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Abstract

MicroRNAs (miRNAs) have attracted a great deal of attention in biology and medicine. It has been hypothesized that
miRNAs interact with transcription factors (TFs) in a coordinated fashion to play key roles in regulating signaling and
transcriptional pathways and in achieving robust gene regulation. Here, we propose a novel integrative computational
method to infer certain types of deregulated miRNA-mediated regulatory circuits at the transcriptional, post-transcriptional
and signaling levels. To reliably predict miRNA-target interactions from mRNA/miRNA expression data, our method
collectively utilizes sequence-based miRNA-target predictions obtained from several algorithms, known information about
mRNA and miRNA targets of TFs available in existing databases, certain molecular structures identified to be statistically
over-represented in gene regulatory networks, available molecular subtyping information, and state-of-the-art statistical
techniques to appropriately constrain the underlying analysis. In this way, the method exploits almost every aspect of
extractable information in the expression data. We apply our procedure on mRNA/miRNA expression data from prostate
tumor and normal samples and detect numerous known and novel miRNA-mediated deregulated loops and networks in
prostate cancer. We also demonstrate instances of the results in a number of distinct biological settings, which are known to
play crucial roles in prostate and other types of cancer. Our findings show that the proposed computational method can be
used to effectively achieve notable insights into the poorly understood molecular mechanisms of miRNA-mediated
interactions and dissect their functional roles in cancer in an effort to pave the way for miRNA-based therapeutics in clinical
settings.
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Introduction

MicroRNAs (miRNAs) are small non-coding ribonucleic acids

(RNAs) that extensively regulate gene expression in metazoan

animals, plants and protozoa. Approximately 22 nucleotides in

length, miRNAs usually repress gene expression by binding to

sequences with partial complementarity on target messenger RNA

(mRNA) transcripts. In mammals, miRNAs are thought to control

the activity of more than 60% of all protein-coding genes and

extensively participate in the regulation of many cellular functions

[1,2].

With few exceptions, metazoan miRNAs base-pair with their

targets imperfectly, following a set of rules that have been

formulated by employing experimental and bioinformatics-based

analyses [3]. This limited complementarity makes the task of

computationally identifying miRNA targets very challenging and

usually leads to large numbers of, mostly false, potential targets.

Earlier computational tools have mainly focused on dissecting

individual miRNA-target interactions by relying on sequence-

based identification of miRNA-target binding sites or on mRNA/

miRNA expression data analysis [4–6]. Alternative methods use

miRNA host genes as proxies for measuring the expression of

embedded miRNAs [7] or employ an information-theoretic

approach to identify candidate mRNAs that modulate miRNA

activity by affecting the relationship between a miRNA and its

target(s) [8]. On the other hand, recent work considers co-

expression analysis, by assuming that targets of a given miRNA are

co-expressed, at least in certain tissues or conditions [9].

Conventionally, many computational methods developed for

miRNA-target prediction rely on the assumption that there is an

inverse correlation between the expression level of a miRNA and

that of its target [10]. However, it has been recently shown that

both positive and negative transcriptional co-regulation of a

miRNA and its targets are prevalent in the human and mouse

genomes [11,12]. In particular, two types of regulatory circuits

(that we will be discussing shortly) have been proposed for

miRNA-mediated interactions, which ascribe modulatory and/or

reinforcing roles to miRNAs in their networks based on motifs,

such as feed-forward loops (FFLs) [13]. As a consequence,

miRNA-target predictions solely relying on an inverse correlation

assumption are expected to be limited if the prediction method

does not appropriately incorporate the underlying FFL network

structure.

Based on the previous paradigm, several researchers have

investigated the statistical over-representation of network struc-
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tures involving miRNA and TF co-regulation of mRNAs to

identify enriched network motifs and/or assess their prevalence in

different biological contexts [14–21]. Essentially, these methods

compute measures of coordinated gene co-regulation by miRNA

and TF regulators. Other investigators have considered regression

methods or Bayesian models to quantify statistical associations by

determining changes in the expression level of a given mRNA

explained by the expression levels of TFs and miRNAs predicted

to target the mRNA based on sequence information [22–25].

Subsequently, they use the inferred relationships to delineate

significant network structures and motifs in a fashion similar to

that employed in the aforementioned methods. It is important to

note however that the collective findings produced by all these

approaches provide further support for the importance of

miRNA/TF-mediated FFLs as prevailing network motifs across

different biological contexts, reconfirming the hypotheses origi-

nally proposed in [11,12].

In addition to the above, disruptions in gene regulation (for

instance, by genetic and epigenetic alterations) believed to induce

changes in normal cell function that lead to the progression of

pathological conditions, such as cancer, are disseminated through

gene regulatory networks. As a consequence, effective treatment of

many human diseases may require a fundamental and systemic

understanding of genomic regulators, such as miRNAs and TFs,

and their networks of interaction. However, systematically

inferring molecular interactions by experimental methods is both

difficult and costly. Therefore, it is highly desired to develop

‘‘reliable’’ computational approaches capable of identifying such

networks. Network predictions can subsequently be used by an

expert biologist to formulate novel hypotheses and effectively

proceed with their experimental investigation and validation.

Recently, several new methods have been proposed for

identifying coordinated miRNA/TF interactions [26,27]. Howev-

er, and for a given motif structure (e.g., an FFL), these methods

attempt to predict the underlying interactions (the three edges of

an FFL) by utilizing limited biological information and a narrow

set of computational tools. As a result, although the methods are

effective in providing insights into the prevalence of various motif

instances in gene regulatory networks, they may not produce

reliable predictions from an experimental perspective.

The performance of some of the previous methods has been

recently tested in [27]. It was observed that, although some

methods were capable of achieving a reasonable success rate in

predicting instances of one type of interaction, they were less

effective in predicting instances of the other two types, with several

algorithms having a success rate of close to or less than 1% in

predicting TF-mRNA and TF-miRNA interactions. This high-

lights the critical fact that predicting pair-wise molecular

interactions and constructing higher-order instances of motifs

using the predicted edges could translate to higher overall false-

positive rates. Since there is a wealth of information on how a TF

binds its targets and on their specific regulatory roles, we decided

to consider only experimentally validated TF-mRNA and TF-

miRNA interactions under the FFL framework and shift focus

on reliably predicting the poorly understood miRNA-target

interaction edge. We believe that, by appropriately constraining

the underlying statistical analysis problem, we could potentially

increase the reliability of miRNA/TF-mediated gene regulatory

loop predictions.

To further constrain the miRNA-target interaction prediction

problem, we focus in this paper on certain three-node regulatory

motifs. The first set of motifs that our method considers are three-

node FFLs that have recently attracted a great deal of attention

among systems and experimental biologists. These motifs are

excellent models of coordinated miRNA-mediated and transcrip-

tional regulation, which have been hypothesized to be prevalent in

the human and mouse genomes [12].

We consider two Type I FFL motifs, in which the miRNA and

TF are the upstream and downstream regulators, respectively, as

well as four Type II FFL motifs, in which the TF is now the

upstream regulator, whereas the miRNA is the downstream

regulator – see Figure 1. From a mechanistic perspective, these six

FFLs are classified as being coherent or incoherent. In the coherent

case, the miRNA and TF regulators act in a coordinated fashion to

reinforce the regulation logic along two feed-forward paths. In

Type I and Type II-B coherent FFLs, these paths simultaneously

repress the expression of the targeted mRNA. The resulting

mechanism is used, for instance, to subdue leaky transcription of a

gene by ensuring that its expression stays at an inconsequential

level. On the other hand, in a Type II-A coherent FFL, the TF

reinforces the transcription of the targeted mRNA by directly

activating it as well as by inhibiting its repression by the targeting

miRNA regulator.

In the incoherent FFLs, the miRNA and TF regulators act in a

coordinated fashion to fine-tune the expression of the targeted

mRNA. More specifically, any deviation from the steady-state

concentration of the upstream regulator (i.e., the miRNA in Type

I and the TF in Type II-A and Type II-B FFLs) would drive the

targeted mRNA, as well as the downstream regulator, away from

their steady-state levels in the same direction. In this way, the

downstream regulator can balance the expression of the targeted

mRNA, compensating fluctuations in the expression level of the

upstream factor.

Certain cellular processes might be ultra-sensitive to the activity

of a given transcript in a specific biological context. In these

situations, the ‘‘noise buffering’’ mechanism provided by incoher-

ent FFLs helps maintain target protein homeostasis and ensures

that an uncoordinated drift from the steady-state level of the

upstream regulator may not result in an undesirable variation in

the target protein level which can lead to pathological outcomes.

MiRNAs are particularly effective in this setting, owing to their

rapid mechanism of action at the post-transcriptional level, as

opposed to transcriptional repressors, thus accelerating noise

buffering [12].

In addition to the modulatory and/or reinforcing gene

regulatory roles that miRNAs are known to play in concert with

TFs, they have been hypothesized to play key roles in regulating

signaling pathways as well. In this respect, although miRNAs are

known to have subtle effects on protein levels of individual targets,

their cumulative influence can significantly affect the outcomes

controlled by signaling pathways, given the multiplicity of their

targets and concurrent downregulation of several of these targets.

To take this important aspect into account, our method also

considers the basic Type III loop motif depicted in Figure 1, in

which a miRNA targets two gene transcripts, G-1 and G-2, whose

proteins could potentially interact with each other according to a

pathway map provided in the KEGG database (http://www.kegg.

jp). The existence of Type III loop motifs is supported by two key

hypotheses: (i) miRNAs play major roles in regulating signaling

pathways due to their sharp dose-sensitive nature [28–32], and (ii)

targets of single miRNAs are more connected (i.e., interact) at the

protein level than expected by chance [28,33–35].

By comparison, the method proposed in [26] considers only

Type II FFLs and does not discriminate between coherent and

incoherent FFLs, which is required for a systems-level under-

standing of transcriptome changes in disease. Moreover, the

standard statistical tests used to identify differentially expressed

genes between two conditions in a typical gene expression profiling
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study, as adopted by previous methods [26,27], become funda-

mentally flawed in the presence of unaccounted sources of

variability (due to biological and experimental factors among

others) [36–38]. Molecular subtyping information is a critical

example of such sources of variability.

To address the previous issues, we develop in this paper

IntegraMiR, a novel integrative analysis method that can be used

to infer certain types of regulatory loops of deregulated miRNA/

TF interactions which appear at the transcriptional, post-

transcriptional and signaling levels in a statistically over-repre-

sented manner. The proposed method assigns biological roles to

miRNAs by integrating five major sources of information together

with state-of-the-art statistical techniques to reliably infer specific

types of miRNA-target interactions in the context of regulatory

loops. In particular, IntegraMiR utilizes:

(i) mRNA and miRNA expression data.

(ii) Sequence-based miRNA-target information obtained from

different algorithms.

(iii) Known information about mRNA and miRNA targets of

TFs available in existing databases.

(iv) Certain three-node motifs in gene regulatory networks.

(v) Known molecular subtyping information available with

gene expression data.

To do so, IntegraMiR identifies deregulated miRNAs, TFs and

mRNAs by performing statistical analysis within a constrained

framework that uses ‘‘prior’’ information comprising recently

discovered motifs, available knowledge on miRNA/mRNA

transcriptional regulation, and known protein-level interactions

on signaling pathways. To illustrate the effectiveness and potential

of this method, we apply it on mRNA/miRNA expression data

from tumor and normal samples and identify several known and

novel deregulated loops in prostate cancer (PCa). This allows us to

demonstrate instances of the results and findings in a number of

distinct biological settings, which are known to play crucial roles in

PCa and other types of cancer.

We should emphasize at this point that IntegraMiR is scalable,

in the sense that information from existing or newly developed/

updated databases can be input to generate desired/extended

results. Moreover, any miRNA/mRNA expression data with

samples obtained in any biological context between two conditions

can be exploited to infer the corresponding deregulated loops

relevant to the particular context at hand. Finally, the interested

reader can freely download an R implementation of IntegraMiR

from www.cis.jhu.edu/~goutsias/CSS%20lab/software.html.

Results

Integrated miRNA/TF-mediated Regulatory Loop
Prediction

The flow-chart depicted in Figure 2 provides a general

description of the different steps employed by IntegraMiR. We

refer the reader to the ‘‘Materials and Methods’’ section for more

details on each step. The procedure uses mRNA and miRNA

expression data obtained from prostate tissue at two different

biological conditions (normal vs. cancer). It moreover employs

results obtained by sequence-based miRNA target prediction

algorithms and incorporates information extracted from four

databases available online, namely:

N –mSigDB (www.broadinstitute.org/gsea/msigdb).

N –miRTarBase (http://mirtarbase.mbc.nctu.edu.tw).

N –TRANSFAC (www.gene-regulation.com/pub/databases.

html).

N –TransmiR (http://202.38.126.151/hmdd/mirna/tf).

Note that ENCODE released information recently on TF

binding sites based on ChIP-seq experiments for 161 TFs in 91 cell

lines (http://genome.ucsc.edu/ENCODE). Unfortunately, this

database does not provide the regulation type (activation or

repression) of a particular TF-target interaction, information that

is critical in our approach. For this reason, IntegraMiR uses

TRANSFAC. However, once this information becomes available

through ENCODE or any other TF-target database, it can be

readily utilized by IntegraMiR.

The first step of IntegraMiR applies standard preprocessing

techniques on the raw expression data (such as background

correction, normalization, and data heterogeneity correction) to

improve data quality, followed by multiple hypothesis testing

(MHT) and surrogate variable analysis (SVA) to identify mRNAs

and miRNAs that are differentially expressed between the two

biological conditions, while correcting for biological variability due

to molecular subtyping, multiple testing and batch effects.

The second step implements additional statistical analysis using

gene set enrichment analysis (GSEA) to further evaluate the

biological significance of certain mRNAs and miRNAs that are

not deemed to be differentially expressed by MHT. By employing

the molecular signatures database mSigDB of annotated gene sets

for use with GSEA and the experimentally verified miRNA target

database miRTarBase, IntegraMiR constructs three separate

groups of gene sets and evaluates the statistical significance of

each gene set enriched for deregulation in the available mRNA

expression data. The first group consists of gene sets in the mRNA

data indexed by a TF mRNA that is not deemed to be

differentially expressed by MHT and is determined by mSigDB

to directly regulate each gene in the gene set. The second group

consists of gene sets in the mRNA data indexed by a miRNA that

is not deemed to be differentially expressed by MHT and is

determined by miRTarBase to target each gene in the gene set.

The third group consists of gene sets in the mRNA data indexed

by a specific KEGG signaling pathway [39,40] included in

mSigDB. Finally, TFs associated with statistically significant

enriched gene sets are amended to the list of those mRNAs

deemed to be differentially expressed by MHT to generate a

combined list of differentially expressed mRNAs, and the same is

done for miRNAs. We should note here that mSigDB is widely

used to obtain gene sets for GSEA analysis. On the other hand, we

employ MiRTarBase since this database has accumulated a

relatively large number of experimentally validated miRNA-target

interactions.

In brief, GSEA determines whether a given set of genes shows

statistically significant concordant differences between two biolog-

ical states [41]. The main reason IntegraMiR applies GSEA after

Figure 1. Three-node regulatory motifs considered by IntegraMiR. The Type I FFL consists of triplets (miRNA, TF, mRNA) such that a miRNA
simultaneously targets a mRNA and its TF mRNA. The Type II FFL consists of triplets (miRNA, TF, mRNA) such that a TF simultaneously regulates a
miRNA and its target mRNA. Finally, the Type III loop consists of triplets (miRNA, G-1, G-2) such that the miRNA simultaneously targets two transcripts
in a given KEGG pathway, one from each gene G-1 and G-2, whose corresponding proteins could potentially interact with each other based on a
pathway map provided in the KEGG database.
doi:10.1371/journal.pone.0100806.g001
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the initial hypothesis testing step is to improve detection of

differentially expressed TFs and miRNAs, which may be missed

when single expression levels show only moderate changes

between the two biological conditions. As a matter of fact, if a

number of transcripts are known to participate in a common

biological mechanism, then even moderate changes in the

expression levels of these transcripts may be statistically significant

due to the fact that known biological relationships between

transcripts may result in higher statistical power when detecting

small variations in their expression levels as compared to the case

of single transcripts. Moreover, for certain TFs, TF mRNA

expression cannot necessarily be used as a proxy of its activity at

the protein level, due to post-transcriptional and post-translational

modifications of TFs [42,43]. To address these issues, IntegraMiR

also considers the collective differential expression of genes, as

opposed to several procedures followed by other related work

discussed earlier that mainly build their analyses on statistics

obtained from single transcripts.

The third step of IntegraMiR uses the results obtained by MHT

and GSEA, as well as available biological knowledge and

sequence-based miRNA target predictions, to identify known

directly regulated targets of differentially expressed TFs and

miRNAs and predicted targets for the miRNAs. By employing

the eukaryotic TF database TRANSFAC and the TF/miRNA

regulation database TransmiR, IntegraMiR produces a list of

differentially expressed TFs together with their gene targets and

the regulation type (activation or repression) for each target gene.

It also produces a list of differentially expressed TFs together with

their differentially expressed miRNA targets and the regulation

type for each target miRNA. Note that our choice for using

TRANSFAC and TransmiR is based on the fact that TRANS-

FAC reliably provides the crucial information of regulation type

(activation/repression) of a transcription factor and its target

gene(s), whereas TransmiR provides the crucial information of the

microRNA(s) being regulated by it. On the other hand, to identify

mRNA targets of differentially expressed miRNAs, IntegraMiR

employs miRecords (http://mirecords.umn.edu/miRecords), an

integrated sequence-based miRNA target prediction tool, as well

as miRTarBase, a database of experimentally validated miRNA

targets. At this step, IntegraMiR produces a list of differentially

expressed miRNAs with the corresponding sequence-based target

predictions, amended with experimentally validated mRNA

targets from miRTarBase to help identify true-positive and false-

negative predictions by using available biological knowledge. In

this respect, IntegraMiR incorporates a predictive module (exploit-

ing miRecords) and a non-predictive module (miRTarBase) to

accomplish this task.

The fourth step of IntegraMiR implements a technique,

described in the ‘‘Materials and Methods’’ section, to construct

deregulated loops of the types depicted in Figure 1 using the results

obtained from the previous steps. IntegraMiR constructs the

following three types of regulatory loops:

(i) An FFL comprising a miRNA which simultaneously targets a

TF and a mRNA that is directly regulated by the TF.

(ii) An FFL comprising a TF which directly regulates a miRNA

and a mRNA that is directly targeted by the miRNA.

(iii) A regulatory loop comprising a miRNA which simultaneously

targets two different genes in a given KEGG pathway whose

proteins could potentially interact with each other based on a

pathway map provided in the KEGG database.

To rank the constructed regulatory loops in terms of their

‘‘significance,’’ IntegraMiR applies a hypothesis testing procedure

using Fisher’s method [44]. The procedure employs Fisher’s

summary test statistic, given by Eq. (2) in the ‘‘Materials and

Methods’’ section, to combine the MHT-computed P values

assigned to each node of the loop into one P value used as a

ranking score for the entire loop. This does not apply to Type III

loops, since these loops involve genes and not specific mRNA

transcripts. Since the functional roles of regulatory loops are

different, IntegraMiR groups these loops into five distinct

categories: Type I coherent FFL, Type I incoherent FFL, Type

II coherent FFL, Type II incoherent FFL, and Type III loops – see

Figures 1 & 2. To provide additional flexibility in interpreting the

results, IntegraMiR sorts Type II FFLs into two distinct subgroups,

Type II-A and Type II-B, although this additional sorting may not

be necessary. Within each group and subgroup, IntegraMiR ranks

the deregulated loops by increasing scores, with lower scores

corresponding to higher ‘‘significance,’’ and highlights those loops

Figure 2. General description of IntegraMiR. The method assigns biological roles to miRNAs by integrating five major sources of information
together with state-of-the-art statistical techniques to reliably infer specific types of miRNA-target interactions in the context of regulatory loops from
mRNA and miRNA expression data.
doi:10.1371/journal.pone.0100806.g002
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discovered to be deregulated in a manner consistent with the

underlying edge structure and the expression data, as determined

by the rules depicted in Figure 3 (see also the ‘‘Materials and

Methods’’ section). It moreover marks miRNA targets depending

on whether these targets are predicted by the procedure or have

been experimentally validated according to miRTarBase, or both.

Note that ‘‘consistency’’ refers to the fact that the expression

patterns of the nodes of a deregulated loop are in agreement with

its regulatory edge structure. For example, a Type I coherent FFL

is said to be consistently deregulated if it comprises an upregulated

miRNA and downregulated TF and mRNA, or a downregulated

miRNA and upregulated TF and mRNA; see Figure 3.

IntegraMiR Identifies Extensive Transcriptional, Post-
transcriptional and Signaling Deregulation in PCa

To investigate the effectiveness of IntegraMiR in delineating

miRNA-mediated regulatory loops, we use mRNA microarray

expression data, obtained from 48 normal and 47 prostate tumor

tissue samples (NCBI GEO database, accession number

GSE29079), as well as miRNA microarray expression data

obtained from matched normal and cancerous tissue samples,

extracted from 20 individuals (NCBI GEO database, accession

number GSE23022). For more information about this data, we

refer the reader to the ‘‘Materials and Methods’’ section. After

data preprocessing, IntegraMiR incorporates Surrogate Variable

Figure 3. Consistency of deregulated loops. A deregulated loop is deemed to be consistent if the expression pattern of its nodes are in
agreement with its regulatory edge structure. Any deregulated loop that does not satisfy this property is said to be inconsistent.
doi:10.1371/journal.pone.0100806.g003
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Analysis (SVA) [36], together with MHT, to identify differentially

expressed genes between the two conditions. It has been shown

that SVA increases the biological accuracy and reproducibility of

analyses in genome-wide expression studies [36,37]. IntegraMiR

employs SVA to take into account biological variabilities due to

molecular subtypes categorized by the status of TMPRSS2-ERG

gene fusion, which has been identified in about half of all PCa

cases and is a critical early event in the development and

progression of this disease [45–47].

IntegraMiR first performs MHT, using a moderated t-statistic

[48], to separately identify mRNAs and miRNAs that are

differentially expressed between tumor and normal samples. This

analysis identifies extensive transcriptional deregulation in the

tumor tissue samples: 7,934 genes (out of 17,324) are found to be

differentially expressed based on their statistical significance, with

164 of these genes being overexpressed by a fold change §2
repressed by a fold change ƒ0:5– see Tables S1 & S2. The gene

list we provide in Table S2 contains important genes, such as

TARP, MYC, SNAI2 (SLUG), WIF1 and ERG among others,

which have been previously characterized in PCa.

Analysis of the corresponding miRNA expression data by MHT

results in 18 (out of 847) differentially expressed human miRNAs,

which we list in Table 1 (first 18 miRNAs) – see also the Table S3.

Recently, deep sequencing analysis of miRNA expression profiles

identified 33 miRNAs as being differentially expressed in PCa,

with miR-375, miR-200c, miR-143 and miR-145 exhibiting the

most pronounced deregulation [49]. We compared the Integra-

MiR results to the ones obtained by deep sequencing. Of the 18

miRNAs identified by IntegraMiR, 7 miRNAs (miR-200c, miR-

20a, miR-375, miR-106a, let-7a, miR-21, and miR-106b) have

been confirmed to be upregulated by deep sequencing analysis,

whereas 2 miRNAs (miR-221 and miR-145) have been confirmed

to be downregulated. The remaining 9 miRNAs identified by

MHT were not detected by deep sequencing.

During the second step of IntegraMiR, application of GSEA on

gene sets of TF targets obtained from mSigDB discovers 37

significantly deregulated TFs, which are not detected by the initial

MHT step based on single gene analysis. We list these TFs in

Table S4. Interestingly, several of these TFs (e.g., NKX3-1,

SMAD1/3, SRF, ETV4 and ELK1) are known to play important

roles in PCa, as well as in other types of cancer.

Likewise, application of GSEA on gene sets of experimentally

validated (by deep sequencing analysis) miRNA targets obtained

from miRTarBase identifies 5 significantly downregulated miR-

NAs, which are not detected by MHT. We list these miRNAs in

Table 1 (last 5 miRNAs). In both cases, and for each TF or

miRNA, GSEA is performed based on the availability of gene sets

in the data.

Finally, application of GSEA identifies 30 significantly dereg-

ulated signaling pathways, among the 186 KEGG signaling

pathways available in mSigDB. We list the results in Table 2.

Among other pathways, the list contains the TGF-b
Signaling pathways, which have been implicated in PCa initiation

and progression. Naturally, the results also include the Prostate

Cancer and Adherens Junction pathways. The last pathway

regulates intercellular adhesion that plays an important role in

epithelial-to-mesenchymal transition (EMT), considered to be an

important step in tumor progression [50,51]. In the following, we

limit our results and discussions to miRNA-target interactions

associated with these four pathways.

Lastly, and during the third and fourth steps, IntegraMiR

constructs deregulated regulatory loops, sorts them into the seven

groups depicted in Figure 1 and ranks the Type I and Type II

FFLs within each group using the scores computed by Fisher’s

summary test statistic. IntegraMiR predicts a large number of

deregulated Type I and Type II FFLs, which we list in Tables S5–

S10 (see also Figure 4A): 2,104 Type I coherent, 649 Type I

incoherent, 154 Type II-A coherent, 690 Type II-A incoherent,

486 Type II-B coherent, and 111 Type II-B incoherent.

Moreover, the method predicts a large number of deregulated

miRNA-target interactions that could potentially form Type III

loops, which we list in Table S11: 904 miRNA-mRNA pairs in the

TGF-b
Signaling Pathway, 1,025 miRNA-mRNA pairs in the Prostate

Cancer Pathway, and 896 miRNA-mRNA pairs in the Adherens

Junction Pathway.

IntegraMiR Reveals Appreciable FFL-based
Transcriptome Deregulation

To gain insight into the occurrence of deregulated Type I and

Type II FFLs, we depict in Figure 4A the fractions of deregulated

FFL subtypes (among all deregulated FFLs predicted by

IntegraMiR) grouped in terms of consistent and inconsistent

deregulation (as defined in the ‘‘Materials and Methods’’ section

and illustrated in Figure 3) based on expression data. The results

suggest that certain FFL subtypes contribute to a larger portion of

the observed net FFL deregulation than other subtypes. Interest-

ingly, consistent FFL deregulation accounts for about 35% of net

FFL deregulation. This type of deregulation is important since its

functional characteristics are corroborated by the available

expression data, which provides a first level of evidence of their

significance. For this reason, an experimentalist may want to first

consider this type of FFL deregulation for validation. Among the

consistently deregulated FFLs, the Type II-A incoherent FFLs

account for about 14% of net FFL deregulation, followed by Type

I coherent FFLs, which account for 10%. On the other hand,

Type I-A incoherent and Type II-B coherent FFLs each account

for about 5% of net FFL deregulation, whereas, the two remaining

subtypes, Type II-A coherent and Type II-B incoherent, account

for less than 1%. It is striking however that 40% of FFL

deregulation is attributed to inconsistent deregulation of Type I

coherent FFLs. Inconsistent FFL deregulation suggests that the

implied molecular interactions between the three nodes (miRNA,

TF, mRNA) of a particular FFL may not be used to explain

biological function on its own, based on the transcript levels of the

nodes in the expression data. In this case, further investigation of

underlying biological mechanisms that could affect the three FFL

nodes is needed, including other FFLs sharing a node with the

particular FFL under consideration.

To explain the previous result, note that we expect in the

coherent case to observe a relatively smaller number of

consistently than inconsistently deregulated FFLs since, for a

coherent FFL to be consistently deregulated, the abundance of the

three associated molecular species (miRNA, TF, and mRNA) must

satisfy the rules depicted in Figure 3 (see also the ‘‘Materials and

Methods’’ section). The required conditions however may not be

observed in the data, since the abundance of a molecular species

may be influenced by several FFLs or by factors other than FFL

regulation. Clearly, the results depicted in Figure 4A corroborate

this remark. On the other hand, IntegraMiR predicts that Type I

coherent FFL deregulation accounts for an appreciable portion

(50%) of net FFL deregulation which, together with the previous

remark, explains the high percentage (40%) of net FFL deregu-

lation due to inconsistently deregulated Type I coherent FFLs.

By examining the constituent interactions that form deregulated

FFLs, we determined, for each significantly deregulated miRNA,

the percentage of transcriptome deregulation attributed to that

miRNA. The results are depicted in Figure 4B, ranked in terms of
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decreasing percentages of consistent deregulation. We call a

miRNA-target interaction to be consistent, if the miRNA and the

associated mRNA target exhibit anti-correlated deregulation in

the data. Note that miR-106a is responsible for the most consistent

(1.88%) and the most inconsistent (3.45%) transcriptome dereg-

ulation, whereas miR-720 has negligible transcriptome changes

associated with it. Finally, the cumulative distributions depicted in

Figure 4C reveal that 6.35% of transcriptome changes between

normal and cancer samples are due to FFLs with significantly

deregulated miRNA nodes, with 5.34% of the changes being

accounted for by consistently deregulated miRNA-target interac-

tions.

miRNA-Target Predictions are Consonant with MiRNA
Family Co-targeting Hypothesis

Among the top miRNAs depicted in Figure 4B are members of

three miRNA clusters that have been investigated in other types of

cancers as well [52]: miR-17/92 on human chromosome 13 (with

genomic locus 13q31.3) and its two cluster paralogs, miR-106a/

363 on chromosome X (Xq26.2) and miR-106b/25 on chromo-

some 7 (7q22.1). Members of these clusters have been established

to play essential roles in the normal development of heart, lungs,

and the immune system and are involved in tumor formation with

oncogenic roles [53–55]. More importantly, miR-17 and miR-20a

(from the miR-17/92 cluster), miR-106a and miR-20b (from the

miR-106a/363 cluster), as well as miR-106b and miR-93 (from the

miR-106b/25 cluster) belong to the same family of miRNAs (i.e.,

miRNAs with identical seed regions) and are deemed to be

significantly upregulated by IntegraMiR. Note however that

individual miRNAs on the same cluster could exhibit varied levels

of expression and, for some miRNAs, no expression at all in

certain cell lines [56,57]. Along these lines, several miRNAs in the

miR-17/92 cluster and its two paralogs (in particular, miR-18a,

miR-19a, miR-19b-1 and miR-92a-1 from the miR-17/92 cluster,

miR-18b, miR-19b-2, miR-92a-2 and miR-363 from the miR-

106b/25 cluster, as well as miR-25 from the miR-106a/363

cluster) are not identified as being differentially expressed based on

the expression data we used in this study.

Recent work suggests that members of the same family of

miRNAs tend to target common transcripts due to their shared

seed sequences [35]. The results obtained by IntegraMiR

corroborate this hypothesis. In Figure 5A, we use a Venn diagram

to depict the numbers of mRNA targets predicted by IntegraMiR

for the previous six miRNAs (obtained from miRNA-target

interactions among all FFLs in our results – see Tables S5–S10).

Clearly, a high level of overlap exists among the three target sets.

In particular, our results predict that all six miRNAs target a set of

128 different mRNAs. This finding has also been observed by

using an alternative method and different data sets [9], suggesting

that cooperation among the six deregulated miRNAs may be

present in other cancer types as well.

Table 1. Differentially expressed miRNAs identified by IntegraMiR.

Rank miRNA1 dir2 FDR FDR

(MHT) (GSEA)

1 miR-222 ; 6.58E-4 n/a

2 miR-200c : 1.32E-3 n/a

3 miR-221 ; 1.34E-3 n/a

4 miR-20a : 1.70E-3 n/a

5 miR-20b : 2.55E-3 n/a

6 miR-182 : 3.52E-3 n/a

7 miR-375 : 3.63E-3 n/a

8 miR-17 : 4.12E-3 n/a

9 miR-93 : 7.64E-3 n/a

10 miR-145 ; 9.58E-3 n/a

11 miR-106a : 1.04E-2 n/a

12 miR-141 : 2.05E-2 n/a

13 mir-720 : 2.27E-2 n/a

14 let-7a : 2.83E-2 n/a

15 miR-214 ; 2.85E-2 n/a

16 miR-200b : 2.95E-2 n/a

17 miR-21 : 2.95E-2 n/a

18 miR-106b : 4.66E-2 n/a

19 miR-125b ; 3.15E-1 9.02E-4

20 miR-143 ; 7.45E-1 1.06E-1

21 miR-29a ; 8.62E-1 1.06E-1

22 miR-24 ; 8.79E-1 1.06E-1

23 miR-199a ; 9.96E-1 1.06E-1

1Highlighted miRNAs have been confirmed by deep sequencing analysis.
2Direction of deregulation.
doi:10.1371/journal.pone.0100806.t001
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On the other hand, the top three miRNAs miR-24, miR-29a,

and miR-145 in Figure 4B which were found by IntegraMiR to be

significantly downregulated, do not belong to one family and are

not known to reside on a common cluster according to the

miRBase (www.mirbase.org) database. The results depicted in

Figure 5B show that, in this case, the amount of overlap is less

pronounced than the one depicted in Figure 5A. It is important to

note that these three miRNAs have been hypothesized to possess

tumor suppressor roles: miR-24 has recently been shown to

suppress expression of two crucial cell cycle control genes, E2F2

and Myc [58], low levels of miR-29a have been attributed to the

methylation of its promoter region in PCa [59], and miR-145 is

hypothesized to play roles in several types of cancer [60].

IntegraMiR Predicts Appreciable FFL-based miRNA-TF
Co-regulation

We now focus our attention on FFL-based miRNA-TF co-

regulation. In Figure 6A, we depict the numbers of coherent and

incoherent deregulated FFLs predicted by IntegraMiR for each

type of miRNA-TF interaction whereas, in Figure 6B, we depict

the percentages of consistently and inconsistently deregulated

miRNA-TF interactions under each category. The results suggest

that, in PCa, both coherent and incoherent FFLs are deregulated,

although the total coherent FFLs outnumber the incoherent ones,

an observation that is especially true when the miRNA represses

the TF (Type I). Moreover, the most prevalent FFL deregulation

involves repression of the TF by the miRNA (Type I coherent and

incoherent), followed by FFL deregulation that involves activation

of the miRNA by the TF (Type II-A incoherent and Type II-B

coherent). On the other hand, deregulation of FFLs that involve

repression of the miRNA by the TF (Type II-A coherent and Type

II-B incoherent) is not substantial. Note also that consistent

deregulation of FFLs that involve activation of the miRNA by the

TF (Type II-A incoherent and Type II-B coherent) is appreciably

more prevalent than inconsistent deregulation whereas the

opposite is true for the case of FFLs in which the TF represses

the miRNA.

In Table S12, we list all miRNA-TF pairs associated with the

deregulated FFLs predicted by IntegraMiR (obtained from

miRNA-TF interactions among all the FFLs in our results – see

Tables S5–S10), categorized by their interaction type. As a notable

example, the six miRNAs considered in Figure 5A appear in the

list as being consistently deregulated together with the MYC

oncogene, which acts as their transcriptional activator. We

investigated how many of the 128 common mRNAs targeted by

these six miRNAs were predicted to form FFLs with MYC.

IntegraMiR predicts 79 of the 128 mRNAs to be under the

regulatory control of MYC, divided into two sets, with 33 mRNAs

being in the first set and 46 mRNAs in the second – see Figure S1.

All six miRNAs interact with the first set of mRNAs in Type II-B

coherent FFL configuration and with the second set in Type II-B

incoherent FFL configuration. Among these mRNAs, APP from

the first set and E2F1 from the second set have experimentally

validated interactions with these miRNAs according to miRTar-

Base.

IntegraMiR predictions lead to bona fide miRNA-
mediated regulatory networks

To demonstrate the significance of the results obtained by

IntegraMiR from a mechanistic point of view, we focus on two

biological settings known to play crucial roles in PCa and other

types of cancer. This will help us explain the functional roles of

regulatory modules and illustrate how one can use these modules

to build an integrated network model for a specific biological

setting or molecular species of interest.

TP53 miRNA-mediated apoptotic network. We first

consider the miR-125 family of miRNAs, which is highly

conserved throughout diverse species from nematodes to humans.

Members of this family, such as miR-125a, miR-125b, and miR-

125b-2, have been validated to be downregulated, exhibiting

disease-suppressing properties in many conditions as well as

disease-promoting functions [61]. It turns out that miR-125b is

identified by IntegraMiR to be significantly downregulated – see

Table 1. It has been recently suggested that miR-125b is an

important component of a TP53 (p53) tumor-suppressor network

whereas significant negative correlation has been reported

between miR-125b and TP53 [62,63]. Moreover, it has been

shown that the p53-upregulated modulator of apoptosis BBC3

(PUMA) and NOXA are direct targets in p53-mediated apoptosis

localized to mitochondria [64].

To investigate systemic relations among these molecules of

interest, we identified all deregulated FFLs predicted by

Table 2. Significantly deregulated KEGG signaling pathways
identified by IntegraMiR.

KEGG Signaling Pathway1 FDR (GSEA)

DILATED_CARDIOMYOPATHY 6.67E-4

ARRHYTHMOGENIC_RIGHT_VENTRICULAR_
CARDIOMYOPATHY_ARVC

6.67E-4

REGULATION_OF_ACTIN_CYTOSKELETON 8.34E-4

HYPERTROPHIC_CARDIOMYOPATHY_HCM 8.34E-4

TGF_BETA_SIGNALING_PATHWAY 3.68E-3

CALCIUM_SIGNALING_PATHWAY 4.09E-3

FOCAL_ADHESION 8.16E-3

ECM_RECEPTOR_INTERACTION 8.16E-3

WNT_SIGNALING_PATHWAY 8.77E-3

MAPK_SIGNALING_PATHWAY 1.40E-2

PROPANOATE_METABOLISM 1.55E-2

VALINE_LEUCINE_AND_ISOLEUCINE_DEGRADATION 1.76E-2

PHOSPHATIDYLINOSITOL_SIGNALING_SYSTEM 1.76E-2

FC_GAMMA_R_MEDIATED_PHAGOCYTOSIS 4.02E-2

PATHWAYS_IN_CANCER 4.36E-2

VASCULAR_SMOOTH_MUSCLE_CONTRACTION 4.36E-2

AXON_GUIDANCE 8.86E-2

UBIQUITIN_MEDIATED_PROTEOLYSIS 1.00E-1

MELANOGENESIS 1.00E-1

PROSTATE_CANCER 1.00E-1

ONE_CARBON_POOL_BY_FOLATE 1.20E-1

INOSITOL_PHOSPHATE_METABOLISM 1.49E-1

VASOPRESSIN_REGULATED_WATER_REABSORPTION 1.68E-1

ADHERENS_JUNCTION 1.71E-1

LONG_TERM_POTENTIATION 1.71E-1

PURINE_METABOLISM 1.71E-1

GLYCINE_SERINE_AND_THREONINE_METABOLISM 1.72E-1

GAP_JUNCTION 1.92E-1

ARGININE_AND_PROLINE_METABOLISM 2.32E-1

MELANOMA 2.50E-1

1Highlighted pathways used by IntegraMiR to construct Type III loops.
doi:10.1371/journal.pone.0100806.t002
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IntegraMiR that contain miR-125b, TP53 (p53), BBC3 (PUMA)

and NOXA. To focus our discussion on highly relevant FFLs, we

consider only FFLs with nodes comprised of one of the four species

of interest. We could not find FFLs that contain NOXA. However,

we found one Type I coherent FFL and one Type II-A coherent

FFL comprised of the other three species – see Figure 7A. Both

FFLs are deemed by IntegraMiR to be deregulated in the prostate

expression data.

The Type I coherent FFL suggests that miR-125b represses

BBC3 while it reinforces this repression by targeting its

transcriptional activator TP53. The Type II-A coherent FFL

suggests that TP53 induces the transcription of BBC3 while it

reinforces this induction by repressing miR-125b, an inhibitor of

BBC3.

From a systemic point of view, if the Type I coherent FFL is

functional in a specific condition in which miR-125b is signifi-

cantly upregulated, we would expect the expressions of both TP53

and BBC3 to be repressed. As a consequence, miR-125b would

assume an anti-apoptotic role in this setting. A similar argument

can be made when miR-125b is significantly downregulated. As

for the Type II-A coherent FFL, if TP53 is upregulated and active

as a TF, we would expect miR-125b to be downregulated. As a

consequence, BBC3 is expected to be significantly upregulated due

to the concurrent upregulation of its transcriptional inducer,

TP53, and the repression of its inhibitor, miR-125b. It is

noteworthy that one cannot always expect to observe these exact

relations in mRNA/miRNA expression data. It turns out that both

FFLs depicted in Figure 7A are deregulated inconsistently based

on the expression data.

The previous steps provide a fundamental understanding of the

underlying structure of TP53 miRNA-mediated apoptotic net-

work, which may not be directly attainable by looking at individual

molecular interactions. In particular, by combining the two FFLs

depicted in Figure 7A, we obtain the simple network depicted in

Figure 7B. This network accentuates the mutual inhibition

between miR-125b and the pro-apoptotic interaction between

TP53 and BBC3, which is in line with the earlier reported

observation of significant negative correlation between miR-125b

Figure 4. Predicted FFL-based transcriptome deregulation in PCa. (A) Distribution of the fraction of deregulated FFL subtypes grouped in
terms of consistent and inconsistent deregulation based on expression data. (B) Percentages of transcriptome change due to significantly
upregulated (in green) and downregulated (in red) miRNAs. (C) Cumulative percentages of transcriptome change due to significantly upregulated (in
green) and downregulated (in red) miRNAs.
doi:10.1371/journal.pone.0100806.g004
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and TP53 [62,63]. The underlying double negative feedback

means that upregulation of miR-125b will inhibit TP53 which will

derepress miR-125b, a situation that can lead to the repression of

BBC3. On the other hand, downregulation of miR-125b will

derepress TP53 which will further repress miR-125b, a situation

that may lead to significant activation of BBC3 and thus apoptosis.

Double negative feedback loops are known to act as toggle

switches that lead to different cell fates [65]. Interestingly, both

TP53 and BBC3 have been validated to be targets of miR-125b

according to miRTarBase. Moreover, the Type I FFL discussed

above has been recently reported in [66], thus demonstrating the

validity of the previous IntegraMiR predictions.

MYC-E2F1 miRNA-mediated cell proliferation

network. It is well known that deregulated expression or

malfunction of the transcription factor MYC is one of the most

common abnormalities in human cancers. Moreover, E2F1 is a

member of the E2F family of TFs which are critical regulators of

cell cycle and apoptosis. This TF regulates MYC and is

transcriptionally targeted by MYC. Considering the fact that the

miR-17/92 cluster and its paralogs have recently been shown to be

tightly linked to the functions of MYC and E2F1 in the regulatory

circuitry that controls cell proliferation [52,54,67,68], we decided

to identify all miRNA regulators predicted by IntegraMiR to

interact with these critical TFs. This allowed us to delineate the

regulatory network depicted in Figure 8, which we constructed

from 18 distinct FFLs: 8 Type I coherent, 2 Type II-A coherent,

and 8 Type II-A incoherent. A total of 9 miRNAs were predicted

to interact both with MYC and E2F1, with 8 of the miRNA-target

interactions being identified by the predictive module of

IntegraMiR as being true-positives, 2 being identified as false-

negatives, and 3 being novel predictions that need to be

experimentally validated.

From a mechanistic point of view, the negative feedback loops

and incoherent FFLs on the left-hand-side of Figure 8 ensure a

tightly controlled regulation of cell proliferation. It has been

argued in [53] that high levels of E2F proteins, especially E2F1,

can induce apoptosis, and the negative feedback with miR-17 and

miR-20a may dampen E2F activity following a physiologic

Figure 5. Comparison of miRNA-Target predictions for miRNAs in the same family versus those not in one family. (A) Venn diagram
depicting the number of mRNA targets of six significantly upregulated miRNAs, miR-17 and miR-20a (from the miR-17/92 cluster), miR-106b and miR-
93 (from the miR-106b/25 cluster), and miR-106a and miR-20b (from the miR-106a/363 cluster), which belong to the same family. (B) Venn diagram
depicting the number of mRNA targets of three significantly downregulated tumor suppressor miRNAs, miR-24, miR-29a, and miR-145, which do not
belong to one family.
doi:10.1371/journal.pone.0100806.g005

Figure 6. Predicted FFL-based miRNA-TF co-regulation. (A) Numbers of coherent and incoherent deregulated FFLs for each type of miRNA-TF
interaction. (B) Percentages of consistently and inconsistently deregulated FFLs under each miRNA-TF interaction type depicted in (A).
doi:10.1371/journal.pone.0100806.g006
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proliferative signal, thereby promoting cell division rather than

cellular death. On the other hand, the double-negative feedback

loops and coherent FFLs on the right-hand-side of Figure 8 suggest

anti-proliferative roles for the corresponding miRNAs, since these

interactions repress MYC/E2F1 induced proliferation. As we

mentioned before in our discussion related to Figure 5B, miR-24

and miR-29a exhibit tumor-suppressor roles, which is compatible

with the network depicted in Figure 8. The miRNA let-7a has also

been given a tumor-suppressor role in PCa [69], as well as in lung

and renal cancers [70,71].

IntegraMiR provides further evidence of tumor-
suppressor roles for miR-24, miR-29a and miR-145 in PCa

IntegraMiR identifies a large number of deregulated miRNA-

target interactions in the four pathways we consider in this paper:

906 interactions in the TFG-b
tions in the Wnt Signaling Pathway, 1,017 interactions in the

Prostate Cancer Pathway, and 895 interactions in the Adherens

Junction Pathway – see Table S11. These pairs can potentially be

used to form Type III regulatory loops.

To illustrate the functional scope and relevance of these

interactions, we focus on the top three miRNAs depicted in

Figure 4B found by IntegraMiR to be significantly downregulated.

These are the tumor suppressor miRNAs miR-24, miR-29a, and

miR-145 studied in Figure 5B. Using these miRNAs, we

considered the deregulated miRNA-target interactions predicted

by IntegraMiR and identified, as an example, those interactions

relevant to the KEGG Prostate Cancer Pathway. IntegraMiR

predicts a considerable number of deregulated interactions (45 for

miR-24, 41 for miR-29a, and 40 for miR-145) with many

common targets in this pathway. This may further be used to

support the collaborative, tumor-suppressor role of these miRNAs

in PCa, despite the fact that their predicted, genome-wide co-

targeting features are relatively not much pronounced – see

Figure 5B.

We also identified from Table S11 the consistently deregulated

Type III regulatory loops associated with the three miRNAs, miR-

24, miR-29a, and miR-145, in the KEGG Prostate Cancer

Pathway by excluding the missing pathway interactions as well as

interactions with indirect effects, as defined by the KEGG

database. We depict the results in Figure 9. From all predicted

interactions, only the interaction between miR-145 and IGF1R, a

product of the GFR gene, as well as the interaction between miR-

29a and PIK3R1, a product of the PI3K, are known (i.e., are true-

positives). It turns out that several Type III loops predicted by

IntegraMiR encompass genes that have established oncogenic

roles, such as the genes in the PI3K-Akt backbone and the Ras

and Raf genes in the MAPK signaling section of the pathway. This

observation thus provides further support for the tumor-suppressor

roles of these miRNAs in PCa.

Figure 7. TP53 miRNA-mediated network model for apoptosis. IntegraMiR identifies two deregulated FFLs in PCa that model regulatory
interactions among miR-125b, TP53 (p53), and BBC3 (PUMA). (A) Type I coherent and Type II-A coherent FFLs. (B) TP53 miRNA-mediated network
model for apoptosis obtained by combining the two FFLs in (A).
doi:10.1371/journal.pone.0100806.g007

Figure 8. MYC-E2F1 miRNA-mediated network model for cell
proliferation. A network of proliferative and anti-proliferative miRNAs
interacting with MYC and E2F1 predicted by IntegraMiR. This network
consists of 18 distinct FFLs: 8 Type I coherent, 2 Type II-A coherent, and
8 Type II-A incoherent. Green edges depict true-positive miRNA-target
interactions identified by the predictive module of IntegraMiR, the
brown edge predicts a false-negative miRNA-target interaction, red
edges depict novel miRNA-target interactions, and black edges
represent known interactions.
doi:10.1371/journal.pone.0100806.g008
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IntegraMiR Leads to a Novel Regulatory Circuit for
Epithelial-to-Mesenchymal Transition (EMT)

EMT is a complex gene expression program characterized by

loss of cell adhesion through repression of CDH1 (E-cadherin) and

activation of genes associated with motility, invasion and stemness

[72]. EMT is activated during embryonic development and adult

tissue remodeling. In epithelium-derived tumors however, EMT

seizes to promote metastasis and gain of stem cell phenotypes [50].

Since modulation of CDH1 expression levels is considered to be a

major theme of epithelial plasticity, both in non-oncogenic and

oncogenic EMT, we sought to construct and investigate an

integrated circuit that controls EMT in PCa based on IntegraMiR

predictions.

A natural approach towards this goal is to first identify the most

relevant molecular species to build an initial network and

subsequently expand this network with additional species. Since

our main interest here is to determine FFLs mainly involved in

pathological conditions related to EMT and since the most

common biochemical change associated with EMT is loss of

CDH1 expression, we decided to focus on CDH1 repressors and

their corresponding regulatory network. CDH1 transcriptional

repressors, such as SNAI1 (SNAIL), SNAI2 (SLUG), ZEB1, ZEB2

(SIP1), E12/E47, and TWIST have traditionally been implicated

in promoting EMT in various systems of embryonic development

and tumor progression [72,73]. Among these repressors, we found

that SNAI2 and ZEB1 are associated with FFLs predicted by

IntegraMiR – see Tables S5–S10. It is important to note that the

TGF-b
(SLUG), which in turn activates ZEB1 [74,75]. Furthermore, the

miR-200 family of miRNAs (miR-200a, miR-200b, miR-200c,

miR-141 and miR-429) has been shown to play a major role in

EMT [72,76]. Among the family members, miR-200b, miR-200c

and miR-141 have been identified by IntegraMiR to be

significantly deregulated in PCa – see Table 1.

To delineate a basic network for EMT regulation, we first single

out all deregulated FFLs whose nodes comprise only entries

among the molecular species we have identified: miR-200b, miR-

200c, miR-141, CDH1, SNAI2, and ZEB1– see Figure S2. These

FFLs are deemed to be consistently deregulated by IntegraMiR.

For miR-141, we discovered two loops whereas for miR-200b and

miR-200c, we discovered six loops for each miRNA with identical

types. We then constructed the network depicted in Figure 10A by

combining these FFLs.

To extend this basic network, we regard the fact that TGF-

b
recent discovery that SNAI2 and TGF-b
positive feedback loop [73,77]. We then hypothesized that we may

observe a (mutually) inhibitory relation between members of the

miR-200 family and upstream factors in TGF-b
the fact that these miRNAs interact with SNAI2 in a mutually

inhibitory fashion, as predicted by the network depicted in

Figure 10A. To constrain this investigation to a tractable number

of transcripts, among the numerous transcripts associated with

TGF-b
pathway: three TGFB isoforms (TGFB1, TGFB2, TGFB3) and

three TGFB receptors (TGFBR1, TGFBR2, TGFBR3).

We should note here that, among TGFB cell surface receptors,

TGFBR3 has the most abundant expression and it shows the

highest affinity for binding TGFB2 ligand among all three TGFB

ligand isoforms. While TGFBR3 does not have a functional kinase

domain to activate TGF-b
presented to TGFBR2, which leads to the association and

phosphorylation of TGFBR1 and subsequent activation of TGF-

b

Reduced or loss of TGFBR3 expression has been observed in

many types of cancer, such as prostate, pancreatic, breast, renal,

and lung cancer [79–83].

We identified all FFLs predicted to be deregulated by

IntegraMiR (see Tables S5–S10) comprising miR-200b, miR-

200c, or miR-141, and one of the TGFB ligand isoforms or one of

the TGFB receptors. This produced the three Type I coherent and

the two Type II-A incoherent FFLs depicted in Figure 10B all of

which are deemed to be consistently deregulated in the data. We

also identified all deregulated miRNA-target interactions for miR-

200b, miR-200c, and miR-141 associated with the KEGG TGF-

b
the TGFB ligand isoforms or one of the TGFB receptors. We

depict the results in Figure 10C, which shows that each of these

miRNAs targets TGB2, TGFBR1, and TGFBR2. Among these

interactions, only TGFB2 has been experimentally verified to be a

target of miR-141 according to miRTarBase.

By incorporating the results depicted in Figures 10A–C, we

obtain the extended circuit for EMT regulation depicted in

Figure 10D. To simplify presentation, we lump specific interac-

tions of the miRNAs with individual TGFB receptors in a single

block. Interestingly, this circuit predicts a mutually inhibitory

relation between miR-200b, miR-200c and GATA3, a recently

discovered transcriptional activator for TGFBR3 [84]. Moreover,

miR-200b, miR-200c, and miR-141 are predicted to repress the

upstream TGFB2 ligand and receptors in a Type III regulatory

loop. The resulting integrated regulatory circuit provides a

hypothesis for a novel and more comprehensive model for

regulation of EMT at the transcriptional, post-transcriptional

and signaling levels, by means of miR-200 family members, TGF-

b

Transcriptional, Post-transcriptional and Signaling
Deregulation, Coupled with Known Genetic and
Epigenetic Alterations, Reveal a Relatively
Comprehensive Model for PCa Development

To discern the effectiveness of the integrative analyses we carry

out in this study, we combined information from the results

depicted in Figures 8 & 9, as well as current knowledge of certain

crucial genetic and epigenetic alterations in PCa (which we will be

discussing shortly), to delineate the model depicted in Figure 11.

This model encapsulates some major sources of deregulation in

PCa at the transcriptional, post-transcriptional, signaling, and

genetic/epigenetic levels, as opposed to models that only consider

deregulation at just one level, which may not be capable of

capturing the overall behavior of the underlying network. We use

this model to discuss how genetic and epigenetic alterations could

propagate in cellular regulatory networks through circuits

identified in this study and, therefore, adversely affect gene

regulation. These pieces of crucial information represent a

relatively comprehensive model for PCa development.

It has been demonstrated that chromosomal translocation

involving TMPRSS2 (PSA-regulated gene transmembrane prote-

ase, serine 2), an androgen receptor (AR)-regulated gene, and a

member of the ETS family of TFs (predominantly ERG) is present

in about half of all PCa cases [45]. This rearrangement in prostate

cancer leads to androgenic induction of ERG expression (see

Figure 11) and the critical outcomes associated with its overex-

pression in PCa [85]. In particular, it has been suggested that

ERG overexpression in PCa may contribute to the neoplastic

process by activating MYC and by abrogating prostate epithelial

differentiation [86]. Moreover, global analysis of copy-number

alterations (CNAs) in PCa has reported dramatic amplifications of

MiRNA/TF-Mediated Network Identification
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oncogenes, such as MYC (on 8q24.21) and AR (Xq12), deletions

of tumor suppressor genes, such as PTEN (10q23.31), RB1

(13q14.2), TP53 (17p31.1) and CDKN1B (due to the broader

deletion of the 12p13.31-p12.3 genomic region), and interstitial

21q22.2–3 deletion spanning ERG and TMPRSS2 [87]. Finally,

based on the integration of CNA, transcriptome and mutation

data, it was found that PI3K, RAS/RAF and RB signaling were

commonly altered in primary tumors and metastases [87].

Moreover, it was stated that the data provided strong rationale

for exploring the clinical activity of PI3K pathway inhibitors.

Interestingly, the findings depicted in Figures 8 & 9 characterize

miR-24, miR-29a, and miR-145, which are identified by

IntegraMiR to be significantly downregulated, as inhibitors of

the PI3K/AKT, RAS/RAF/ERK and RB signaling pathways

through specific FFLs and Type III loops, as depicted in Figure 11,

and suggest tumor suppressor roles for these miRNAs, coordi-

nately cooperating with the tumor suppressors PTEN, CDKN1B

(p27) and RB1 (Rb).

As a notable example, the Rb tumor suppressor gene product in

Rb signaling is known to be a target of CDK2 (cyclin dependent

kinase 2). When Rb is dephosphorylated, it interacts with E2F

transcription factors and, in this way, prevents transcription of

genes required for progression through the cell cycle. On the other

hand, when Rb is phosphorylated by cell cycle dependent kinases,

such as CDK2, it no longer interacts with E2F and the cell cycle

proceeds through the G1-S checkpoint. The results depicted in

Figure 11 identify miR-29a and miR-145 as potential inhibitors of

the CDK2/Cyclin E complex and E2F through FFLs and Type

III regulatory loops and suggest that these miRNAs work in

concert with p27 and Rb tumor suppressors, preventing passage

from the G1 to the S phase.

In addition to the previously discussed genetic alterations and

their effect on gene regulation, recent studies have found that

miRNAs are both regulated epigenetically and play roles in

epigenetic regulation of protein coding genes in different types of

cancer, including PCa [59,88,89]. A recently validated example,

which is relevant to our discussion, is miR-29a. It was discovered

in [59] that the promoter region of miR-29a harbors numerous

CpG sites. Moreover, it was determined that the experimentally

measured methylation index of the miR-29a promoter was higher

in the PCa cell group than in the prostate epithelial cell group,

resulting in significant downregulation of miR-29a expression in

PCa. More interestingly, miR-29a has been shown to play tumor

suppressor roles by reciprocally targeting DNA methyltransferases

(DNMTs), which are key regulators of methylation of CpG islands

[88–90].

We summarize these findings in the model depicted in Figure 11,

in which the red edges represent novel interactions predicted by

IntegraMiR. In particular, edges emanating from the three

miRNAs that target the two signaling pathways at the bottom

represent the novel miRNA interactions depicted in Figure 9. The

resulting model suggests that upregulation of the oncogene MYC

could take place due to genetic amplification and/or by ERG

through TMPRSS2-ERG gene fusion. The upregulated MYC

could then initiate a proliferative program, for instance, through

the depicted MYC-E2F interaction, as well as by inhibiting the

tumor suppressor miR-29a. In addition, other genetic and

epigenetic alterations, for instance hypermethylation of miR-29a

or deletion of PTEN, p27 and Rb, could further suppress the level

of these tumor suppressor miRNAs and genes, leading to the

activation of PI3K/AKT, RAS/RAF/ERK and RB signaling,

and a consequent uncontrolled cellular growth.

Figure 9. Predicted deregulated Type III regulatory loops in the Prostate Cancer Pathway. Portion of the Prostate Cancer Pathway,
adopted from the KEGG database [39,40], with the targets of miR-24, miR-29a and miR-145 that participate in deregulated Type III loops being color-
coded. One example of a deregulated Type III loop is shown for each miRNA. All depicted Type III loops are novel and consistent, in the sense that the
corresponding miRNA-target interactions are anti-correlated according to the data.
doi:10.1371/journal.pone.0100806.g009
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It is important to emphasize at this point that miRNAs have

attracted attention due to their diagnostic as well as therapeutic

potential. Inactivating oncogenic miRNAs or restoring tumor

suppressor miRNAs offers great prospects for cancer therapy [91–

95]. As an important practical application, chromatin-modifying

drugs, such as DNA methylation inhibitors, can be used to

reactivate hypermethylated tumor suppressor miRNAs. Two

DNMT inhibitors, 5-azacytidine and 5-aza-29-deoxycytidine, have

indeed been approved by the US Food and Drug Administration

(FDA) for the treatment of myelodysplastic syndromes and acute

myeloid leukemia [96].

Discussion

The exquisite orchestration of molecular interactions in cells is

essential for the normal homeostatic regulation of multicellular

organisms. Systematic delineation of networks of such molecular

interactions is a challenging task. Moreover, the identification of

interaction networks deregulated in a particular disease may have

profound effects on understanding the molecular causes that lead

to the disease and may dramatically influence the development of

effective strategies for pharmaceutical and therapeutic interven-

tion.

Earlier computational tools have focused primarily on identi-

fying pairwise miRNA-target and TF-target interactions, either by

relying on sequence-based analysis or expression data [3–5]. As a

consequence, they may produce an excessively large number of

false-positive predictions making them inefficient for experimental

follow-up.

More recently, two promising methods have been proposed to

identify miRNA/TF interactions [26,27], which are based on the

hypothesis that certain regulatory circuits, defined as motifs [13],

appear in a statistically over-represented manner in the human

and mouse genomes [12]. However, and for a given motif

structure (e.g., an FFL), these methods attempt to predict all

interactions (the three edges of an FFL) by utilizing a narrow set of

computational tools and limited biological information. Although

the methods can be employed to provide insights into the

prevalence of various motif instances in gene regulatory networks,

the user must keep in mind that the results may contain a rather

large number of possibly unreliable predictions for experimental

validation due to the fact that these methods do not effectively

utilize certain known biological information to appropriately

constrain and systematically reduce the resulting predictions.

In this paper, we introduced IntegraMiR, a novel computa-

tional method for inferring deregulated miRNA/TF-mediated

regulatory loops and networks that appear in a statistically over-

represented manner in gene regulatory networks. IntegraMiR

addresses the previous problems by appropriately constraining the

statistical analysis of given mRNA/miRNA expression data and

sequence-based target identification methods using relevant motif

structures built by ‘‘prior’’ biological information readily available

in existing databases. The main strength of IntegraMiR originates

Figure 10. Predicted regulatory circuits controlling EMT. (A) An initial regulatory circuit, predicted by IntegraMiR, controlling EMT in PCa
through regulation of CDH1 (E-cadherin) transcriptional repressors. This network consists of 14 distinct FFLs: 2 Type I coherent, 5 Type I incoherent, 2
Type II-A coherent, and 5 Type II-B incoherent. (B) The five FFLs predicted to be (consistently) deregulated in PCa by IntegraMiR comprising miR-200b,
miR-200c, or miR-141, and GATA3 and TGFBR3. (C) The nine deregulated miRNA-target interactions involving miR-200b, miR-200c, and miR-141 as
well as the TGFB ligands and receptors. (D) An extended integrated regulatory circuit, predicted by IntegraMiR, controlling EMT through TGF-
b
by the predictive module of IntegraMiR, brown edges represent false-negative miRNA-target interactions, red edges depict novel miRNA-target
interactions, and black edges depict known interactions.
doi:10.1371/journal.pone.0100806.g010
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from its capacity to fuse information from multiple sources and

incorporate several statistical techniques to exploit almost any

accessible aspect of available information in the expression data to

identify integrated regulatory loops and networks at the transcrip-

tional, post-transcriptional and signaling levels. Therefore, Inte-

graMiR adds to the ongoing effort of developing effective

computational techniques for network identification by utilizing

available experimental data and existing biological knowledge in

an effort to produce reliable predictions in a context-dependent

manner.

To appropriately constrain the problem of predicting miRNA-

target interactions, IntegraMiR focuses on specific types of three-

node regulatory motifs and, in particular, FFLs that have attracted

a great deal of attention in the literature. It is important to

mention here that, in contrast to earlier work, such as that in [26],

by identifying instances of deregulated FFL motifs and by using

these motifs to construct interaction networks, IntegraMiR can

also provide instances of two types of deregulated two-node motifs:

miRNA-TF negative and double-negative feedback loops – see

Figures 7B, 8, and 10D.

IntegraMiR identified a number of already validated and novel

deregulated miRNA/TF-mediated interactions. Although our

interest was focused on certain types of regulatory loops

deregulated in PCa, the basic method can be easily modified to

handle any other type of regulatory motif of interest and can be

readily applied to other types of human disease, provided that

appropriate miRNA and mRNA expression data are available.

The examples considered in the ‘‘Results’’ section demonstrate

that IntegraMiR is a powerful computational tool for miRNA/TF-

mediated network prediction, which can effectively result in novel

hypotheses for further experimental study and validation. We

should point out that the output results produced by IntegraMiR,

provided in the accompanying Tables S1–S12, can be used by

interested investigators to formulate additional hypotheses for

experimental validation, beyond the ones discussed in this paper,

which are expected to lead to additional novel findings.

IntegraMiR labels identified motifs into consistent and inconsistent

loops, based on the rules depicted in Figure 3 (see also the

‘‘Materials and Methods’’ section). This is an additional piece of

information that can be considered when evaluating the obtained

results before carrying out experimental validation, when one

seeks evidence based on expression data. As an illustrative

example, we depict in Figure 12 two loops considered in the

‘‘Results’’ section – see Figure 7A and Figure S2. These are

instances of a Type I coherent FFL, with the green edges

representing true-positive predictions and the red edge represent-

ing a novel interaction. The FFL depicted in Figure 12A is

identified by IntegraMiR to be consistently deregulated based on

the data, whereas the FFL depicted in Figure 12B is identified to

be deregulated inconsistently.

The consistency of the deregulated FFL depicted in Figure 12A

implies that there is supporting evidence in the expression data to

corroborate the intended reinforcing function modeled by this

FFL. More specifically, when comparing tumor versus normal, the

observed significant upregulation of miR-200b leads to significant

downregulation of the transcription factor SNAI2 (SLUG) and to a

consequent downregulation of ZEB1. On the other hand, the

inconsistency of the deregulated FFL depicted in Figure 12B

originates from the fact that, although the upstream inhibitor miR-

125b is found by IntegraMiR to be significantly downregulated,

and the opposite is true for the transcription factor TP53 (P53), the

target gene BBC3 (PUMA) shows downregulation at the transcript

level, which is contrary to the expected function modeled by this

FFL.

Figure 11. Integrative miRNA-mediated model for PCa development. A snapshot of a high-level integrative miRNA-mediated model for PCa
development which encapsulates major sources of deregulation at the transcriptional, post-transcriptional, and signaling levels, coupled with genetic
and epigenetic alterations.
doi:10.1371/journal.pone.0100806.g011
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Although all three interactions in an FFL, such as the one

depicted in Figure 12B, may have been experimentally validated

individually, we may still not be able to observe consistent

deregulation among the FFL nodes at the transcript level. This

situation may occur due to a number of biological or technical

factors. For example, the known miRNA-target interactions

available in miRTarBase may experimentally have been validated

in certain cell type(s) and tissue(s) and may not take place in the

context of interest (prostate tissue in our case). On the other hand,

microarray experiments may not be able to capture the effect of

translational repression by a miRNA (e.g., when this repression

does not occur through mRNA degradation) or the fact that the

mRNA level of a TF may not serve as a proxy for the

corresponding protein-level activity. For example, in the case

depicted in Figure 12B, although miR-125b is downregulated and

the transcription factor TP53 transcript is upregulated based on

the expression data, we may not have a high level of active TP53

protein in the nucleus that sufficiently correlates with the

abundance of TP53 mRNA transcripts. As a result, the target

BBC3 gene may not be transcribed in proportion to the level of the

TP53 transcript. In addition to the above, each node in an FFL

may not necessarily participate only in that specific FFL and there

can be numerous FFLs identified for certain nodes. This means

that, by focusing on just one FFL, we may not be able to capture

the relevant overall behavior. To do so, we may have to consider

all collaborating FFLs in concert, which could potentially provide

a more accurate and comprehensive representation of gene

regulation for a specific gene of interest (we did this in several

settings discussed in the ‘‘Results’’ section). Finally, alternate effects

due to mechanisms other than FFL regulation, such as alterations

at the genetic and epigenetic levels, could give rise to behaviors

and observations that cannot be modeled by FFLs.

As we mentioned before, the two key hypotheses behind our

interest in Type III loop motifs are that miRNAs play major roles

in regulating signaling pathways due to their sharp dose-sensitive

nature, and that targets of single miRNAs are more connected

(i.e., interact) at the protein level than expected by chance.

IntegraMiR identifies closely related miRNA targets on pathways

deemed to be important in PCa and delineates certain miRNA-

mediated three-node regulatory loops in the KEGG Prostate

Cancer Pathway. As an example, we refer to the two consecutive

Type III loops for miR-29a depicted in Figure 13A, which have

been constructed from the results depicted in Figure 9. The

obtained mechanism of a single miRNA regulating several closely

related genes typically working together to perform a common task

represents a single-input module (SIM) motif [13]. SIMs can

partially explain how individual miRNAs could be potent

regulators of pathway activity even though the effect of the

miRNA on any single gene target may be modest [35,97,98].

It has also been demonstrated in [35] that targeting of a set of

genes by multiple miRNAs could produce effects that are much

more dramatic than the modest effects exerted by individual

miRNAs. A notable example identified by IntegraMiR in the

KEGG Prostate Cancer Pathway is the co-targeting of GFR and

PI3K genes by miR-29a, miR-24 and miR-145 depicted in

Figure 13B (which has been constructed from the results depicted

in Figure 9). The resulting network structure represents a dense

overlapping regulon (DOR) motif [13] in which several input

miRNAs co-regulate a set of output genes (known as a regulon).

Co-targeting in a DOR pattern presumably strengthens the notion

that the miRNAs involved share similar regulatory roles. It is

noteworthy that IntegraMiR can identify numerous examples of

miRNA co-targeting in the context of FFLs as well – see Figure 8

and Figure S1. Clearly, the three-node loop motifs considered in

this paper can serve as basic building blocks for identifying more

complex regulatory motifs, such as SIMs and DORs [28,65].

In principle, discoveries obtained by integrative computational

approaches, similar to IntegraMiR, can provide systemic insights

into the molecular biology of miRNA-mediated interactions and

can, thereby, assign context-dependent biological functions to

poorly understood roles of miRNAs. With further advances in

genomics research, the need for integrative analysis approaches

capable of utilizing information acquired from various sources is

becoming more evident than ever before. It is through these

Figure 12. Examples of consistently and inconsistently deregulated FFLs identified by IntegraMiR. (A) A consistently deregulated Type I
coherent FFL. (B) An inconsistently deregulated Type I coherent FFL. Green edges represent true-positive predictions, the red edge represents a novel
prediction, and black edges represent known interactions. The red edges emanating from the miRNAs that target the two signaling pathways
represent the novel interactions depicted in Figure 9.
doi:10.1371/journal.pone.0100806.g012
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findings that researchers can form hypotheses aimed at accurately

dissecting context-dependent molecular mechanisms underlying

physiological and pathological conditions of interest. Through

these types of analyses, effective drug targeting and successful

disease treatments will eventually be realized. MiRNAs pose

promising potential in this context.

We finally conclude with some discussion on implementation

issues.

IntegraMiR uses information from four databases, mSigDB,

miRTarBase, TRANSFAC and TransmiR. If new and more

informative databases become available in the future, information

relevant to the problem discussed in this paper can be easily

incorporated as part of the overall underlying strategy. For

example, with the emergence and ever-increasing accessibility of

high-resolution transcriptome data, by means of chromatin

immunoprecipitation with sequencing (ChIP-Seq) experiments,

together with regulation information, IntegraMiR could efficiently

exploit such large-scale transcription factor-target information to

obtain systems-level regulatory loops that could possibly account

for much higher percentages in transcriptome changes.

We should note that a relatively large number of TF-target

interactions are not included in the input to IntegraMiR owing to

their unknown regulation type status in TRANSFAC and

TransmiR. On the other hand, the method proposed in [26]

does not utilize information on regulation type. As a result,

although this method employs all TF-target interactions/associa-

tions available to it, it cannot be used to identify coherent/

incoherent FFL subtypes, which is the information required to

derive a systems-level understanding of regulatory networks.

However, by using all available TF-target interactions regardless

of their regulation type and by limiting their analysis to Type II

FFLs, it was found in [26] that more than 20%
changes could be attributed to these FFLs. This result demon-

strates that FFL-based analysis has the potential to explain a

considerable percentage of transcriptome changes. Once addi-

tional information about regulation type is made available through

future database updates, we expect that IntegraMiR will produce

results that are capable of explaining a higher percentage of

transcriptome changes, with systemic insights similar to the ones

presented in this work, as opposed to the approach in [26].

In constructing FFLs, IntegraMiR considers loops comprising

miRNA and TF nodes that are both significantly deregulated. The

main reason for this choice is to focus primarily on FFLs that

exhibit significant levels of deregulation at both regulator nodes,

which could play a major role in explaining observed transcrip-

tome changes. This is mainly because our confidence that an FFL

contributes to transcriptome deregulation in PCa will be

diminished if the upstream regulator is differentially expressed

but the downstream regulator is not (or vice versa). Note that

IntegraMiR can be easily adjusted to identify FFLs in which at

least one regulator node is significantly deregulated. It is important

however to understand that this adjustment, in combination with

the high false-positive rate of sequence-based miRNA-target

predictions, can result in an excessive number of predicted FFLs

and relatively higher false-positive rates. This is due to the fact that

this simple modification allows a combinatorially larger number of

potential nodes to be considered by the method.

Finally, the ranking score obtained by employing Fisher’s

method could be improved by using methods proposed to combine

dependent statistical tests [99,100]. However, due to lack of

reliable between-node (and cross-platform) correlation estimation,

accounting for dependencies is not feasible. Therefore, Integra-

MiR uses Fisher’s method to indicate the significance for each FFL

by a ranking score, rather than a P value. Upon availability of

mRNA and miRNA expression data and techniques that could

allow for reliable calculation of correlations, a possible future

direction would be to incorporate such information into various

aspects of the statistical analysis framework currently used by

IntegraMiR to score FFLs more accurately.

Materials and Methods

Biological Samples
In this work, we use publicly available mRNA expression data

obtained from a previously published study [101] involving normal

and cancerous prostate tissue samples. The normal samples were

acquired during radical prostatectomy from non-suspect (normal)

peripheral areas of the prostate of 48 different individuals

diagnosed with low-risk tumors. The cancerous samples were

acquired from 47 patients diagnosed with high-risk tumors, before

administering any medical treatment. Detailed discussion on the

materials and methods used to obtain and prepare these samples

can be found in [101]. We also use publicly available miRNA

expression data from a previously published study [102] obtained

from histologically confirmed matched malignant and peripheral

nonmalignant prostate tissue samples extracted from 20 different

patients with untreated prostate cancer (PCa). These samples were

prepared from prostatectomy specimens using methods detailed in

[102].

Figure 13. Complex regulatory motifs can be constructed from results obtained by IntegraMiR. (A) SIM motif of GF, GFR, and PI3K genes
targeted by miR-29a in the KEGG prostate cancer pathway. (B) DOR motif of GFR and PI3K co-targeting by miR-29a, miR-24, and miR-145 in the KEGG
prostate cancer pathway.
doi:10.1371/journal.pone.0100806.g013
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Expression Profiling
In [101], the total RNA extracted from each normal and

cancerous prostate tissue sample was used to produce mRNA

expression profiles for 17,324 human mRNAs. This was done by

mRNA microarray hybridization using the Affymetrix (Santa

Clara, CA) GeneChip Whole Transcript Sense Target Labeling

Assay in conjunction with Affymetrix 1.0 Human Exon ST

microarrays. The MIAME-compliant mRNA microarray data can

be found in the NCBI GEO database (www.ncbi.nlm.nih.gov/geo)

with accession number GSE29079.

The tumor samples used to obtain the mRNA expression data

were characterized by their disease subtype, based on their

TMPRSS2-ERG gene fusion status, through a number of reliable

assessments using ERG gene expression levels, nested RT-PCR,

and quantitative PCR measurements [101,103]. These data have

also been validated with respect to an earlier study [87], which

included matched miRNA expression data for a number of

patients. Seventeen tumor samples were defined as TMPRSS2-

ERG fusion-positive and twenty samples were defined as fusion-

negative. The remaining ten tumor samples that could not be

reliably categorized were labeled as unknown fusion status.

The miRNA profiling experiments performed in [102] used

Affymetrix 1.0 GeneChip miRNA microarrays, whose content is

derived from the miRBase miRNA database v11.0 (www.mirbase.

org). These experiments produced expression data for 847 human

miRNAs in matched normal and cancerous tissues. The data can be

obtained from the NCBI GEO database using accession number

GSE23022.

We should note here that several miRNA profiling studies have

been published in the literature concerning PCa [104–109].

However, results on deregulation of particular miRNA genes have

been highly inconsistent [110]. Seeking support for the reliability

of the miRNA expression data used in the present study, we should

mention that a major factor that possibly contributes to these

inconsistencies is known to be variations in the miRNA expression

data due, for example, to a different proportion of stromal cells in

tissue preparation. The previous miRNA microarray experiments

are based on micro-dissected tissue samples that avoid the previous

issue. In addition, miRNA in situ hybridization experiments were

run to evaluate the localization of miRNA-expressing cells and

ensure that miRNA expression in tumor samples is indeed cancer

cell-associated [102]. Moreover, the results were partially validated

with RT-PCR and compared with a previous study on miRNA

expression data from PCa tissue obtained by deep sequencing

[49].

Data Preprocessing
IntegraMiR analyzes the raw mRNA and miRNA expression

data using the statistical computing environment R (www.cran.r-

project.org). Both types of data are background-corrected and

normalized using quantile normalization [111]. In addition, the

method employs the robust multi-array average (RMA) as a

measure of mRNA and miRNA expression levels [111].

Multiple Hypothesis Testing/Surrogate Variable Analysis
Standard statistical tests used to identify differentially expressed

genes between two conditions in a typical gene expression profiling

study (as adopted by previous methods, e.g., see [26,27]) become

fundamentally flawed in the presence of unaccounted sources of

variability (due to biological and experimental factors among

others) [36–38]. As a consequence, many genes that are indeed

differentially expressed in the data are not detected, whereas many

others are falsely declared as positives [37,112].

To address this problem and effectively exploit the molecular

subtyping information in the available mRNA expression data,

IntegraMiR incorporates surrogate variable analysis (SVA) [36],

together with multiple hypothesis testing (MHT), to identify

differentially expressed genes between two conditions. The

method uses the Bioconductor (www.bioconductor.org) package

SVA (written in R) to perform SVA in order to take into account

biological variabilities and batch effects due to molecular subtypes

categorized by TMPRSS2-ERG gene fusion status in the tumor

samples. This step has been shown to improve biological accuracy

and reproducibility in genome-wide expression studies and

enhances the quality of subsequent statistical analysis [36,37].

IntegraMiR applies MHT to test for the null hypothesis H
(i)
0 :

di~0 against the alternative hypothesis : di 6~0, where

di~m
(t)
i {m

(n)
i , ð1Þ

with m
(t)
i and m

(n)
i being the mean expression levels of the i-th

transcript (mRNA or miRNA) in the tumorous and normal data,

respectively. The Bioconductor package LIMMA (written in R),

which implements a moderated t-statistic [48], is used on each

data set to separately identify mRNAs and miRNAs that are

differentially expressed between tumor and normal samples. Then,

IntegraMiR applies the Benjamini-Hochberg method, described

in [113], to control the false discovery rate (FDR) at 0.05. These

steps produce two separate lists, LmRNA and LmiRNA, each

containing 17,324 mRNAs and 847 miRNAs, with the corre-

sponding FDR-adjusted P (or simply FDR) values and the

direction of deregulation (z1for upregulation and –1 for

downregulation), as determined by the sign of the moderated t-

statistic – see Table S13. The mRNAs and miRNAs with FDR

ƒ0:05
tumor and normal samples.

Gene Set Enrichment Analysis
To further evaluate the statistical significance of certain mRNA

and miRNA transcripts deemed not to be differentially expressed

by MHT, IntegraMiR uses LIMMA to perform gene set

enrichment analysis (GSEA), taking into account known biological

knowledge about these transcripts – see [41]. Specifically, by

employing the molecular signatures database mSigDB v3.1 (www.

broadinstitute.org/gsea/msigdb), the method uses GSEA to

evaluate the significance of non-differentially expressed TFs in

LmRNA w0:05) for which the target gene sets

can be obtained from mSigDB. IntegraMiR forms gene sets

indexed by these TFs, with the elements of each gene set being

those mRNAs in LmRNA whose expressions are directly regulated by

the indexing TF, as determined by mSigDB. It then uses GSEA to

evaluate the statistical significance of each gene set to be enriched

for deregulation, by using the default Wilcoxon rank-sum test. To

adjust for multiple testing, IntegraMiR uses again the Benjamini-

Hochberg method to control the FDR at 0.25– see [41]. This step

produces a list LGS
TF

computed by MHT and GSEA – see Table S13. Only TFs with

significantly enriched gene sets (GSEA-based FDR ƒ0:25) are

included in this list. By combining lists LmRNA and LGS
TF ,

IntegraMiR finally forms a list L
DiffExp
mRNA of mRNAs deemed to be

differentially expressed by MHT or GSEA.

Likewise, IntegraMiR could use GSEA to further evaluate the

statistical significance of non-differentially expressed miRNAs in

LmiRNA

experimentally verified database miRTarBase v3.5 (http://
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mirtarbase.mbc.nctu.edu.tw – see [114]). Unfortunately, the

limited number of experimentally validated miRNA targets

available in miRTarBase is a restricting factor in constructing

appropriate and sufficiently large gene sets in order to reduce the

resulting bias (e.g., due to small gene set size or experimental

predilection – see [115] for a discussion on this issue). Due to bias

and relatively small gene set sizes, GSEA produces an appreciable

number of significantly enriched gene sets for miRNAs that are

not detected to be differentially expressed by MHT (FDR w0:05),

a majority of which are expected to be false positives. A possible

way to remedy this situation is to improve the statistical power of

GSEA by constructing sufficiently large gene sets of miRNA

targets that have been validated to be important in PCa by at least

one reliable experimental procedure (see [115] for a discussion).

For this reason, IntegraMiR limits this step to a list L
DeepSeq
miRNA of 33

miRNAs that have been deemed to be significantly deregulated in

PCa tissue using deep sequencing analysis [49]. Only gene sets

having a minimum of eight elements are considered, as suggested in

[116]. We should note here that it is not necessary to deal with this

problem in the previous (and subsequent) application of GSEA,

since all gene sets considered include a large and rather diverse

number of elements in both cases.

To proceed, IntegraMiR uses miRTarBase to form gene sets

indexed by miRNAs in L
DeepSeq
miRNA , with MHT-based FDR values

w0:05
targets in LmRNA       of the indexing miRNA, as determined by

miRTarBase. It then uses GSEA to evaluate the statistical

significance of a particular gene set enriched for an inverse

direction of deregulation with that of the miRNA. The reason

IntegraMiR uses an inverse relation is because many experiments

used in the past to identify miRNA targets, with their results

recorded in miRTarbase, have traditionally focused on observing

an inverse relation between the expression level of a miRNA and

its experimentally validated target(s). This step produces a list

LGS
miRNA

miRNAs with the corresponding FDR values computed by MHT

and GSEA – see Table S13. Only miRNAs with significantly

enriched gene sets (GSEA-based FDR ƒ0:25) are included in this

list. Finally, by combining lists LmiRNA and LGS
miRNA, IntegraMiR

forms a list L
DiffExp
miRNA

expressed by MHT or GSEA.

IntegraMiR also forms gene sets indexed by a specific KEGG

signaling pathway included in mSigDB. The elements of each gene

set are those mRNAs in LmRNA

the indexing pathway. The method then uses GSEA to evaluate

the statistical significance of a particular gene set to be enriched for

deregulation in the available mRNA data. This step produces a list

LGS
KEGG

pathways and the corresponding GSEA-based FDR values – see

Table S13. Only KEGG signaling pathways with significantly

enriched gene sets (FDR ƒ0:25) are included in the list.

We should point out here that mSigDB provides miRNA target

gene sets as well. However, using GSEA to evaluate the statistical

significance of these gene sets to be enriched for deregulation

produces poor results. We believe that this is due to the possibility

that many miRNA target gene sets provided by mSigDB are false

positives. As a consequence, GSEA cannot produce meaningful

statistical significance for these gene sets. As a consequence,

IntegraMiR applies GSEA only on experimentally validated

miRNA target gene sets in order to infer their statistical

significance and complement the statistical analysis performed

by simply using the available miRNA expression data.

Target Identification
Since the goal of IntegraMiR is to delineate deregulated

miRNA/TF-mediated gene regulatory loops from evidence

provided in available data, the method focuses on loops containing

differentially expressed miRNAs and TFs (based on their

individual expression levels – via MHT analysis – or through

their target interactions – via GSEA analysis). Note however that

the target mRNAs associated with the loops of interest may not

necessarily be differentially expressed. This is due to the fact that

differential expression of a TF may not imply differential

expression of the targeting mRNA (a TF may produce insignif-

icant regulation of transcription), whereas miRNA targeting may

result in direct translational repression without affecting mRNA

abundance. Moreover, simultaneous differential expression of the

miRNA and TF nodes of an incoherent Type I or Type II FFL

may result in no deregulation of the associated mRNA since, in

this case, downregulation (upregulation) of mRNA abundance by

miRNA targeting may be counterbalanced by upregulation

(downregulation) of transcription.

By following the previous rules, and for each differentially

expressed TF in L
DiffExp
mRNA , IntegraMiR uses information available

in TRANSFAC v7.0 (public) (www.gene-regulation.com/pub/

databases.html – see [117]) to identify the directly regulated genes in

LmRNA

repression). To access this information and provide the input to

IntegraMiR, we first obtained for each TF its TRANSFAC-

compatible annotation using the automated sequence annotation

pipeline (ASAP) system [118,119]. This process yields a list

LmRNA
TF containing differentially expressed TFs in L

DiffExp
mRNA , their

gene targets in LmRNA, and the regulation type (activation or

repression) for each target gene – see Table S13. TFs not predicted

to target any mRNAs in LmRNA    are not included in the list.

Likewise, IntegraMiR uses TransmiR v1.2 (http://202.38.126.

151/hmdd/mirna/tf – see [120]) to identify differentially

expressed TFs in L
DiffExp
mRNA directly regulate the transcription of

miRNAs in L
DiffExp
miRNA . This produces a list LmiRNA

TF

from L
DiffExp
mRNA , their corresponding transcriptional miRNA targets

in L
DiffExp
miRNA , and the regulation type (activation or repression) for

each targeted miRNA – see Table S13. TFs not predicted to target

any miRNAs in L
DiffExp
miRNA

Finally, for each miRNA in L
DiffExp
miRNA , IntegraMiR performs

sequence-based target prediction using miRecords (http://

mirecords.umn.edu/miRecords – see [121]) with the filtering

parameter set equal to 2. As a consequence, targets for each

miRNA are predicted by at least two (out of eleven) different

sequence-based target prediction algorithms incorporated in

miRecords. Moreover, for each differentially expressed miRNA

with experimentally validated target information in miRTarBase,

we identified those mRNA targets not predicted by miRecords.

This produced a list LmRNA
miRNA

L
DiffExp
miRNA

in LmRNA amended with (experimentally validated) targets from

miRTarBase – see Table S13. miRNAs not predicted to target any

mRNAs in LmRNA

The reason we decided to use predictions by at least two

different algorithms was to strike a balance between the number of

false-positive and false-negative predictions. By setting the filtering

parameter equal to 1, we obtain a large number of predictions

(most of which are presumably false-positives) whereas by setting

the filtering parameter equal to 3, we obtain a very small number

of predictions (which presumably indicates a large number of false-
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negatives for the prediction). Note finally that miRecords provides

a database for experimentally validated miRNA targets as well,

but we decided to use miRTarBase instead, since the latter

database is up-to-date, unlike the former which dates back to

November 2010.

Construction of Regulatory Loops
IntegraMiR constructs Type I FFLs by first identifying (TF,

mRNA) pairs using the list LmRNA
TF . It then forms triplets (miRNA,

TF, mRNA), such that a miRNA simultaneously targets the TF

and the mRNA, as determined by the list LmRNA
miRNA– see Figure 1.

Likewise, IntegraMiR constructs Type II FFLs by first identifying

(TF, miRNA) pairs from the list LmiRNA
TF . It then forms triplets

(miRNA, TF, mRNA), such that the mRNA is directly regulated

by the TF and is simultaneously targeted by the miRNA, as

determined by the lists LmRNA
TF and LmRNA

miRNA, respectively. The

method finally delineates all miRNA-target interactions in the four

deregulated KEGG pathways under consideration (TGF-

b
Junction) by first looking into the gene sets associated with each

pathway (obtained from the KEGG database), by filtering out the

genes that are not expressed in the data, and by identifying the

targets of each miRNA as determined by the list LmRNA
miRNA. In

addition, IntegraMiR constructs Type III loops by taking gene

pairs (G-1, G-2) such that their corresponding proteins could

potentially interact with each other according to the pathway map

provided by KEGG database. It then highlights triplets (miRNA,

G-1, G-2) such that the miRNA is predicted to target at least one

transcript from each gene, as determined by the list LmRNA
miRNA. We

carried out this step to identify, as an example, Type III loops in

the KEGG Prostate Cancer Pathway for certain miRNAs.

Each edge depicted in Figure 1 connecting a miRNA with its

target is naturally repressing. The list LmRNA
TF

regulation type (activation or repression) for each edge connecting

a TF with a mRNA whereas the list LmiRNA
TF

regulation type (activation or repression) for each edge connecting

a TF with a miRNA.

Significance Ranking of FFLs
For each constructed FFL, IntegraMiR calculates its statistical

significance by employing the following procedure. First, by using

the lists L
DiffExp
mRNA , L

DiffExp
miRNA , and LmRNA, it associates with each

node of the FFL a binary value (+1), which indicates the direction

of deregulation of the node. Moreover, it assigns the MHT-based

FDR value corresponding to the particular transcript (TF, mRNA,

or miRNA) represented by the node, which quantifies the

significance of the transcript’s deregulation. To evaluate the

statistical significance of each FFL, IntegraMiR first assumes that

the FFL is not deregulated if each one of its nodes (1,2,3)
deregulated. It then constructs a hypothesis testing procedure to

test for the null hypothesis H0 : di~0, for every i, where i~1,2,3,

against the alternative hypothesis , for at least

one i, where i~1,2,3, with di given by Eq. (1), with m
(t)
i

and m
(n)
i being the

assigned at node i of the FFL in the
tumorous and normal data, respectively. To do so, IntegraMiR

uses Fisher’s method [44,122]based on the summary test statistic.

(2)

where p1, p2, and p3 are the P values obtained by MHT for

nodes 1, 2, and 3, respectively. Under the null hypothesis, each

(non-adjusted) P value obtained by MHT will have a uniform

distribution between 0 and 1. Assuming that these values are

obtained from independent statistical tests, the statistic T follows a
chi-square distribution with six degrees of freedom, from which a

combined value is obtained that is used to score each FFL.

We should note that these statistical tests depend on each other

in general. It turns out that Fisher’s method may result in a

combined P value that will be smaller than the P value which could

be obtained if dependencies among the statistical tests used could

be appropriately taken into account. For this reason, we regard

Fisher’s method as producing a score for each FFL and not a formal P

value [123]. As a consequence, we expect that IntegraMiR will

produce a larger set of deregulated FFLs than a (hypothetical)

hypothesis testing method that properly considers the underlying

dependence of the individual tests. In the absence of any prior

information however, accounting for these dependencies is a difficult

task [99,100], which we cannot satisfactorily address in this paper.

Consistent Regulatory Loops
Since the functional roles of the FFLs considered in this paper

are different, IntegraMiR groups them into five distinct categories:

Type I coherent, Type I incoherent, Type II coherent, Type II

incoherent, and Type III – see Figure 1. In addition, the method

sorts Type II FFLs into two distinct subgroups, Type II-A and

Type II-B, and marks as ‘‘consistent’’ those loops discovered to be

deregulated in a manner compatible with the underlying edge

structure. To do so, note that molecular species joined by an

activating edge are expected to exhibit correlated deregulation

whereas species joined by a repressing edge are expected to exhibit

anti-correlated deregulation. Taking this fact into account, IntegraMiR

marks deregulated loops as being consistent by using the rules depicted in

Figure 3. For example, a deregulated Type I coherent FFL is said to be

consistent if it comprises an upregulated miRNA node and

downregulated TF and mRNA nodes, or a downregulated miRNA

node and upregulated TF and mRNA nodes. A deregulated FFL that

does not follow these rules is said to be inconsistent.

Extracting Regulatory Loops
The results obtained by IntegraMiR, tabulated in the Tables

S5–S10, contain a large number of deregulated Type I and Type

II FFLs. To identify deregulated FFLs for specific miRNAs, TFs,

or genes, we must search these results and extract those FFLs that

contain the molecular species of interest. Moreover, identifying

deregulated Type III loops for specific pairs of genes, requires

construction of such loops from the results tabulated in Table S11.

Extracting regulatory loops from the results can be done

automatically by using two programs, FFLS and LOOPS, written

in R. More details on these programs and the associated code can

be freely downloaded from www.cis.jhu.edu/
~

goutsias/

CSS%20lab/software.html. We have used these programs to

obtain the results depicted in Figures 7, 8, 10, 12 and 13.

Supporting Information

Figure S1 In PCa, IntegraMiR predicts consistent
deregulation of Type II-B coherent FFLs, comprising 6
miRNAs from the miR-17 family, which are activated by
the oncogenic transcription factor MYC, and 33 mRNAs
in the set on the left-hand-side. It also predicts consistent

deregulation of Type II-B incoherent FFLs comprising the same

miRNAs and MYC and 46 mRNAs in the set on the right-hand-side.

(TIF)

Figure S2 Deregulated FFLs predicted by IntegraMiR
with nodes comprising only entries among miR-200b,
miR-200c, and miR-141, as well as CDH1, SNAI2
(SLUG), and ZEB1. The FFLs are consistently deregulated

based on the data. Green edges depict true-positive miRNA-target
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interactions identified by the predictive module of IntegraMiR,

brown edges represent false-negative miRNA-target interactions,

red edges depict novel miRNA-target interactions, and black edges

depict known miRNA-target interactions.

(TIF)

Table S1 Differentially expressed mRNAs, obtained by
MHT, with FDR-adjusted P values ƒ0:05.
(XLSX)

Table S2 Differentially expressed mRNAs, obtained by
MHT, with FDR-adjusted P values ƒ0:05 and fold
changes §2, for overexpressed mRNAs, and ƒ0:5, for
repressed mRNAs.
(XLSX)

Table S3 Differentially expressed miRNAs, obtained by
MHT, with FDR-adjusted P values ƒ0:05.
(XLSX)

Table S4 Differentially expressed mRNAs (TFs), ob-
tained by GSEA, with MHT FDR-adjusted P values
w0:05 and GSEA FDR-adjusted P values ƒ0:25.
(XLSX)

Table S5 Deregulated Type I coherent FFLs, predicted
by IntegraMiR.
(XLSX)

Table S6 Deregulated Type I incoherent FFLs, predict-
ed by IntegraMiR.
(XLSX)

Table S7 Deregulated Type II-A coherent FFLs, pre-
dicted by IntegraMiR.
(XLSX)

Table S8 Deregulated Type II-A incoherent FFLs,
predicted by IntegraMiR.

(XLSX)

Table S9 Deregulated Type II-B coherent FFLs, pre-
dicted by IntegraMiR.

(XLSX)

Table S10 Deregulated Type II-B incoherent FFLs,
predicted by IntegraMiR.

(XLSX)

Table S11 Deregulated miRNA-target interactions, as-
sociated with the TGF-b, Wnt, Prostate Cancer, and
Adherens Junction KEGG Pathways, which can be
potentially used to construct Type III loops.

(XLSX)

Table S12 Co-targeting miRNA-TF pairs, extracted
from the deregulated FFLs in Tables S5–S10, categorized
by their interaction type.

(XLSX)

Table S13 Lists of mRNAs, TFs, miRNAs, and their
targets used to construct deregulated loops and rank
their statistical significance.

(PDF)

Author Contributions

Conceived and designed the experiments: ASA JX JG. Performed the

experiments: ASA JX JG. Analyzed the data: ASA JX JG. Contributed

reagents/materials/analysis tools: ASA JX JG. Wrote the paper: ASA JX

JG.

References

1. Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA

translation and stability by microRNAs. Annu Rev Biochem 79: 351–379.

2. Pasquinelli AE (2012) MicroRNAs and their targets: recognition, regulation

and an emerging reciprocal relationship. Nat Rev Genet 13: 271–282.

3. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell

136: 215–233.

4. Hammell M (2010) Computational methods to identify miRNA targets. Semin

Cell Dev Biol 21: 738–744.

5. Saito T, Sætrom P (2010) MicroRNAs-targeting and target prediction.

N Biotechnol 27: 243–249.

6. Vlachos IS, Hatzigeorgiou AG (2013) Online resources for miRNA analysis.

Clin Biochem 46: 879–900.

7. Gennarino VA, Sardiello M, Mutarelli M, Dharmalingam G, Maselli V, et al.

(2011) HOCTAR database: a unique resource for microRNA target prediction.

Gene 480: 51–58.

8. Sumazin P, Yang X, Chiu HS, Chung WJ, Iyer A, et al. (2011) An extensive

microRNA-mediated network of RNA-RNA interactions regulates established

oncogenic pathways in glioblastoma. Cell 147: 370–381.

9. Gennarino VA, D’Angelo G, Dharmalingam G, Fernandez S, Russolillo G, et

al. (2012) Identification of microRNA-regulated gene networks by expression

analysis of target genes. Genome Res 22: 1163–1172.

10. Stark A, Brennecke J, Bushati N, Russell RB, Cohen SM (2005) Animal

microRNAs confer robustness to gene expression and have a significant impact

on 39 UTR evolution. Cell 123: 1133–1146.

11. Shalgi R, Lieber D, Oren M, Pilpel Y (2007) Global and local architecture of

the mammalian microRNA-transcription factor regulatory network. PLOS

Comput Biol 3: e131.

12. Tsang J, Zhu J, van Oudenaarden A (2007) MicroRNA-mediated feedback and

feedforward loops are recurrent network motifs in mammals. Mol Cell 26: 753–

767.

13. Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev

Genet 8: 450–461.

14. Zhou Y, Ferguson J, Chang JT, Kluger Y (2007) Inter- and intra-combinatorial

regulation by transcription factors and microRNAs. BMC Genomics 8: 396.
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