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Simple Summary: Hepatocellular carcinoma is one of the leading causes of cancer-related deaths
worldwide. An image fusion system is developed for the robotic-assisted treatment of hepatocellular
carcinoma, which is not only capable of imaging data interpretation and reconstruction, but also
automatic tumor detection. The optimization and integration of the image fusion system within a
novel robotic system has the potential to demonstrate the feasibility of the robotic-assisted targeted
treatment of hepatocellular carcinoma by showing benefits such as precision, patients safety and
procedure ergonomics.

Abstract: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths
worldwide, with its mortality rate correlated with the tumor staging; i.e., early detection and treatment
are important factors for the survival rate of patients. This paper presents the development of a
novel visualization and detection system for HCC, which is a composing module of a robotic system
for the targeted treatment of HCC. The system has two modules, one for the tumor visualization
that uses image fusion (IF) between computerized tomography (CT) obtained preoperatively and
real-time ultrasound (US), and the second module for HCC automatic detection from CT images.
Convolutional neural networks (CNN) are used for the tumor segmentation which were trained
using 152 contrast-enhanced CT images. Probabilistic maps are shown as well as 3D representation
of HCC within the liver tissue. The development of the visualization and detection system represents
a milestone in testing the feasibility of a novel robotic system in the targeted treatment of HCC.
Further optimizations are planned for the tumor visualization and detection system with the aim of
introducing more relevant functions and increase its accuracy.

Keywords: hepatocellularcarcinoma; imagefusion; ultrasound; targetedtreatment; robotic-assistedtreatment

1. Introduction

Hepatocellular carcinoma (HCC) is the third global leading cause of cancer-related deaths [1].
Ultrasound (US) imaging plays an important role in both the diagnosis and the therapy of HCC;
despite the major limitations of US imaging (e.g., diagnostic efficacy is reduced in the case of small,
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isoechoic lesions or those located subphrenically [2]), it show some important advantages, such as
reproducibility, repeatability, low cost and availability. Furthermore, US imaging is used in the
treatment of HCC, especially with thermal-based ablative therapies. However, inconspicuous HCC
lesions are hard to target on gray scale US, and could therefore negatively affect the outcome of these
procedures. In these cases, further imaging using computed tomography (CT) or magnetic resonance
imaging (MRI) is required, which leads to increased costs.

Recently, image fusion (IF) systems, which combine real time, gray scale US/CEUS
(Contrast-enhanced ultrasound) with multiplanar CT/MRI/PET-CT (Positron emission
tomography–computed tomography), were evaluated for the diagnosis and management of
HCC. These image guiding systems combine the advantages of multiple medical imaging technologies
such as the real-time visualization of planar sections of 3D (tissue) shapes from CT/MRI/PET-CT
using US probes by merging the US imaging plane with planes of volumetric information obtained
previously (preoperatively). However, IF systems also have limitation, e.g., the volumetric information
is static, and dynamic modeling for tissue elasticity, deformation etc., is challenging or slow. IF and
the use of US were previously investigated in the scientific literature for various robotic-assisted
medical procedures. In [3], the authors present a method of integrating endomicroscopy and US
imaging into a single two DoF robotic instrument, providing the surgeon with the possibility to
assess superficial tumor margins in high resolution and determining the underlying structure of
the tumor with US. Research conducted at the University of British Columbia [4] has proposed a
partial augmented reality system with live ultrasound and registered preoperative MRI for guiding
robot-assisted radical prostatectomy, while researchers at The Johns Hopkins School of Medicine
in Baltimore have researched methods to overcome the limitations of standard TRUS biopsy by
implementing a steady and reproducible motion device (i.e., robot) and a tridimensional reconstruction
software [5]. Furthermore, the possibility of robotic transrectal ultrasound-guided prostate biopsy has
been investigated in [6], using a hands-free probe manipulator, mimicking the same four degrees of
freedom that are used manually. Robotic systems (such as [7,8]) may also offer alternative solutions for
the image guiding systems using US imaging since the position of the US probe (which is required
for an adequate fusion and may be achieved e.g., with electromagnetic tracking [9]) is known via the
kinematic models of the robots. In [8], the authors discuss the viability of robotic-assisted brachytherapy
and intratumoral-targeted chemotherapy with respect to the technical challenges that the robotic system
must overcome in order to ensure patient safety and procedure ergonomics. Although brachytherapy
was used alone [10] or in combination with intratumoral chemotherapy [11] for liver cancers treatment,
these therapeutic methods are not yet explored (to the authors best knowledge) for the robotic-assisted
treatment of HCC.

The aim of this paper is to present the development of a novel detection and visualization system
for HCC which is designed for the robotic-assisted targeted treatment of HCC, with a previously
introduced robotic system (Pro-Hep-LCT) [7]. The detection and visualization system consists of two
main functional modules: one IF module which combines intraoperatory US (due to availability) with
preoperative CT imaging, and one automatic HCC detection module able to pinpoint the position and
the anatomic details of HCC. The development of the IF system is a milestone for the experimental
model of the Pro-Hep-LCT robotic system, which in turn will allow the testing of the feasibility of
robotic-assisted treatment of HCC using brachytherapy or intratumoral-targeted chemotherapy.

The paper is structured as follows: Section 2 presents a background of image fusion technologies
with respect to the HCC management. Furthermore, Section 2 presents novel robotic systems proposed
for the targeted treatment of HCC. Section 3 presents the methods use in the development of the IF
system and the system integration into the Pro-Hep-LCT robotic system. Section 4 presents results
regarding the IF system, and, finally, the conclusion is presented in Section 5.
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2. Background

2.1. Image Fusiuon Systems—General Considerations

Medical IF is defined as overlaying or spatially matching images from one or more imaging
modalities [12]. In order to fuse medical images, a rigid or elastic spatial co-registration of pixels
is required. This implies a two-step procedure: image registration and data re-slicing. With rigid
co-registration, only translation (panning) and rotation are possible. In the case of elastic co-registration
rotation, translation and localized stretching are possible. This improves the matching of anatomical
structures [13].

Most systems use rigid transformation matrices (for the dataset correlation between the imaging
techniques), since fewer co-registration points are required (when compared to nonrigid transformation
matrices). The main limitations of these systems are the absence of compensation for respiration
and patient movement, which in most cases cause misalignment. To optimize the alignment of the
images, the co-registration should be made in the same respiratory phase as the previously acquired
dataset, especially when examining organs that move a lot according to the respiration, for instance,
lungs, liver, and spleen. Co-registration can be automatic, using fiducial, external markers, or manual,
using anatomical points (landmark) or plane matching (e.g., umbilicus, nipples). The umbilicus or
nipple level provide the rough alignment while the matched anatomical points provide the fine-tuning.
Specific point matching in the liver often involves the falciform ligament, portal vein, vessel branching
points, calcifications, cysts or previously treated lesions [14].

However, fiducial markers are frequently used along with anatomical landmarks to increase the
precision of the method. Fiducial markers attached to the body surface around a target organ contain
position sensor coils that increase the accuracy of image fusion.

Image-guidance systems based on fiducial registration typically display some measure of
registration accuracy. There are three types of errors that are usually used in these analyses: fiducial
localization error (FLE), fiducial registration error (FRE) and target registration error (TRE). FLE is the
error in localizing the fiducial point, and it is the fundamental cause of the inaccuracy in point-based
registration. FRE is the distance between fiducial points after registration. The TRE for a target point is
the distance between its registered point and its true corresponding point in the other space. TRE is
usually the most clinically relevant error. Since FLE is the basic cause of TRE, estimation of FLE in a
single instance of registration is very important in the optimization of point-based registration [15,16].

There are several methods to enable navigation during image-guided procedures with co-display
of multiple datasets: electromagnetic and optical tracking provide real-time position data for tracked
instruments in a virtual space, while cone beam CT-based navigation permits registration of 3D datasets
with fluoroscopy for real-time instrument localization. Most of the systems used for liver imaging and
image fusion guided procedures are based on an electromagnetic tracking system. A transmitter and a
small sensor are mounted on the US probe providing the position and orientation of the transducer
in the spatial volume. The previously recorded CT, MRI or PET/CT dataset is transferred to the US
system, and a co-registration from external and internal markers is performed. Afterwards, the CT,
MRI, or PET/CT dataset is reformatted in a projection to fit the real-time US image [12].

Regarding ablative therapies of liver tumors, the standard clinical technique involves free hand
transcutaneous ultrasonography (TCUS) in conjunction with manual positioning of the tissue ablator.
TCUS fails to identify nearly half of all treatable liver lesions, whereas intraoperative or laparoscopic US
provides excellent tissue differentiation. Furthermore, freehand manipulation of the US probe critically
lacks the level of control, accuracy, and stability required for guiding liver ablation. In response to
these limitations, the investigators from Perk Lab at Queens University proposed the use of a fully
encoded dexterous robotic arm to manipulate the US probe during surgery. Moreover, investigators
proposed a solution of tracking both US and radiofrequency ablation probes for better accuracy in
targeting the tumor, reducing the time required for the operation, and minimizing the dependency of
the surgical experience [17].
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2.2. Image Fusion and the Locoregional Therapies of HCC

Locoregional ablative therapies for HCC include curative (thermal ablation) and non-curative
(transarterial chemoembolization and transarterial radioembolization) procedures, as well as
combinations of these [18]. In most liver interventions, intraoperative ultrasound has become
the standard for image guidance. However, ultrasound is a low signal-to-noise imaging modality,
and it is difficult to localize the center of a three-dimensional target. Computed tomography (CT) scans
or magnetic resonance images (MRI) are also used for image guided procedures. Tumor information
determined from CT imaging can be overlaid onto laparoscopic video imaging to allow for more
precise resection or ablation [19,20]. Evidence found in the literature suggests that IF significantly
improves tumor detection (in contrast to US alone) [21,22], which in turn facilitates accurate targeting
and achieves adequate ablative margins. However, Pulse Wave (PW) Doppler or Continuous Wave
(CW) Doppler shows better lesion visualization when compared to classic US [23].

Moreover, in [10], the authors reported that Iodine-125 brachytherapy may prolong the progression
free survival of patients with residual HCC after being previously treated using RFA. This evidence
shows the feasibility of brachytherapy for specific cases of HCC. Furthermore, in [11], the effect
of chemoembolization combined with brachytherapy was studied, showing positive effects for the
progression free survival. It is also pointed out in [11] that adequate image guidance increase the
overall procedure accuracy and patient safety.

2.3. Limitations of Image Fusion

Most commercially available IF systems are based on rigid registration, which lacks compensating
patient respiration and movement [12]. Since the usual reference datasets (CT, MRI, or PET/CT)
are obtained with the patients in a breath-holding state, they contain static images. In comparison,
a working dataset (real-time US) is affected by tissue deformation due to the patient’s breathing and
movement. Moreover, the position of patients during a real-time US examination can differ from
the one during CT/MRI acquisition [24]. In a previous study, the mean maximum registration error
between real-time US and fused CT images was 11.5 mm in patients with hepatic metastasis [25].

2.4. Robotic-Assisted Targeted HCC Treatment

With respect to the current state of the art regarding the targeted treatment of HCC, in [8],
the authors discuss the feasibility of brachytherapy and targeted chemotherapy (i.e., intratumoral
delivery of the chemotherapeutic agent such as doxorubicin [26]), proposing technical solutions
(robotic systems) that were designed to overcome major technical challenges that these medical
procedures impose (accuracy, safety and procedure ergonomics). Moreover, the Pro-Hep-LCT robotic
system for the targeted treatment of HCC (using brachytherapy and chemotherapy) was proposed [7],
and meticulous studies were performed for its kinematics [7,27,28], workspace optimization (I the
medical task), singularities (which have strong implication in the safety operation of robotic
systems) [29], and mechanical component optimization (such as mechanical gear optimization [30,31]).
ProHep-LCT (patent pending [32]) is an innovative parallel robotic system developed in 2020 by a
team of engineers from the Technical University of Cluj-Napoca in collaboration with medical experts
from “Iuliu Hatieganu” University of Medicine and Pharmacy from Cluj-Napoca. The robotic system
has the following modules (see Figure 1):

• Two identical robotic modules which operate “in mirror” (see Figure 1a where the robotic system
is evaluated in laboratory conditions with a phantom). The two modules operate as follows:
the first module performs the needle insertion, while the second module guides an intraoperatory
US probe that provides visual feedback for tumor location and needle location within the tissue.
Each robotic module was designed based on parallel mechanisms to ensure high accuracy (of the
treatment delivery), patient safety and procedure ergonomics. Each robotic module has five
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degrees of freedom (DOF) for guiding the medical instruments (discussed further) in three
Cartesian motions and two rotations (Figure 1b).

Figure 1. ProHep-LCT robotic system: (a) robotic system in “mirrored” configuration; (b) one module
guiding of the robotic system.

• Each of the robotic modules are equipped with one of the two novel medical instruments:
one multi-needle automated instrument with three DOFs for accurate positioning, insertion,
retraction and releasing of specialized needles (for brachytherapy or chemotherapy) (Figure 2a) [33,34],
or an automated medical instrument with four DOFs (Figure 2b) which guide a Hitachi Arieta
intraoperatory US probe (Figure 2c) for insertion/retraction along the longitudinal axis of the
probe, rotation about the longitudinal axis of the probe and two rotations of the distal head about
two distinct orthogonal axes [34,35]. Consequently, the needle insertion robotic module has eight
DOFs (with three translational redundant ones), whereas the US probe manipulation robotic
module has nine DOFs (with two redundant rotations and one redundant translation for fine
control of the transducer).

• The Input console: the input console is the master part of the robot control. It is based on a portable
computer and was designed to integrate the following components: (1) a graphical user interface
with a real-time tumor detection and visualization module with IF (US with CT) received from the
3D reconstruction module, scalable motion for precise medical tool manipulation, and modular
control to allow each robotic module to manipulate each automated medical instrument (for needle
insertion and for US probe manipulation); (2) a motion input device for real-time continuous control
(using a high-precision 3D motion input device) or for setting predefined position (using mouse
and keyboard input devices).
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Figure 2. Automated instruments for the ProHep-LCT robotic system: (a) needle insertion instrument;
(b) US probe manipulation instrument; (c) Hitachi Arieta intraoperatory US probe.

3. Materials and Methods

3.1. Visualization and Detection System Integrated into a Robotic System for the Treatment of HCC

Figure 3 presents the general functional scheme which shows the interaction among the robotic
system which integrates a novel IF system as well as a tumor detection system. As stated previously the
robotic system uses commercially available US imaging equipment as well as specialized needles for
the therapeutic agent delivery. The focus hereafter is on the implementation details of the visualization
and detection system for HCC.

Figure 3. The implementation of the tumor visualization and detection system into the robotic system
(general scheme).

3.2. Computerized System for 3D Reconstruction, Image Fusion and HCC Detection

A computerized IF system was designed at the Technical University of Cluj-Napoca, which aims
to perform the automatic detection and 3D reconstruction of HCC and of its anatomical context within
the liver. Furthermore, the computerized system is able to highlight the most important blood vessels
that possibly intersect a tumor, e.g., the veins from the portal vein and from the lower cavity system,
and also some arteries. The IF system is designed for the robotic-assisted targeted treatment of HCC
and has the following components [36]:
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1. The segmentation module, performing the segmentation (detection and spatial delimitation)
of the liver, HCC tumor, and blood vessels using specific methods, such as clustering,
region growing, and convolutional neural networks (CNN); this module receives CT images
acquired before surgery.

In order to perform HCC fully automated segmentation, both traditional and deep learning
techniques were experimented with, as described below:

a. Traditional methods: In order to achieve HCC segmentation through conventional methods,
the fast and robust fuzzy-C-means clustering (FRFCM) technique [36] was adopted.
FRFCM assumed a preprocessing phase of morphological reconstruction, and then a
fuzzy-C-means clustering algorithm was employed, modified in order to obtain speed
improvement. After applying FRFCM, the following were performed during the post-processing
phase: image thresholding, the labelling of the resulted objects. The object with the maximum area
was selected thereafter, which corresponded to the advanced HCC tumor. The best performance
resulted for 10 clusters, employing a squared structural element of size 2 for morphological
reconstruction, and a disk structural element of size 3 for the closing operation.

b. Deep learning techniques: Multiple CNN architectures were experimented with, such as ERFNet,
EDANet, DeepLabV3 and U-Net [37–39]. The ERFNet and EDANet networks were pretrained
using traffic data in order to emphasize some basic structures such as edges and curvatures.
The DeepLabV3 CNN architecture with a ResNet-101 backbone [38], pre-trained on the Common
Objects in Context (COCO) dataset [39], was experimented with in the following situations: (a) on
the original images; (b) when the neural network input was composed of three channels, the first
receiving the grayscale image as input, the second receiving the morphological reconstruction
of the grayscale image and the third, the FRFCM result, after applying the FRFCM technique,
with 50 and 100 clusters, respectively. The U-Net CNN architecture, trained from scratch with
our CT data, was also employed for HCC segmentation.

2. The tumor detection module: In order to enhance the robotic-assisted treatment modality,
an automatic Tumor detection system (using CT images) was also developed, which provides
statistical maps (showing the HCC) for visual feedback.

3. The 3D reconstruction module performs 3D reconstruction from the segmented 2D CT images
and also generates the 3D anatomic model of HCC within the liver. This module is designed to
provide visual feedback to the input console for the medical personnel (e.g., surgeons) operating
the robotic system.

The 3D reconstruction module has the following functions: (1) effective 3D reconstruction
and volume generation; (2) the application of The Visualization Toolkit (VTK) library filters [40]
for highlighting specific regions, such as the white pixels; (3) the integration of the HCC
segmentation methods in order to emphasize the tumor within the 3D model of its’ anatomic
context; (4) “bounding box” for the 3D volume that allows the user to cut volume sections; (5) re-slice
through rotation; and (6) movement of the cross on the screen in order to get variable slices. The last
two functionalities are employed in order to generate the 2D slice associated with the current
transducer position.

4. The fusion module receives the ultrasound image, as well as the spatial coordinates and orientation
corresponding to the current transducer position and emphasizes the corresponding 2D CT slice
with the main anatomical elements within the 3D volume.

5. The communication module assures the real-time communication of the computerized system
with the robotic system control. The computerized system for image fusion and 3D reconstruction,
and the computer application associated with the robot, being situated on different computers,
communicate via Ethernet through a socket-based mechanism. Firstly, the image fusion and
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3D reconstruction system receives the spatial coordinates and the Euler angles associated with
the current ultrasound transducer position from the robot during surgery and, correspondingly,
identifies the 2D slice within the 3D anatomic model. Then, the image fusion and 3D reconstruction
system provides the robot application with the image of the corresponding 2D section and also
the 3D image associated with the 3D anatomic model. Thus, the computerized application for
image fusion and 3D reconstruction, as well as the computer application associated with the robot,
implement two communication threads, one for the input data and the other for the output data.
The computer application associated with the robot finally displays the image corresponding to
the 3D anatomic model, as well as that associated with the 2D slice and the ultrasound image that
corresponds to the current position of the transducer. The surgeon analyzes these images and,
if necessary, applies, with the aid of the robot, the minimum invasive treatment for HCC reduction.

4. Results and Discussion

4.1. The Dataset

The experimental dataset consisted of 152 contrast enhanced CT images acquired during the
arterial phase, belonging to 24 patients affected by HCC. These images were acquired using a Siemens
Somatom Perspective machine (2015) with 64 detectors after the injection of the contrast agent. Initially,
within these images, the HCC tumors were manually annotated by experienced radiologists in order to
provide the ground truth for the automatic segmentation process. As for the segmentation procedures,
60% of the images were included into the training set, 20% of them were included in the validation
set, while 20% of these images were included in the test set. Regarding the CNN-based techniques,
during the training process, the original images were augmented using random rotation with an angle
in the range of −5−5, random translation with offsets sampled from the range −26–26, random scaling
between 0.95 and 1.05 of the original image size and random horizontal flipping with a probability
of 50%.

4.2. Segmentation and Fusion Results

Concerning the traditional segmentation technique that involves the FRFCM method as described
above, the best obtained value for the intersection over union (IoU) metric was 40%. Concerning the
deep learning techniques, the CNNs were trained for 150 epochs, the learning rate first being increased
from an initial value (2× 10−4) to a maximum value (2× 10−3), then decreasing to 2× 10-9 for each epoch.
The ERFNet CNN architecture with an IoU loss function led to an IoU of 70%, which was superior to that
provided by the EDANet architecture. The DeepLabV3 CNN architecture with a ResNet-101 backbone [38]
provided an IoU of 73.20% in the first case when only the original, unprocessed images were provided
at the entrances [36]. The U-Net architecture led to an IoU near 70% as well. Eloquent examples of
probabilistic maps, obtained through these methods, are depicted in Figure 4.

According to the previously mentioned results, the best performing deep learning,
CNN-based techniques were adopted for HCC segmentation and were integrated within the 3D
reconstruction module. Relevant examples are provided in Figures 5 and 6.

Figure 5 illustrates the results of the 3D reconstruction of the regions of interest (ROIs) containing
the liver, and the HCCs are shown. The HCC pixels were segmented on the native axial CT scans using
a supervised learning approach based on CNN. For visualization purposes, the obtained segmentation
masks are overlaid on the native axial scan images in bright (white) intensities. The corresponding
coronal and sagittal 2D views and the 3D model of the HCC are reconstructed and rendered using an
original VTK [40]-based visualization tool.

Figure 6 illustrates a similar result, but the main blood vessels (arteries and veins) are also
highlighted, using a specific VTK filter (the “Abdomen run off” filter) [40]. Moreover, 2D slices
corresponding to arbitrary orientations are provided in the left hand side.
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Figure 4. The probabilistic maps and the ground truth for the automatic hepatocellular carcinoma
(HCC) segmentation within contrast-enhanced computerized tomography (CT) images: (a) the original
images with the tumors depicted by the radiologists (the ground truth); (b) the automatically generated
probabilistic maps (the red pixels denote an increased probability for the pixels that belong to the HCC
class, while the blue pixels denote a low probability for the pixels that do not belong to this class).

Figure 5. The 3D model of the HCC tumor within the liver (right); the corresponding axial, coronal and
sagittal slices with the depicted HCC tumor emphasized (left).
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Figure 6. 3D representation of the HCC tumor and of the main blood vessels (right); the corresponding
random angle 2D sections with the HCC tumor emphasized (left).

4.3. Discussion

The targeted treatment of HCC (by means of brachytherapy or chemotherapy) may become a valid
therapeutic method if the main challenges that the procedure imposes are addressed, namely, accuracy,
safety and ergonomics. On the one hand, accuracy is arguably the most important factor in order to
ensure patients’ safety; accurate delivery of the therapeutic agent depends both on the precision of the
needle insertion and on the real-time information during the medical procedure [8], a fact that was
also pointed out in [11]. On the other hand, the procedure ergonomics is important and has positive
effects in diminishing the procedure time and decreasing personnel fatigue. While the robotic systems
offer technical solutions for some of the procedure challenges (e.g., increasing accuracy by scalable
motion and tremor motion reduction), adequate image guiding may enhance the master–slave control
of the robot with real-time visual feedback.

A novel computerized system for 3D visualization and detection of the advanced HCC tumors and
of their anatomical context was designed, and it functions in real time. Some similar approaches still
exist (see, for example, [41,42]) that either generate the 3D model of the liver, tumor and blood vessels
before surgery, using the Myrian-XP-Live application, or perform during surgery the fusion between
CEUS and CT images and between CEUS and MRI images, without employing computerized image
analysis techniques. However, none of these systems perform both the generation of a preoperative 3D
model of the HCC tumor within its’ anatomical context involving advanced segmentation techniques
and the application of computerized procedures during surgery in order to emphasize the HCC tumor
at a certain moment in two correspondent images of different types (i.e., the 2D CT slice and the
ultrasound image, which correspond to the current transducer position).

Future research aims to further improve the segmentation accuracy by gathering more HCC images
and using them for the training of CNN structures. Moreover, the optimization of the segmentation
process is intended by performing liver detection and by searching the tumor only in the liver region.
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The CNN-based techniques will be optimized by integrating attention mechanisms, which will enable
the detection process to focus on the tumor. The automatic detection and localization of the HCC
tumor and of the blood vessels within the ultrasound image can also be performed in the near future,
as some preliminary studies and experiments have already been conducted in this direction. The blood
vessel segmentation methods are also subjects for future work. Improvement in segmentation accuracy
will lead to improvement in the results of the global system. Another future research objective is
to effectively combine, through specific computerized procedures, the information from the 2D CT
slice, which corresponds to the current position of the ultrasound transducer, with that from the
corresponding ultrasound image, acquired during surgery, in order to better highlight the position and
contour of the HCC tumor, as well as the blood vessels.

5. Conclusions

Image fusion technologies are an extremely useful tool for the interventional hepatologist and
radiologist which circumvent some of the limitation of classical US. Moreover, by implementing IF
technology for visual feedback on a robotic system (ProHep-LCT), the technical challenges of accuracy
and patient safety may be overcome; i.e., despite the accuracy provided by the robotic system for the
needle insertion, corrections during the medical act may be necessary, and US alone is not sufficient
for a real-time control of the robotic system. Implementing, testing and validating the ProHep-LCT
robotic system may offer a window of opportunity in the targeted treatment of HCC.

Further work, necessary for the development of the ProHep-LCT robotic system (with a target of
TRL-6), is represented by the following: (1) Further work is required for control development where
the implementation of a hybrid control (logic/differential) is desired to increase the patient safety
during the procedure. (2) Further work is intended for the visualization and detection system where
the detection methods will further be improved (by implementing them on a larger dataset); the blood
vessel segmentation method will be fully implemented; and the optimized segmentation methods will
be combined with the 3D reconstruction techniques in order to highlight the liver, the HCC tumors
and the most significant blood vessels within the 3D volume with maximum accuracy.
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