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Mesenchymal stem cell therapies for ARDS: s
translational promise and challenges
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Abstract

Over the past decade, global investigations have rigorously assessed the safety and therapeutic potential of
mesenchymal stem cells (MSCs) in managing acute respiratory distress syndrome (ARDS). MSCs, obtained from
sources like bone marrow, adipose tissue, and umbilical cord, exert therapeutic effects in ARDS primarily through
complex paracrine mechanisms, including anti-inflammatory, immunoregulatory, pro-reparative, antioxidant,
antimicrobial, and mitochondrial transfer functions. Preclinical studies have consistently demonstrated significant
therapeutic benefits. Clinical trials have further confirmed a favorable safety profile, with no significant infusion-
related toxicity or serious adverse events observed even at higher doses (up to 10x 10° cells/kg) or following
multiple administrations. Yet, while some early-phase clinical trials have not conclusively demonstrated a significant
reduction in mortality among ARDS patients, multiple studies note diminished inflammatory biomarkers, enhanced
markers of endothelial and epithelial repair (e.g., angiopoietin-2), and suggestive benefits in subgroups like younger
patients or those receiving higher doses of viable cells. MSC-derived therapies, particularly extracellular vesicles
and conditioned medium, represent promising “cell-free” strategies that may overcome limitations associated

with live-cell therapy. Despite encouraging progress, clinical translation faces challenges, including optimizing

cell sources, preparation, dosing, delivery, and developing robust potency assays. Future research should prioritize
large, high-quality randomized trials to confirm efficacy across various ARDS etiologies and clinical phenotypes,
evaluate repeat dosing, and explore innovative strategies such as gene modification, cellular preconditioning,

and combination therapies. Collectively, MSCs and their derivatives hold substantial potential for ARDS treatment,
though their widespread application requires further validation and a deeper understanding of their interactions
with the complex ARDS microenvironment.
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Introduction

Acute respiratory distress syndrome (ARDS) is a life-
threatening condition characterized by disruption of
the alveolar-capillary barrier, pulmonary edema, severe
hypoxemia, and reduced lung compliance, precipitated by
diverse direct or indirect insults such as pneumonia, sep-
sis, trauma, or viral infections [1]. Despite improvements
in lung-protective ventilation strategies (e.g., low tidal
volume ventilation) and supportive therapies (e.g., extra-
corporeal membrane oxygenation [ECMO] and prone
positioning), the mortality rate of ARDS remains high
(30% — 40%), and no specific pharmacological treatment
has been demonstrated to be effective [2]. Consequently,
developing novel therapeutic approaches to improve
ARDS outcomes is of critical clinical importance.

Mesenchymal stem cells (MSCs), also referred to as
mesenchymal stromal cells, are adult stem cells charac-
terized by their multilineage differentiation potential,
self-renewal capability, and potent immunomodulatory
functions [3]. They can be isolated from multiple tis-
sues, including bone marrow (BM), adipose tissue (AT),
umbilical cord (UC), and placenta (PL) [4]. Over the past
decade, researchers worldwide have conducted exten-
sive preclinical and clinical studies to evaluate the safety
and efficacy of MSC-based therapies for the treatment of
ARDS [5, 6]. Extensive preclinical evidence has demon-
strated that MSCs significantly reduce lung injury and
improve survival in various ARDS animal models via
multiple mechanisms, including anti-inflammatory, anti-
apoptotic, epithelial, and endothelial repair, enhanced
bacterial clearance, and antioxidant activity [7-11]. These
encouraging preclinical findings have propelled clinical
translation; early-phase trials suggest MSC administra-
tion is safe and potentially improves outcomes in moder-
ate-to-severe ARDS patients [12].

MSC therapy is primarily indicated for moderate-to-
severe ARDS caused by diverse etiologies, particularly in
critically ill patients with multi-organ failure, with inclu-
sion criteria often based on partial pressure of oxygen
to fraction of inspired oxygen (PaO,/FiO,) ratios (e.g.,
<200 mmHg) and inflammatory biomarker levels [5, 10,
12, 13]. Clinical trials typically target the acute phase of
ARDS (within 96 h of diagnosis) to maximize the bene-
fit of early intervention in controlling inflammation and
lung damage [14]. However, MSC therapy remains inves-
tigational, requiring further evidence to confirm its effi-
cacy and safety. Here, we summarize the mechanisms of
MSC, their sources and delivery strategies, clinical out-
comes, cell-free derivatives, efficacy across ARDS sub-
types, and key challenges for future translation.

Therapeutic mechanisms of MSCs in ARDS
The therapeutic mechanisms of MSCs in ARDS are mul-
tifaceted and predominantly mediated through paracrine
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effects rather than long-term engraftment and differenti-
ation at injury sites [15]. The evidence-based mechanistic
network centered on MSCs and their therapeutic role in
ARDS is depicted in Fig. 1.

Immunomodulation

MSCs respond to inflammatory cues within the dam-
aged microenvironment by releasing a diverse repertoire
of soluble mediators and extracellular vesicles (EVs) that
modulate both innate and adaptive immune responses.
They suppress the expression of pro-inflammatory cyto-
kines such as TNF-a, IL-1f, IL-6, and MIP-2 [16-18],
while promoting anti-inflammatory mediators, notably
IL-10 [19, 20]. MSCs also shift macrophages from M1 to
M2 phenotypes [13, 21, 22], and balance Tregs against
Th17 cells to mitigate inflammation [23].

At the signaling level, MSCs exert critical immuno-
modulatory effects in ARDS by targeting multiple path-
ways. They significantly attenuate excessive inflammation
by inhibiting pro-inflammatory cascades, including the
nuclear factor kB (NF-kB) pathway, thereby reducing the
production of pro-inflammatory cytokines [24, 25]. MSCs
also modulate the receptor for advanced glycation end-
products (RAGE) [24] and Toll-like receptor 4 (TLR4)
[17, 26], both of which play pivotal roles in amplifying
inflammatory responses to tissue damage and patho-
gens, thus limiting further lung injury. Concurrently,
MSCs bolster cellular defense and repair mechanisms.
For instance, engagement of the nuclear factor erythroid
2-related factor 2 (Nrf2) pathway underpins broad cyto-
protective effects through its potent anti-inflammatory
and antioxidant actions [17, 25, 27]. These multifaceted
actions are complemented by the engagement with the
cholinergic anti-inflammatory pathway [28], the secre-
tion of anti-inflammatory mediators like tumor necrosis
factor-stimulated gene-6 (TSG-6) [29], and the regulation
of soluble TNF receptor 2 (STNFR2) [30], all contributing
to a more balanced immune response and promoting tis-
sue protection in the ARDS lung.

Enhanced alveolar-capillary barrier repair

Beyond immunomodulation, MSCs contribute to alve-
olar-capillary barrier repair. Studies have shown that
MSCs can reduce pulmonary vascular permeability
and alleviate pulmonary edema [13, 31], partly through
the secretion of growth factors such as angiopoietin-1
(Ang-1) [32], keratinocyte growth factor (KGF) [33],
hepatocyte growth factor (HGF) [34], and vascular endo-
thelial growth factor (VEGF) [35]. These factors support
the regeneration of alveolar epithelial and endothelial
cells, restore barrier integrity, and stabilize the vascu-
lar structure. MSCs also possess anti-fibrotic proper-
ties, as demonstrated by their ability to reduce collagen
deposition and attenuate lung structural abnormalities
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Fig. 1 lllustration of the multifaceted mechanisms by which MSCs exert therapeutic effects in ARDS and ALI. MSCs mediate immunomodulation by
interacting with immune cells to attenuate inflammation and promote tissue repair through modulation of epithelial and endothelial cells. They enhance
alveolar barrier integrity and cellular function via antioxidant activity, inhibition of ferroptosis, and mitochondrial transfer (via EVs or TNTs). These actions
collectively reduce cell death and improve oxygenation in ARDS/ALI. Key molecular mediators include cytokines (e.g., IL-10), chemokines (e.g., CXCL12),
microRNAs (e.g.,, miR-146a-5p), growth factors (e.g, HGF), transcription factors (e.g., STAT3), cell death regulators (e.g., caspase-1), and receptors (e.g.,
CXCR4) [32, 46,48, 52, 82, 108, etc]. ARDS: Acute respiratory distress syndrome; ALl: Acute Lung Injury”MSC: Mesenchymal Stem Cell~IL-10:Interleukin-
107 CXCL12:C-X-C Motif Chemokine Ligand 12~ miR-146a-5p: microRNA-146a-5p “HGF: Hepatocyte Growth Factor~STAT3:Signal Transducer and Activa-

tor of Transcription 3 Caspase-1:Cysteine-Aspartate Protease 1 CXCR4:C-X-C Motif Chemokine Receptor 4

in bleomycin- and paraquat-induced pulmonary fibrosis
models [36-38]. Moreover, MSCs safeguard pulmonary
cells by inhibiting apoptotic signaling, particularly by
regulating the Bax/Bcl-2 balance [39, 40].

Reduced oxidative stress

MSCs alleviate oxidative stress by decreasing the levels
of malondialdehyde (MDA) and reactive oxygen spe-
cies (ROS), and by enhancing the activities of superoxide
dismutase (SOD) and glutathione (GSH) [25, 41, 42]. In
infectious ARDS, MSCs also promote bacterial clearance,
which contributes to reduced pulmonary bacterial bur-
den and improved host defense [43, 44]. Moreover, the
Hippo pathway contributes to these antioxidant effects
by augmenting MSC antioxidant capabilities [45], further
protecting lung tissue.

Mitochondrial transfer
MSCs are capable of transferring functional mito-
chondria to various injured pulmonary cell types,

including alveolar epithelial cells, endothelial cells, and
macrophages [46]; this process directly impacts ARDS
outcomes through multiple mechanisms [33, 47]. A
primary effect of this transfer is the restoration of cel-
lular bioenergetic function. By delivering healthy mito-
chondria, typically via extracellular vesicles (EVs) [46]
or tunneling nanotubes (TNTs) [48], MSCs replenish
ATP supplies, enhance oxidative phosphorylation, and
improve oxygen consumption rates in recipient cells, all
of which are critical for cellular repair and survival in the
face of ARDS-induced metabolic stress [49—-51]. This bio-
energetic rescue is crucial for maintaining alveolar-capil-
lary barrier integrity, a key aspect compromised in ARDS
[50, 52].

Beyond direct bioenergetic recovery, mitochondrial
transfer also exerts significant anti-apoptotic effects. The
provision of functional mitochondria modulates apopto-
sis-related pathways, such as by increasing anti-apoptotic
Bcl-2 levels and preserving mitochondrial membrane
potential, thereby protecting lung cells from programmed
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cell death [53-55]. For instance, MSC-derived exosomes
facilitate mitochondrial transfer to alveolar macro-
phages, enhancing not only their bioenergetics but also
their homeostasis, and phagocytic capacity, while shift-
ing them towards an anti-inflammatory phenotype, all
contributing to the resolution of inflammation and tissue
repair [46, 48, 53]. Furthermore, mitochondrial transfer
to pulmonary endothelial cells can activate metabolic
pathways like the TCA cycle, promoting endothelial pro-
liferation, the release of pro-angiogenic factors, and ulti-
mately enhancing vascular regeneration, which is vital for
repairing the damaged lung vasculature in ARDS [51, 52].

Other mechanisms

Emerging evidence indicates MSCs may also mitigate
lung inflammation and injury by modulating gut microbi-
ota, suggesting a regulatory role via the lung-gut axis [26,
56, 57]. Substantial evidence indicates that MSC engraft-
ment in lung tissue is generally low and short-lived fol-
lowing transplantation [8]. Thus, their therapeutic impact
primarily stems from paracrine signaling, involving the
secretion of soluble factors like IL-10 and transforming
growth factor-beta (TGF-), alongside EVs, which deliver
anti-inflammatory signals, boost macrophage phagocyto-
sis, and promote tissue regeneration [15-17, 58].

Donor age and host microenvironment

The therapeutic effects of MSCs are not only determined
by their inherent properties but also critically influenced
by donor age and the recipient’s inflammatory microen-
vironment. MSCs derived from younger donors typically
demonstrate superior regenerative potential compared
to those from aged sources. MSCs from older individu-
als often exhibit signs of cellular senescence, including
shortened telomeres, reduced proliferative capacity, and
diminished differentiation potential [59-61]. This age-
related decline in MSC “fitness” is also associated with
increased oxidative damage, higher levels of reactive
oxygen species (ROS), and upregulation of senescence-
related genes like p21 and p53 [62]. In addition, senescent
MSCs frequently shift toward a pro-inflammatory senes-
cence-associated secretory phenotype (SASP), character-
ized by reduced secretion of reparative paracrine factors
such as HGF and IL-10, and increased release of inflam-
matory mediators, thereby impairing their immunomod-
ulatory and reparative capacities [63—65].

The host microenvironment also plays a crucial role
in regulating MSC function. A highly inflammatory
milieu—particularly one with elevated IL-6—elevated
IL-6, can compromise MSC immunoregulatory activity
by disrupting key intracellular signaling pathways such as
STAT3 or NF-«B [64, 66]. Conversely, a less hostile and
more balanced immune environment, often observed in
younger patients, may facilitate MSC survival, retention,
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and therapeutic efficacy. This dynamic interplay between
donor cell characteristics and recipient immunologic sta-
tus highlights the importance of considering both intrin-
sic and extrinsic factors when optimizing MSC-based
therapies for ARDS.

MSC sources and their characteristics

MSCs can be sourced from various tissues, with BM-
MSCs, AT-MSCs, UC-MSCs, PL-MSCs, and menstrual
blood (Menstrual blood-MSC) being commonly stud-
ied in preclinical and clinical settings [4]. Each source
presents unique advantages and limitations regarding
availability, proliferative capacity, immunomodulatory
potential, and ethical considerations. A comparative
overview of the characteristics and therapeutic features
of MSCs from different sources in ARDS is presented in
Table 1.

BM-MSCs

BM-MSCs are among the most extensively studied MSC
types and are known for their potent immunomodulatory
properties [16]. Hao et al. reported that BM-MSCs sig-
nificantly attenuated LPS-induced pulmonary edema and
inflammation, although their effects on reducing alveolar
protein leakage were limited [13]. The START clinical tri-
als confirmed that a single intravenous infusion of BM-
MSCs at doses up to 10x 10° cells/kg was well tolerated
[67]. Nevertheless, BM-MSCs face challenges, including
an invasive harvesting procedure and diminished yield
and proliferative capacity with advancing donor age.

AT-MSCs

AT-MSCs can be harvested in large quantities through
liposuction; however, they exhibit greater heterogeneity
and tend to have shorter pulmonary retention times in
ARDS models [68]. Zheng et al. reported that treatment
with AD-MSCs resulted in decreased levels of surfactant
protein-D (SP-D), yet primary clinical outcomes showed
no significant improvement [69].

UC-MSCs

UC-MSCs, sourced from abundant, ethically unconten-
tious materials (often considered medical waste), exhibit
youthful cellular vigor, robust proliferation, and low
immunogenicity, rendering them highly appealing for
clinical studies [31, 70-72]. Lanzoni et al. reported that
treatment with UC-MSCs in patients with COVID-19-as-
sociated ARDS led to improved survival and decreased
levels of inflammatory cytokines [10]. Both in vitro and
animal studies have indicated that UC-MSCs exhibit
therapeutic efficacy comparable to BM-MSCs [43].
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Table 1 Comparison of MSC sources for ARDS treatment

MSC Source  Yield Immunogenicity Clinical Efficacy Scalability Refer-

ence

BM-MSCs Moderate; limited by Moderate; requires Improves oxygenation and reduces Low; invasive collection [13,
invasive bone marrow HLA matching to inflammation in ARDS; mixed results in and complex expansion 16,
aspiration, requires in vitro  reduce rejection risk  clinical trials (e.g., 28-day mortality 30%  limit large-scale production 79]
expansion vs. 15%, P=0.58)

AT-MSCs High; abundant adipose tis-  Low; minimal rejec- Reduces inflammation and improves High; minimally invasive, [68,
sue via liposuction, high cell  tion risk in allogeneic  lung function in preclinical and early standardized liposuc- 69]
yield per procedure use clinical studies tion enables large-scale

production

UC-MSCs High; umbilical cord tissue  Low; suitable for al- Significantly improves survival in COVID-  High; non-invasive, [0,
readily available, efficientin  logeneic therapy due 19 ARDS (91% vs. 42%, P = 0.015) and abundant source, supports 33,
vitro expansion to immune-privileged reduces inflammatory cytokines standardized production 70]

status

PL-MSCs High; plentiful placental Low; immune-privi- Suppresses inflammation and promotes  High; abundant tissue [73-
tissue, high cell yield per leged, low rejection lung repair in early clinical studies source, feasible for large- 75]

extraction risk

scale production

Abbreviations: MSC Mesenchymal Stromal Cells; BM-MSC Bone Marrow-Derived MSCs; AT-MSC Adipose Tissue-Derived MSCs; UC-MSCs Umbilical Cord-Derived
MSCs; PL-MSCs Placenta-Derived MSCs; ARDS Acute Respiratory Distress Syndrome; HLA Human Leukocyte Antigen; IV Intravenous; OR Odds Ratio

PL-MSCs

PL-MSCs, which are similarly abundant, highly prolif-
erative, and exhibit low immunogenicity, demonstrate
potent anti-inflammatory properties via IL-10/STAT3/
NLRP3 axis [73] and are considered suitable for standard-
ized production. Xu et al. demonstrated that PL-MSCs
attenuate LPS-induced increases in endothelial perme-
ability and reduce pulmonary injury [74]. A phase I clini-
cal trial in patients with COVID-19-associated ARDS
confirmed the safety of intravenous infusion of PL-MSCs;
however, no significant differences in therapeutic efficacy
were observed compared to the control group [75].

Administration and clinical outcomes

Intravenous (IV) infusion remains the predominant clini-
cal delivery method due to its practicality, yet it encoun-
ters a “first-pass effect,” where many cells are temporarily
sequestered in the pulmonary vasculature before redis-
tribution or clearance [68]. Intratracheal (IT) administra-
tion and nebulization allow direct delivery to the lungs,
potentially enhancing local therapeutic effects. Numer-
ous preclinical studies affirm their feasibility and efficacy
[16, 17, 76, 77], though their clinical safety and effective-
ness await further validation. Intrapleural administration
has also been investigated and is believed to exert thera-
peutic effects primarily through paracrine mechanisms
[15].

Preclinical studies have explored diverse dosing regi-
mens, whereas clinical trials typically administer doses
between 1x10° and 10x 10° cells per kilogram [6, 78],
with the START trial confirming IV tolerability up to
10 x 10° cells/kg [79]. However, higher doses may increase
the risk of adverse events such as fever and coagulopa-
thy [80, 81]. Most studies favor single doses [69, 79], but
some trials have evaluated multiple dosing regimens (e.g.,

on days 0 and 3, or two to four infusions), demonstrat-
ing safety and suggesting possible benefits in survival and
pulmonary function [82-86].

The dose-response relationship in MSC therapy for
ARDS reveals conflicting evidence. While the START
2a trial (10x 10° cells/kg) found no mortality reduction
(30% vs. 15%, P=0.58), it noted improved oxygenation
and reduced endothelial injury with higher viable cell
counts [79]. In contrast, Lanzoni et al. (100 x10° cells,
two doses) observed significant survival benefits (91% vs.
42%, P=0.015) [10]. Preclinical data suggest higher doses
enhance efficacy [87, 88]. Variability may stem from cell
viability [12], host microenvironment (e.g., inflammation,
comorbidities) [66], and ARDS heterogeneity. Optimiz-
ing cell viability and tailoring dosing strategies to individ-
ual patient contexts may improve therapeutic outcomes.
Patient-stratified trials are warranted to clarify dosing
strategies.

Preclinical evidence suggests that early administration
of MSCs—within 24 h after injury—yields superior out-
comes compared to delayed administration (e.g., after
48 h), including enhanced anti-inflammatory effects
and improved pulmonary retention [68, 80, 88]. In clini-
cal trials, MSC therapy is typically initiated within 48 to
96 h following ARDS diagnosis [79]. Sanchez-Guijo et
al. observed a higher rate of extubation in patients who
received treatment within 48 h [83]. The optimal timing
for MSC intervention—whether during the early inflam-
matory phase or the later reparative phase—remains
unclear and warrants further investigation [89].

Following IV infusion, MSCs primarily localize to the
lungs, where they exhibit transient retention [8]. Lung
injury has been shown to enhance the homing capacity
of MSCs through chemokine-mediated mechanisms [90,
91], though their limited post-transplantation survival
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markedly constrains their long-term therapeutic efficacy
[92].

Preclinical studies consistently show that MSC therapy
lowers mortality in ARDS animal models [11]. Clini-
cal trial outcomes have been heterogeneous. Open-label
studies report promising results [82, 85, 93], but rigorous
RCTs like START 2a have not confirmed significant mor-
tality reductions [79]. Meta-analyses have suggested that
MSC therapy may reduce overall mortality in patients
with ARDS, including those with COVID-19-associated
ARDS. However, substantial heterogeneity among stud-
ies necessitates cautious interpretation [6, 94, 95]. Some
studies have reported trends or statistically significant
improvements in secondary endpoints [95, 96], including
oxygenation and reductions in lung injury and inflamma-
tory biomarkers such as SP-D, Ang-2, and IL-6 [69, 79,
84, 97]. Still, the impact of MSC therapy on ventilator
duration and ICU stay remains uncertain [95].

To provide a comprehensive overview of clinical evi-
dence, the key studies evaluating MSC and MSC-derived
therapies for ARDS are summarized in Table 2 [10, 12,
30, 69, 75, 79, 84-86, 93, 96-104], highlighting study
designs, MSC sources, dosing regimens, primary out-
comes, efficacy, and safety profiles.

Cell-free MSC-derived therapies
Concerns regarding live cell transplantation—such as
tumorigenicity, alloimmune responses, and embolism
risks—as well as standardization challenges, have driven
the exploration of cell-free therapies derived from MSC
secretions. EVs, including exosomes and microvesicles,
are nanosized vesicles that transport proteins, lipids,
messenger RNAs (mRNAs), and microRNAs (miRNAs),
and play essential roles in intercellular communication
[105]. Their advantages encompass low immunogenicity,
capacity to traverse biological barriers, absence of prolif-
erative potential (reducing tumorigenic risk), and suit-
ability for standardized production and storage [71, 98,
106]. Preclinical studies demonstrate that MSC-derived
EVs can reduce inflammation, vascular permeability, and
lung injury in ARDS models, often achieving therapeutic
effects comparable to those of whole MSCs [7, 107-109],
largely through transferring regulatory molecules like
miRNAs (e.g., miR-223-3p [103], miR-27a-5p [104]) and
mRNAs (e.g., Ang-1). Furthermore, preconditioning with
agents such as interferon-y (IFN-y) [58], thrombin [110],
or LPS [111], as well as genetic modifications, has been
shown to augment EV therapeutic potency. In addition,
nebulized administration of EVs has demonstrated supe-
rior anti-inflammatory effects in preclinical ARDS mod-
els [17,112].

Clinically, Sengupta et al. demonstrated the safety and
preliminary efficacy of ExoFlo™, a BM-MSC-derived
EV product, in patients with severe COVID-19 [98]. In
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a randomized controlled trial, Lightner et al. observed
a trend toward reduced mortality at specific dosages
[12]. Moreover, Zarrabi et al. reported zero mortality in
COVID-19 ARDS patients treated with a combination of
MSCs and EVs [80, 84]. These early clinical findings high-
light the potential of EV-based therapies, though larger,
well-powered trials are warranted to confirm efficacy and
safety.

Conditioned medium (CM) encompasses MSC-
secreted soluble factors and EVs [25, 105]. Preclinical evi-
dence indicates that CM, containing abundant cytokines
(e.g., IL-10), growth factors (e.g., HGF), and EVs, can
exert therapeutic effects comparable to MSCs in alleviat-
ing lung injury and improving pulmonary function [25,
105, 113, 114]. Similar to EVs, nebulized CM delivery has
exhibited promising therapeutic outcomes in preclinical
models, suggesting its potential as a noninvasive clinical
administration route [76].

While preclinical studies highlight their anti-inflam-
matory and regenerative potential, direct clinical com-
parisons with whole MSCs are scarce. Ongoing trials
(e.g., NCT03818854) are assessing the safety and effi-
cacy of EVs in ARDS, and may yield crucial insights into
their translational potential. Engineered artificial exo-
somes have shown promise in enhancing ALI treatment
[109]. Advances in bioreactor-based culture systems and
standardized analytical methods, such as nanoparticle
tracking analysis, are being explored to improve repro-
ducibility [115]. Thus, addressing these technical and
regulatory hurdles is essential for translating exosome
therapies into reliable clinical treatments for ARDS.

Despite their advantages in avoiding risks like embo-
lism and tumorigenicity, MSC-derived exosomes face
significant challenges in standardization and batch con-
sistency. Variations in isolation methods (e.g., ultracen-
trifugation, size-exclusion chromatography), purification
protocols, and characterization techniques can lead to
inconsistent exosome yield, purity, and potency across
batches. Furthermore, regulatory approval is hindered
by their novel status and stringent safety requirements.
These limitations pose major obstacles to the scalable
clinical application of exosome-based therapies.

Efficacy across ARDS subtypes

The heterogeneous nature of ARDS shapes MSC thera-
peutic responses across its etiologies and immunologi-
cal profiles. Preclinical models, spanning LPS-induced,
bacterial, viral, and ventilator-induced lung injury (VILI),
consistently affirm MSC protective effects, albeit with
varying degrees of responses [116]. However, the anti-
fibrotic effects of MSCs may differ between pulmonary
and extrapulmonary ARDS models [22]. In smoke inha-
lation ARDS models, concomitant burn injuries may
compromise MSC efficacy by diverting their homing to
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role in therapeutic response. For instance, a hyperin-
flammatory pulmonary milieu marked by elevated inter-
leukin-6 (IL-6) levels may attenuate MSC efficacy [66],
potentially by overwhelming their immunoregulatory
mechanisms. Conversely, patients exhibiting specific
cytokine profiles—such as lower baseline IL-6 or dis-
tinct soluble tumor necrosis factor receptor 2 (sSTNFR2)
concentrations—appear to have more favorable clinical
outcomes [30]. These beneficial responses may be medi-
ated, at least in part, by enhanced MSC-induced M2
macrophage polarization [20, 21] and expansion of regu-
latory Tregs [23]. Together, these findings highlight the
relevance of age and inflammatory biomarkers (e.g., IL-6,
STNFR2) in patient stratification and support the devel-
opment of biomarker-guided, personalized MSC thera-
pies for ARDS.

Of note, these differences may be partially explained by
age-dependent variations in MSC potency and the host
inflammatory microenvironment (see Mechanisms sec-
tion for details).

Challenges and future directions

Despite their potential, MSC therapies encounter signifi-
cant barriers to clinical implementation. The short-term
safety of MSC therapy is firmly established [6, 67, 69,
79, 83], with one-year follow-up data showing no nota-
ble adverse events [104]. However, potential long-term
risks—such as immunogenicity, tumorigenicity, and pro-
coagulant effects—warrant ongoing surveillance and sys-
tematic evaluation [81].

Long-term safety and risks

MSCs and their derivatives generally exhibit low immu-
nogenicity [53, 123], with AdMSC-derived exosomes
and Muse cells specifically noted for lacking tumorige-
nicity [53, 118]. However, concerns about the potential
tumorigenicity of parental MSCs [124] and their incom-
plete immunological privilege [125] persist, occasion-
ally prompting strategies such as HLA downregulation
to evade immune rejection [126]. Despite reassuring
short-term findings, dedicated long-term monitoring
is still needed to clarify risks such as tumorigenesis and
immune responses following MSC therapy in ARDS sur-
vivors [125].

Limited follow-up duration remains a recognized
challenge in this field. For instance, a systematic review
by Kirkham et al. (2022) analyzing RCTs in COVID-
19 ARDS reported a median follow-up of only 28 days
across the included studies, underscoring the evidence
gap for long-term outcomes [94]. Recent long-term fol-
low-up (1-2 years) from clinical trials such as STROMA-
CoV-2 and REALIST-COVID in ARDS patients has
demonstrated favorable safety profiles for UC-MSCs,
with no significant increase in adverse events or mortality
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compared to placebo [102, 104]. Nevertheless, a critical
need remains for extended (e.g., >5 years) surveillance
protocols within future trials to rigorously assess latent
risks like tumorigenesis or chronic immunogenicity.
Ongoing post-treatment surveillance will be essential to
ensure long-term safety.

Inconsistency among trials and solutions

Inconsistent clinical trial outcomes, particularly concern-
ing mortality, likely stem from variations in study design,
patient diversity, and MSC properties. The dose-response
relationship remains to be conclusively established and
requires validation in larger-scale studies [79]. Key obsta-
cles to clinical translation include non-standardized MSC
characterization, culture, post-cryopreservation viabil-
ity, batch consistency, and potency assays [13, 14, 127,
128]. To enhance efficacy, several strategies have been
explored, including enriching functional subsets (e.g.,
CD362 +MSCs) [102, 129] and improvement of MSC
homing and survival within inflamed microenviron-
ments. Epigenetic HLA downregulation has been shown
to reduce MSC immunogenicity [126], while gene modi-
fication [91, 92] and delivery optimization may help over-
come these limitations.

Future directions

Future studies must prioritize refining multiple facets
of MSC therapy, including cell source selection, dosing
regimens, and administration timing. Advanced cellu-
lar engineering strategies also hold considerable prom-
ise. For instance, preconditioning approaches such as
hypoxia exposure [70], or cytokine stimulation [130] can
prime MSCs for enhanced function. Moreover, gene-
editing technologies (e.g., CRISPR/Cas9) enable MSC
modification to overexpress therapeutic mediators (Nrf2
[131], IL-10 [44], IL-35 [132]) or enhance homing prop-
erties via ACE2 [36], ROR2 [90], or AT2R [91], represent-
ing a frontier in MSC functional optimization.

In parallel, addressing manufacturing consistency is
crucial. The development of controlled manufacturing
platforms, such as microcarrier-based microbioreac-
tors, can improve cell yield and standardize critical qual-
ity attributes (CQAs) far better than traditional flask
cultures [128]. These advanced platforms, along with
automated manufacturing systems, generate large, high-
quality datasets suitable for artificial intelligence (AI) and
machine learning models [133]. Al-based quality control
holds transformative potential: for instance, deep learn-
ing models can non-invasively predict MSC functional
potency and heterogeneity through live-cell microscopy
or label-free spectral data [134—136]. This high-through-
put, real-time method offers an alternative to conven-
tional destructive assays, enhancing batch selection and
therapeutic consistency.
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Additionally, combination approaches—such as
co-administration with antioxidants or glucocorti-
coids—warrant further investigation [137-139]. Paral-
lel efforts should be directed toward the development
and standardization of MSC-derived extracellular vesi-
cles (EVs) and conditioned medium (CM), which repre-
sent promising cell-free alternatives. Priority should be
given to conducting large-scale, multicenter RCTs (e.g.,
NCT03818854) and implementing adaptive clinical trial
designs to rigorously assess the efficacy and safety of
MSC-based therapies [94, 140].

Furthermore, exploring novel engineering strategies for
MSCs, such as tailoring the MSC secretome or enhanc-
ing homing capacity, may help overcome translational
barriers. Lastly, a critical innovative aspect for future
research lies in dissecting the complex interplay between
MSCs (or their derivatives) and the recipient’s immu-
nophenotype and ARDS etiology. This understanding is
paramount for biomarker-guided patient stratification
and the realization of precision medicine approaches,
enabling more targeted and effective MSC applications in
ARDS [121].

Conclusion

MSCs and their derivatives—including EVs and CM—
exert multifaceted therapeutic effects in ARDS through
mechanisms such as immunomodulation, anti-inflam-
mation, antioxidation, and tissue repair. Accumulating
preclinical studies and early-phase clinical trials, par-
ticularly those involving COVID-19-associated ARDS,
have demonstrated their favorable safety profiles and
suggested potential efficacy in specific patient subgroups.
Nevertheless, the broad clinical translation of MSC-
based therapies faces significant hurdles, including the
need for standardized manufacturing, optimization of
dosing and administration protocols, and precise patient
stratification. To advance the field, high-quality RCTs and
precision medicine—oriented strategies will be essential
to fully realize the therapeutic potential of MSCs and
facilitate their integration into routine clinical practice.
Future research should not only focus on refining existing
approaches but also on pioneering innovative strategies,
such as advanced cell engineering and biomarker-driven
personalized therapies, to truly harness the promise of
MSCs for ARDS patients.
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