
R E V I E W Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​​:​/​/​​c​r​e​a​​t​i​​v​e​c​​o​m​m​​o​n​s​.​​o​r​​g​/​l​i​c​e​n​s​e​s​/​b​y​/​4​.​0​/.

Wang et al. Stem Cell Research & Therapy          (2025) 16:504 
https://doi.org/10.1186/s13287-025-04614-w

Stem Cell Research & Therapy

*Correspondence:
Fengyun Wang
dr-w@qq.com
1Department of Critical Care Medicine, Second Affiliated Hospital of 
Hainan Medical University, Haikou, China
2NHC Key Laboratory of Tropical Disease Control, Hainan Medical 
University, Haikou, China

Abstract
Over the past decade, global investigations have rigorously assessed the safety and therapeutic potential of 
mesenchymal stem cells (MSCs) in managing acute respiratory distress syndrome (ARDS). MSCs, obtained from 
sources like bone marrow, adipose tissue, and umbilical cord, exert therapeutic effects in ARDS primarily through 
complex paracrine mechanisms, including anti-inflammatory, immunoregulatory, pro-reparative, antioxidant, 
antimicrobial, and mitochondrial transfer functions. Preclinical studies have consistently demonstrated significant 
therapeutic benefits. Clinical trials have further confirmed a favorable safety profile, with no significant infusion-
related toxicity or serious adverse events observed even at higher doses (up to 10 × 10⁶ cells/kg) or following 
multiple administrations. Yet, while some early-phase clinical trials have not conclusively demonstrated a significant 
reduction in mortality among ARDS patients, multiple studies note diminished inflammatory biomarkers, enhanced 
markers of endothelial and epithelial repair (e.g., angiopoietin-2), and suggestive benefits in subgroups like younger 
patients or those receiving higher doses of viable cells. MSC-derived therapies, particularly extracellular vesicles 
and conditioned medium, represent promising “cell-free” strategies that may overcome limitations associated 
with live-cell therapy. Despite encouraging progress, clinical translation faces challenges, including optimizing 
cell sources, preparation, dosing, delivery, and developing robust potency assays. Future research should prioritize 
large, high-quality randomized trials to confirm efficacy across various ARDS etiologies and clinical phenotypes, 
evaluate repeat dosing, and explore innovative strategies such as gene modification, cellular preconditioning, 
and combination therapies. Collectively, MSCs and their derivatives hold substantial potential for ARDS treatment, 
though their widespread application requires further validation and a deeper understanding of their interactions 
with the complex ARDS microenvironment.
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Introduction
Acute respiratory distress syndrome (ARDS) is a life-
threatening condition characterized by disruption of 
the alveolar-capillary barrier, pulmonary edema, severe 
hypoxemia, and reduced lung compliance, precipitated by 
diverse direct or indirect insults such as pneumonia, sep-
sis, trauma, or viral infections [1]. Despite improvements 
in lung-protective ventilation strategies (e.g., low tidal 
volume ventilation) and supportive therapies (e.g., extra-
corporeal membrane oxygenation [ECMO] and prone 
positioning), the mortality rate of ARDS remains high 
(30% – 40%), and no specific pharmacological treatment 
has been demonstrated to be effective [2]. Consequently, 
developing novel therapeutic approaches to improve 
ARDS outcomes is of critical clinical importance.

Mesenchymal stem cells (MSCs), also referred to as 
mesenchymal stromal cells, are adult stem cells charac-
terized by their multilineage differentiation potential, 
self-renewal capability, and potent immunomodulatory 
functions [3]. They can be isolated from multiple tis-
sues, including bone marrow (BM), adipose tissue (AT), 
umbilical cord (UC), and placenta (PL) [4]. Over the past 
decade, researchers worldwide have conducted exten-
sive preclinical and clinical studies to evaluate the safety 
and efficacy of MSC-based therapies for the treatment of 
ARDS [5, 6]. Extensive preclinical evidence has demon-
strated that MSCs significantly reduce lung injury and 
improve survival in various ARDS animal models via 
multiple mechanisms, including anti-inflammatory, anti-
apoptotic, epithelial, and endothelial repair, enhanced 
bacterial clearance, and antioxidant activity [7–11]. These 
encouraging preclinical findings have propelled clinical 
translation; early-phase trials suggest MSC administra-
tion is safe and potentially improves outcomes in moder-
ate-to-severe ARDS patients [12].

MSC therapy is primarily indicated for moderate-to-
severe ARDS caused by diverse etiologies, particularly in 
critically ill patients with multi-organ failure, with inclu-
sion criteria often based on partial pressure of oxygen 
to fraction of inspired oxygen (PaO2/FiO2) ratios (e.g., 
< 200 mmHg) and inflammatory biomarker levels [5, 10, 
12, 13]. Clinical trials typically target the acute phase of 
ARDS (within 96 h of diagnosis) to maximize the bene-
fit of early intervention in controlling inflammation and 
lung damage [14]. However, MSC therapy remains inves-
tigational, requiring further evidence to confirm its effi-
cacy and safety. Here, we summarize the mechanisms of 
MSC, their sources and delivery strategies, clinical out-
comes, cell-free derivatives, efficacy across ARDS sub-
types, and key challenges for future translation.

Therapeutic mechanisms of MSCs in ARDS
The therapeutic mechanisms of MSCs in ARDS are mul-
tifaceted and predominantly mediated through paracrine 

effects rather than long-term engraftment and differenti-
ation at injury sites [15]. The evidence-based mechanistic 
network centered on MSCs and their therapeutic role in 
ARDS is depicted in Fig. 1.

Immunomodulation
MSCs respond to inflammatory cues within the dam-
aged microenvironment by releasing a diverse repertoire 
of soluble mediators and extracellular vesicles (EVs) that 
modulate both innate and adaptive immune responses. 
They suppress the expression of pro-inflammatory cyto-
kines such as TNF-α, IL-1β, IL-6, and MIP-2 [16–18], 
while promoting anti-inflammatory mediators, notably 
IL-10 [19, 20]. MSCs also shift macrophages from M1 to 
M2 phenotypes [13, 21, 22], and balance Tregs against 
Th17 cells to mitigate inflammation [23].

At the signaling level, MSCs exert critical immuno-
modulatory effects in ARDS by targeting multiple path-
ways. They significantly attenuate excessive inflammation 
by inhibiting pro-inflammatory cascades, including the 
nuclear factor κB (NF-κB) pathway, thereby reducing the 
production of pro-inflammatory cytokines [24, 25]. MSCs 
also modulate the receptor for advanced glycation end-
products (RAGE) [24] and Toll-like receptor 4 (TLR4) 
[17, 26], both of which play pivotal roles in amplifying 
inflammatory responses to tissue damage and patho-
gens, thus limiting further lung injury. Concurrently, 
MSCs bolster cellular defense and repair mechanisms. 
For instance, engagement of the nuclear factor erythroid 
2-related factor 2 (Nrf2) pathway underpins broad cyto-
protective effects through its potent anti-inflammatory 
and antioxidant actions [17, 25, 27]. These multifaceted 
actions are complemented by the engagement with the 
cholinergic anti-inflammatory pathway [28], the secre-
tion of anti-inflammatory mediators like tumor necrosis 
factor-stimulated gene-6 (TSG-6) [29], and the regulation 
of soluble TNF receptor 2 (sTNFR2) [30], all contributing 
to a more balanced immune response and promoting tis-
sue protection in the ARDS lung.

Enhanced alveolar-capillary barrier repair
Beyond immunomodulation, MSCs contribute to alve-
olar-capillary barrier repair. Studies have shown that 
MSCs can reduce pulmonary vascular permeability 
and alleviate pulmonary edema [13, 31], partly through 
the secretion of growth factors such as angiopoietin-1 
(Ang-1) [32], keratinocyte growth factor (KGF) [33], 
hepatocyte growth factor (HGF) [34], and vascular endo-
thelial growth factor (VEGF) [35]. These factors support 
the regeneration of alveolar epithelial and endothelial 
cells, restore barrier integrity, and stabilize the vascu-
lar structure. MSCs also possess anti-fibrotic proper-
ties, as demonstrated by their ability to reduce collagen 
deposition and attenuate lung structural abnormalities 
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in bleomycin- and paraquat-induced pulmonary fibrosis 
models [36–38]. Moreover, MSCs safeguard pulmonary 
cells by inhibiting apoptotic signaling, particularly by 
regulating the Bax/Bcl-2 balance [39, 40].

Reduced oxidative stress
MSCs alleviate oxidative stress by decreasing the levels 
of malondialdehyde (MDA) and reactive oxygen spe-
cies (ROS), and by enhancing the activities of superoxide 
dismutase (SOD) and glutathione (GSH) [25, 41, 42]. In 
infectious ARDS, MSCs also promote bacterial clearance, 
which contributes to reduced pulmonary bacterial bur-
den and improved host defense [43, 44]. Moreover, the 
Hippo pathway contributes to these antioxidant effects 
by augmenting MSC antioxidant capabilities [45], further 
protecting lung tissue.

Mitochondrial transfer
MSCs are capable of transferring functional mito-
chondria to various injured pulmonary cell types, 

including alveolar epithelial cells, endothelial cells, and 
macrophages [46]; this process directly impacts ARDS 
outcomes through multiple mechanisms [33, 47]. A 
primary effect of this transfer is the restoration of cel-
lular bioenergetic function. By delivering healthy mito-
chondria, typically via extracellular vesicles (EVs) [46] 
or tunneling nanotubes (TNTs) [48], MSCs replenish 
ATP supplies, enhance oxidative phosphorylation, and 
improve oxygen consumption rates in recipient cells, all 
of which are critical for cellular repair and survival in the 
face of ARDS-induced metabolic stress [49–51]. This bio-
energetic rescue is crucial for maintaining alveolar-capil-
lary barrier integrity, a key aspect compromised in ARDS 
[50, 52].

Beyond direct bioenergetic recovery, mitochondrial 
transfer also exerts significant anti-apoptotic effects. The 
provision of functional mitochondria modulates apopto-
sis-related pathways, such as by increasing anti-apoptotic 
Bcl-2 levels and preserving mitochondrial membrane 
potential, thereby protecting lung cells from programmed 

Fig. 1  Illustration of the multifaceted mechanisms by which MSCs exert therapeutic effects in ARDS and ALI. MSCs mediate immunomodulation by 
interacting with immune cells to attenuate inflammation and promote tissue repair through modulation of epithelial and endothelial cells. They enhance 
alveolar barrier integrity and cellular function via antioxidant activity, inhibition of ferroptosis, and mitochondrial transfer (via EVs or TNTs). These actions 
collectively reduce cell death and improve oxygenation in ARDS/ALI. Key molecular mediators include cytokines (e.g., IL-10), chemokines (e.g., CXCL12), 
microRNAs (e.g., miR-146a-5p), growth factors (e.g., HGF), transcription factors (e.g., STAT3), cell death regulators (e.g., caspase-1), and receptors (e.g., 
CXCR4) [32, 46, 48, 52, 82, 108, etc]. ARDS: Acute respiratory distress syndrome; ALI: Acute Lung Injury༛MSC: Mesenchymal Stem Cell༛IL-10:Interleukin-
10༛CXCL12:C-X-C Motif Chemokine Ligand 12༛miR-146a-5p: microRNA-146a-5p༛HGF: Hepatocyte Growth Factor༛STAT3:Signal Transducer and Activa-
tor of Transcription 3༛Caspase-1:Cysteine-Aspartate Protease 1༛CXCR4:C-X-C Motif Chemokine Receptor 4
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cell death [53–55]. For instance, MSC-derived exosomes 
facilitate mitochondrial transfer to alveolar macro-
phages, enhancing not only their bioenergetics but also 
their homeostasis, and phagocytic capacity, while shift-
ing them towards an anti-inflammatory phenotype, all 
contributing to the resolution of inflammation and tissue 
repair [46, 48, 53]. Furthermore, mitochondrial transfer 
to pulmonary endothelial cells can activate metabolic 
pathways like the TCA cycle, promoting endothelial pro-
liferation, the release of pro-angiogenic factors, and ulti-
mately enhancing vascular regeneration, which is vital for 
repairing the damaged lung vasculature in ARDS [51, 52].

Other mechanisms
Emerging evidence indicates MSCs may also mitigate 
lung inflammation and injury by modulating gut microbi-
ota, suggesting a regulatory role via the lung-gut axis [26, 
56, 57]. Substantial evidence indicates that MSC engraft-
ment in lung tissue is generally low and short-lived fol-
lowing transplantation [8]. Thus, their therapeutic impact 
primarily stems from paracrine signaling, involving the 
secretion of soluble factors like IL-10 and transforming 
growth factor-beta (TGF-β), alongside EVs, which deliver 
anti-inflammatory signals, boost macrophage phagocyto-
sis, and promote tissue regeneration [15–17, 58].

Donor age and host microenvironment
The therapeutic effects of MSCs are not only determined 
by their inherent properties but also critically influenced 
by donor age and the recipient’s inflammatory microen-
vironment. MSCs derived from younger donors typically 
demonstrate superior regenerative potential compared 
to those from aged sources. MSCs from older individu-
als often exhibit signs of cellular senescence, including 
shortened telomeres, reduced proliferative capacity, and 
diminished differentiation potential [59–61]. This age-
related decline in MSC “fitness” is also associated with 
increased oxidative damage, higher levels of reactive 
oxygen species (ROS), and upregulation of senescence-
related genes like p21 and p53 [62]. In addition, senescent 
MSCs frequently shift toward a pro-inflammatory senes-
cence-associated secretory phenotype (SASP), character-
ized by reduced secretion of reparative paracrine factors 
such as HGF and IL-10, and increased release of inflam-
matory mediators, thereby impairing their immunomod-
ulatory and reparative capacities [63–65].

The host microenvironment also plays a crucial role 
in regulating MSC function. A highly inflammatory 
milieu—particularly one with elevated IL-6—elevated 
IL-6, can compromise MSC immunoregulatory activity 
by disrupting key intracellular signaling pathways such as 
STAT3 or NF-κB [64, 66]. Conversely, a less hostile and 
more balanced immune environment, often observed in 
younger patients, may facilitate MSC survival, retention, 

and therapeutic efficacy. This dynamic interplay between 
donor cell characteristics and recipient immunologic sta-
tus highlights the importance of considering both intrin-
sic and extrinsic factors when optimizing MSC-based 
therapies for ARDS.

MSC sources and their characteristics
MSCs can be sourced from various tissues, with BM-
MSCs, AT-MSCs, UC-MSCs, PL-MSCs, and menstrual 
blood (Menstrual blood-MSC) being commonly stud-
ied in preclinical and clinical settings [4]. Each source 
presents unique advantages and limitations regarding 
availability, proliferative capacity, immunomodulatory 
potential, and ethical considerations. A comparative 
overview of the characteristics and therapeutic features 
of MSCs from different sources in ARDS is presented in 
Table 1.

BM-MSCs
BM-MSCs are among the most extensively studied MSC 
types and are known for their potent immunomodulatory 
properties [16]. Hao et al. reported that BM-MSCs sig-
nificantly attenuated LPS-induced pulmonary edema and 
inflammation, although their effects on reducing alveolar 
protein leakage were limited [13]. The START clinical tri-
als confirmed that a single intravenous infusion of BM-
MSCs at doses up to 10 × 10⁶ cells/kg was well tolerated 
[67]. Nevertheless, BM-MSCs face challenges, including 
an invasive harvesting procedure and diminished yield 
and proliferative capacity with advancing donor age.

AT-MSCs
AT-MSCs can be harvested in large quantities through 
liposuction; however, they exhibit greater heterogeneity 
and tend to have shorter pulmonary retention times in 
ARDS models [68]. Zheng et al. reported that treatment 
with AD-MSCs resulted in decreased levels of surfactant 
protein-D (SP-D), yet primary clinical outcomes showed 
no significant improvement [69].

UC-MSCs
UC-MSCs, sourced from abundant, ethically unconten-
tious materials (often considered medical waste), exhibit 
youthful cellular vigor, robust proliferation, and low 
immunogenicity, rendering them highly appealing for 
clinical studies [31, 70–72]. Lanzoni et al. reported that 
treatment with UC-MSCs in patients with COVID-19-as-
sociated ARDS led to improved survival and decreased 
levels of inflammatory cytokines [10]. Both in vitro and 
animal studies have indicated that UC-MSCs exhibit 
therapeutic efficacy comparable to BM-MSCs [43].
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PL-MSCs
PL-MSCs, which are similarly abundant, highly prolif-
erative, and exhibit low immunogenicity, demonstrate 
potent anti-inflammatory properties via IL-10/STAT3/
NLRP3 axis [73] and are considered suitable for standard-
ized production. Xu et al. demonstrated that PL-MSCs 
attenuate LPS-induced increases in endothelial perme-
ability and reduce pulmonary injury [74]. A phase I clini-
cal trial in patients with COVID-19-associated ARDS 
confirmed the safety of intravenous infusion of PL-MSCs; 
however, no significant differences in therapeutic efficacy 
were observed compared to the control group [75].

Administration and clinical outcomes
Intravenous (IV) infusion remains the predominant clini-
cal delivery method due to its practicality, yet it encoun-
ters a “first-pass effect,” where many cells are temporarily 
sequestered in the pulmonary vasculature before redis-
tribution or clearance [68]. Intratracheal (IT) administra-
tion and nebulization allow direct delivery to the lungs, 
potentially enhancing local therapeutic effects. Numer-
ous preclinical studies affirm their feasibility and efficacy 
[16, 17, 76, 77], though their clinical safety and effective-
ness await further validation. Intrapleural administration 
has also been investigated and is believed to exert thera-
peutic effects primarily through paracrine mechanisms 
[15].

Preclinical studies have explored diverse dosing regi-
mens, whereas clinical trials typically administer doses 
between 1 × 10⁶ and 10 × 10⁶ cells per kilogram [6, 78], 
with the START trial confirming IV tolerability up to 
10 × 10⁶ cells/kg [79]. However, higher doses may increase 
the risk of adverse events such as fever and coagulopa-
thy [80, 81]. Most studies favor single doses [69, 79], but 
some trials have evaluated multiple dosing regimens (e.g., 

on days 0 and 3, or two to four infusions), demonstrat-
ing safety and suggesting possible benefits in survival and 
pulmonary function [82–86].

The dose-response relationship in MSC therapy for 
ARDS reveals conflicting evidence. While the START 
2a trial (10 × 10⁶ cells/kg) found no mortality reduction 
(30% vs. 15%, P = 0.58), it noted improved oxygenation 
and reduced endothelial injury with higher viable cell 
counts [79]. In contrast, Lanzoni et al. (100 × 10⁶ cells, 
two doses) observed significant survival benefits (91% vs. 
42%, P = 0.015) [10]. Preclinical data suggest higher doses 
enhance efficacy [87, 88]. Variability may stem from cell 
viability [12], host microenvironment (e.g., inflammation, 
comorbidities) [66], and ARDS heterogeneity. Optimiz-
ing cell viability and tailoring dosing strategies to individ-
ual patient contexts may improve therapeutic outcomes. 
Patient-stratified trials are warranted to clarify dosing 
strategies.

Preclinical evidence suggests that early administration 
of MSCs—within 24 h after injury—yields superior out-
comes compared to delayed administration (e.g., after 
48  h), including enhanced anti-inflammatory effects 
and improved pulmonary retention [68, 80, 88]. In clini-
cal trials, MSC therapy is typically initiated within 48 to 
96  h following ARDS diagnosis [79]. Sánchez-Guijo et 
al. observed a higher rate of extubation in patients who 
received treatment within 48 h [83]. The optimal timing 
for MSC intervention—whether during the early inflam-
matory phase or the later reparative phase—remains 
unclear and warrants further investigation [89].

Following IV infusion, MSCs primarily localize to the 
lungs, where they exhibit transient retention [8]. Lung 
injury has been shown to enhance the homing capacity 
of MSCs through chemokine-mediated mechanisms [90, 
91], though their limited post-transplantation survival 

Table 1  Comparison of MSC sources for ARDS treatment
MSC Source Yield Immunogenicity Clinical Efficacy Scalability Refer-

ence
BM-MSCs Moderate; limited by 

invasive bone marrow 
aspiration, requires in vitro 
expansion

Moderate; requires 
HLA matching to 
reduce rejection risk

Improves oxygenation and reduces 
inflammation in ARDS; mixed results in 
clinical trials (e.g., 28-day mortality 30% 
vs. 15%, P = 0.58)

Low; invasive collection 
and complex expansion 
limit large-scale production

[13, 
16, 
79]

AT-MSCs High; abundant adipose tis-
sue via liposuction, high cell 
yield per procedure

Low; minimal rejec-
tion risk in allogeneic 
use

Reduces inflammation and improves 
lung function in preclinical and early 
clinical studies

High; minimally invasive, 
standardized liposuc-
tion enables large-scale 
production

[68, 
69]

UC-MSCs High; umbilical cord tissue 
readily available, efficient in 
vitro expansion

Low; suitable for al-
logeneic therapy due 
to immune-privileged 
status

Significantly improves survival in COVID-
19 ARDS (91% vs. 42%, P = 0.015) and 
reduces inflammatory cytokines

High; non-invasive, 
abundant source, supports 
standardized production

[10, 
33, 
70]

PL-MSCs High; plentiful placental 
tissue, high cell yield per 
extraction

Low; immune-privi-
leged, low rejection 
risk

Suppresses inflammation and promotes 
lung repair in early clinical studies

High; abundant tissue 
source, feasible for large-
scale production

[73–
75]

Abbreviations: MSC Mesenchymal Stromal Cells; BM-MSC Bone Marrow-Derived MSCs; AT-MSC Adipose Tissue-Derived MSCs; UC-MSCs Umbilical Cord-Derived 
MSCs; PL-MSCs Placenta-Derived MSCs; ARDS Acute Respiratory Distress Syndrome; HLA Human Leukocyte Antigen; IV Intravenous; OR Odds Ratio
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markedly constrains their long-term therapeutic efficacy 
[92].

Preclinical studies consistently show that MSC therapy 
lowers mortality in ARDS animal models [11]. Clini-
cal trial outcomes have been heterogeneous. Open-label 
studies report promising results [82, 85, 93], but rigorous 
RCTs like START 2a have not confirmed significant mor-
tality reductions [79]. Meta-analyses have suggested that 
MSC therapy may reduce overall mortality in patients 
with ARDS, including those with COVID-19-associated 
ARDS. However, substantial heterogeneity among stud-
ies necessitates cautious interpretation [6, 94, 95]. Some 
studies have reported trends or statistically significant 
improvements in secondary endpoints [95, 96], including 
oxygenation and reductions in lung injury and inflamma-
tory biomarkers such as SP-D, Ang-2, and IL-6 [69, 79, 
84, 97]. Still, the impact of MSC therapy on ventilator 
duration and ICU stay remains uncertain [95].

To provide a comprehensive overview of clinical evi-
dence, the key studies evaluating MSC and MSC-derived 
therapies for ARDS are summarized in Table  2 [10, 12, 
30, 69, 75, 79, 84–86, 93, 96–104], highlighting study 
designs, MSC sources, dosing regimens, primary out-
comes, efficacy, and safety profiles.

Cell-free MSC-derived therapies
Concerns regarding live cell transplantation—such as 
tumorigenicity, alloimmune responses, and embolism 
risks—as well as standardization challenges, have driven 
the exploration of cell-free therapies derived from MSC 
secretions. EVs, including exosomes and microvesicles, 
are nanosized vesicles that transport proteins, lipids, 
messenger RNAs (mRNAs), and microRNAs (miRNAs), 
and play essential roles in intercellular communication 
[105]. Their advantages encompass low immunogenicity, 
capacity to traverse biological barriers, absence of prolif-
erative potential (reducing tumorigenic risk), and suit-
ability for standardized production and storage [71, 98, 
106]. Preclinical studies demonstrate that MSC-derived 
EVs can reduce inflammation, vascular permeability, and 
lung injury in ARDS models, often achieving therapeutic 
effects comparable to those of whole MSCs [7, 107–109], 
largely through transferring regulatory molecules like 
miRNAs (e.g., miR-223-3p [103], miR-27a-5p [104]) and 
mRNAs (e.g., Ang-1). Furthermore, preconditioning with 
agents such as interferon-γ (IFN-γ) [58], thrombin [110], 
or LPS [111], as well as genetic modifications, has been 
shown to augment EV therapeutic potency. In addition, 
nebulized administration of EVs has demonstrated supe-
rior anti-inflammatory effects in preclinical ARDS mod-
els [17, 112].

Clinically, Sengupta et al. demonstrated the safety and 
preliminary efficacy of ExoFlo™, a BM-MSC-derived 
EV product, in patients with severe COVID-19 [98]. In 

a randomized controlled trial, Lightner et al. observed 
a trend toward reduced mortality at specific dosages 
[12]. Moreover, Zarrabi et al. reported zero mortality in 
COVID-19 ARDS patients treated with a combination of 
MSCs and EVs [80, 84]. These early clinical findings high-
light the potential of EV-based therapies, though larger, 
well-powered trials are warranted to confirm efficacy and 
safety.

Conditioned medium (CM) encompasses MSC-
secreted soluble factors and EVs [25, 105]. Preclinical evi-
dence indicates that CM, containing abundant cytokines 
(e.g., IL-10), growth factors (e.g., HGF), and EVs, can 
exert therapeutic effects comparable to MSCs in alleviat-
ing lung injury and improving pulmonary function [25, 
105, 113, 114]. Similar to EVs, nebulized CM delivery has 
exhibited promising therapeutic outcomes in preclinical 
models, suggesting its potential as a noninvasive clinical 
administration route [76].

While preclinical studies highlight their anti-inflam-
matory and regenerative potential, direct clinical com-
parisons with whole MSCs are scarce. Ongoing trials 
(e.g., NCT03818854) are assessing the safety and effi-
cacy of EVs in ARDS, and may yield crucial insights into 
their translational potential. Engineered artificial exo-
somes have shown promise in enhancing ALI treatment 
[109]. Advances in bioreactor-based culture systems and 
standardized analytical methods, such as nanoparticle 
tracking analysis, are being explored to improve repro-
ducibility [115]. Thus, addressing these technical and 
regulatory hurdles is essential for translating exosome 
therapies into reliable clinical treatments for ARDS.

Despite their advantages in avoiding risks like embo-
lism and tumorigenicity, MSC-derived exosomes face 
significant challenges in standardization and batch con-
sistency. Variations in isolation methods (e.g., ultracen-
trifugation, size-exclusion chromatography), purification 
protocols, and characterization techniques can lead to 
inconsistent exosome yield, purity, and potency across 
batches. Furthermore, regulatory approval is hindered 
by their novel status and stringent safety requirements. 
These limitations pose major obstacles to the scalable 
clinical application of exosome-based therapies.

Efficacy across ARDS subtypes
The heterogeneous nature of ARDS shapes MSC thera-
peutic responses across its etiologies and immunologi-
cal profiles. Preclinical models, spanning LPS-induced, 
bacterial, viral, and ventilator-induced lung injury (VILI), 
consistently affirm MSC protective effects, albeit with 
varying degrees of responses [116]. However, the anti-
fibrotic effects of MSCs may differ between pulmonary 
and extrapulmonary ARDS models [22]. In smoke inha-
lation ARDS models, concomitant burn injuries may 
compromise MSC efficacy by diverting their homing to 
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cutaneous tissues, thus reducing pulmonary retention 
[117]. In models of ischemia-reperfusion injury, certain 
MSC subpopulations—such as multilineage-differentiat-
ing stress-enduring (Muse) cells—may exhibit superior 
therapeutic effects compared to those of conventional 
MSCs [118].

The COVID-19 pandemic significantly accelerated the 
clinical investigation of MSC therapy. Multiple RCTs 
and observational studies confirmed MSC safety, while 
meta-analyses suggested a potential reduction in mor-
tality among COVID-19 ARDS. However, despite these 
encouraging findings, robust clinical evidence supporting 
MSC efficacy in non-COVID-19 ARDS remains limited 
[6, 94, 95, 119]. Although large-scale RCTs have not con-
sistently achieved significant improvements in primary 
endpoints [96, 102], MSC safety is well-established, with 
some positive secondary outcome trends. Factors such 
as variations in control group treatments, baseline dis-
ease severity among enrolled patients, and differences in 
MSC preparation and administration protocols may help 
explain the discrepancies observed across clinical trials.

Furthermore, the underlying etiology of ARDS likely 
plays a crucial role in determining MSC therapeutic effi-
cacy. Most recent clinical trials have focused on COVID-
19-associated ARDS, which is characterized by a unique 
viral-induced endothelial injury and a specific cytokine 
storm profile. In this context, MSCs have shown promise 
in improving survival and reducing inflammatory mark-
ers in some studies [10, 99]. However, these findings may 
not be directly generalizable to ARDS from other causes, 
such as bacterial pneumonia, sepsis, or trauma, which 
involve different pathogenic mechanisms and immune 
responses. For instance, the ONE-BRIDGE trial specifi-
cally enrolled patients with pneumonia-induced ARDS 
and, while safe, did not reduce ventilator-free days [101]. 
This suggests that the therapeutic response to MSCs 
could be etiology-dependent. Future research must 
stratify results based on ARDS etiology to identify which 
patient populations are most likely to benefit and to tailor 
therapeutic strategies accordingly.

Distinct ARDS immunological phenotypes, including 
hyperinflammatory and hypoinflammatory subtypes, 
respond variably to MSC immunomodulatory effects 
[120]. Adjunctive approaches, such as antioxidant co-
administration, have also been shown to amplify MSC 
therapeutic effects [121], emphasizing the need to tailor 
therapy to ARDS immunophenotypes.

Subgroup analyses of MSC trials in ARDS suggest that 
younger patients (aged < 65 years) may derive greater 
therapeutic benefit [96] possibly owing to their more 
robust immune responsiveness and intrinsic regenerative 
capacity [10, 96, 122], which may potentiate the immuno-
modulatory and reparative effects of MSCs. In addition 
to age, the host’s inflammatory phenotype plays a critical Fi
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role in therapeutic response. For instance, a hyperin-
flammatory pulmonary milieu marked by elevated inter-
leukin-6 (IL-6) levels may attenuate MSC efficacy [66], 
potentially by overwhelming their immunoregulatory 
mechanisms. Conversely, patients exhibiting specific 
cytokine profiles—such as lower baseline IL-6 or dis-
tinct soluble tumor necrosis factor receptor 2 (sTNFR2) 
concentrations—appear to have more favorable clinical 
outcomes [30]. These beneficial responses may be medi-
ated, at least in part, by enhanced MSC-induced M2 
macrophage polarization [20, 21] and expansion of regu-
latory Tregs [23]. Together, these findings highlight the 
relevance of age and inflammatory biomarkers (e.g., IL-6, 
sTNFR2) in patient stratification and support the devel-
opment of biomarker-guided, personalized MSC thera-
pies for ARDS.

Of note, these differences may be partially explained by 
age-dependent variations in MSC potency and the host 
inflammatory microenvironment (see Mechanisms sec-
tion for details).

Challenges and future directions
Despite their potential, MSC therapies encounter signifi-
cant barriers to clinical implementation. The short-term 
safety of MSC therapy is firmly established [6, 67, 69, 
79, 83], with one-year follow-up data showing no nota-
ble adverse events [104]. However, potential long-term 
risks—such as immunogenicity, tumorigenicity, and pro-
coagulant effects—warrant ongoing surveillance and sys-
tematic evaluation [81].

Long-term safety and risks
MSCs and their derivatives generally exhibit low immu-
nogenicity [53, 123], with AdMSC-derived exosomes 
and Muse cells specifically noted for lacking tumorige-
nicity [53, 118]. However, concerns about the potential 
tumorigenicity of parental MSCs [124] and their incom-
plete immunological privilege [125] persist, occasion-
ally prompting strategies such as HLA downregulation 
to evade immune rejection [126]. Despite reassuring 
short-term findings, dedicated long-term monitoring 
is still needed to clarify risks such as tumorigenesis and 
immune responses following MSC therapy in ARDS sur-
vivors [125].

Limited follow-up duration remains a recognized 
challenge in this field. For instance, a systematic review 
by Kirkham et al. (2022) analyzing RCTs in COVID-
19 ARDS reported a median follow-up of only 28 days 
across the included studies, underscoring the evidence 
gap for long-term outcomes [94]. Recent long-term fol-
low-up (1–2 years) from clinical trials such as STROMA-
CoV-2 and REALIST-COVID in ARDS patients has 
demonstrated favorable safety profiles for UC-MSCs, 
with no significant increase in adverse events or mortality 

compared to placebo [102, 104]. Nevertheless, a critical 
need remains for extended (e.g., ≥ 5 years) surveillance 
protocols within future trials to rigorously assess latent 
risks like tumorigenesis or chronic immunogenicity. 
Ongoing post-treatment surveillance will be essential to 
ensure long-term safety.

Inconsistency among trials and solutions
Inconsistent clinical trial outcomes, particularly concern-
ing mortality, likely stem from variations in study design, 
patient diversity, and MSC properties. The dose-response 
relationship remains to be conclusively established and 
requires validation in larger-scale studies [79]. Key obsta-
cles to clinical translation include non-standardized MSC 
characterization, culture, post-cryopreservation viabil-
ity, batch consistency, and potency assays [13, 14, 127, 
128]. To enhance efficacy, several strategies have been 
explored, including enriching functional subsets (e.g., 
CD362 + MSCs) [102, 129] and improvement of MSC 
homing and survival within inflamed microenviron-
ments. Epigenetic HLA downregulation has been shown 
to reduce MSC immunogenicity [126], while gene modi-
fication [91, 92] and delivery optimization may help over-
come these limitations.

Future directions
Future studies must prioritize refining multiple facets 
of MSC therapy, including cell source selection, dosing 
regimens, and administration timing. Advanced cellu-
lar engineering strategies also hold considerable prom-
ise. For instance, preconditioning approaches such as 
hypoxia exposure [70], or cytokine stimulation [130] can 
prime MSCs for enhanced function. Moreover, gene-
editing technologies (e.g., CRISPR/Cas9) enable MSC 
modification to overexpress therapeutic mediators (Nrf2 
[131], IL-10 [44], IL-35 [132]) or enhance homing prop-
erties via ACE2 [36], ROR2 [90], or AT2R [91], represent-
ing a frontier in MSC functional optimization.

In parallel, addressing manufacturing consistency is 
crucial. The development of controlled manufacturing 
platforms, such as microcarrier-based microbioreac-
tors, can improve cell yield and standardize critical qual-
ity attributes (CQAs) far better than traditional flask 
cultures [128]. These advanced platforms, along with 
automated manufacturing systems, generate large, high-
quality datasets suitable for artificial intelligence (AI) and 
machine learning models [133]. AI-based quality control 
holds transformative potential: for instance, deep learn-
ing models can non-invasively predict MSC functional 
potency and heterogeneity through live-cell microscopy 
or label-free spectral data [134–136]. This high-through-
put, real-time method offers an alternative to conven-
tional destructive assays, enhancing batch selection and 
therapeutic consistency.
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Additionally, combination approaches—such as 
co-administration with antioxidants or glucocorti-
coids—warrant further investigation [137–139]. Paral-
lel efforts should be directed toward the development 
and standardization of MSC-derived extracellular vesi-
cles (EVs) and conditioned medium (CM), which repre-
sent promising cell-free alternatives. Priority should be 
given to conducting large-scale, multicenter RCTs (e.g., 
NCT03818854) and implementing adaptive clinical trial 
designs to rigorously assess the efficacy and safety of 
MSC-based therapies [94, 140].

Furthermore, exploring novel engineering strategies for 
MSCs, such as tailoring the MSC secretome or enhanc-
ing homing capacity, may help overcome translational 
barriers. Lastly, a critical innovative aspect for future 
research lies in dissecting the complex interplay between 
MSCs (or their derivatives) and the recipient’s immu-
nophenotype and ARDS etiology. This understanding is 
paramount for biomarker-guided patient stratification 
and the realization of precision medicine approaches, 
enabling more targeted and effective MSC applications in 
ARDS [121].

Conclusion
MSCs and their derivatives—including EVs and CM—
exert multifaceted therapeutic effects in ARDS through 
mechanisms such as immunomodulation, anti-inflam-
mation, antioxidation, and tissue repair. Accumulating 
preclinical studies and early-phase clinical trials, par-
ticularly those involving COVID-19-associated ARDS, 
have demonstrated their favorable safety profiles and 
suggested potential efficacy in specific patient subgroups. 
Nevertheless, the broad clinical translation of MSC-
based therapies faces significant hurdles, including the 
need for standardized manufacturing, optimization of 
dosing and administration protocols, and precise patient 
stratification. To advance the field, high-quality RCTs and 
precision medicine–oriented strategies will be essential 
to fully realize the therapeutic potential of MSCs and 
facilitate their integration into routine clinical practice. 
Future research should not only focus on refining existing 
approaches but also on pioneering innovative strategies, 
such as advanced cell engineering and biomarker-driven 
personalized therapies, to truly harness the promise of 
MSCs for ARDS patients.
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