in our studies was to choose cells with 
low intensity staining, compared with the general cell popula-
tion. However, 3D3I is not limited to the analysis of proteins 
expressed at minimal levels. For example, if one wanted to evalu-
ate organelle fragmentation in response to overexpression of a 
protein, this could be achieved simply by selecting cells express-
ing the higher levels of the protein of interest (based on intensity 
of staining), and compare them to cells expressing low levels or 
no recombinant protein. In our case we are interested in the per-
centage of a signal that is found within an isosurface defined by 
another marker but the output also gives number and volumes 
of isosurfaces, which may be the more relevant information to 
addressing different questions.

Once cells are selected, points above and below the cell in 
the z-plane were defined by driving the microscope to a point 
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