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Abstract

Continuous cultures of mammalian cells are complex systems displaying hallmark phenom-

ena of nonlinear dynamics, such as multi-stability, hysteresis, as well as sharp transitions

between different metabolic states. In this context mathematical models may suggest con-

trol strategies to steer the system towards desired states. Although even clonal populations

are known to exhibit cell-to-cell variability, most of the currently studied models assume that

the population is homogeneous. To overcome this limitation, we use the maximum entropy

principle to model the phenotypic distribution of cells in a chemostat as a function of the dilu-

tion rate. We consider the coupling between cell metabolism and extracellular variables

describing the state of the bioreactor and take into account the impact of toxic byproduct

accumulation on cell viability. We present a formal solution for the stationary state of the

chemostat and show how to apply it in two examples. First, a simplified model of cell metab-

olism where the exact solution is tractable, and then a genome-scale metabolic network of

the Chinese hamster ovary (CHO) cell line. Along the way we discuss several conse-

quences of heterogeneity, such as: qualitative changes in the dynamical landscape of the

system, increasing concentrations of byproducts that vanish in the homogeneous case, and

larger population sizes.

Author summary

While the advantages of continuous culture in the biotechnological industry have been

widely advocated in the literature, its adoption over batch or fed-batch modes stalls due to

the complexities of these systems. In particular, continuous cell cultures display hallmark

nonlinear phenomena such as multi-stability, hysteresis, and sharp transitions between

metabolic phenotypes. Moreover, the impact of the heterogeneity of a cell population on

these features is not well understood. We use the maximum entropy principle to model

the phenotypic distribution of an heterogeneous population of cells in a chemostat. Given

the metabolic network and the dilution rate, we obtain a self-consistent solution for the

stationary distribution of metabolic fluxes in cells. We apply the formalism in two exam-

ples: a simplified model where the exact solution is tractable, and a genome-scale meta-

bolic network of the Chinese hamster ovary (CHO) cell line widely used in industry. We
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demonstrate that heterogeneity may be responsible for qualitative changes in the dynam-

ical landscape of the system, like the disappearance of a bistable regime, the increase of

concentrations of byproducts that vanish in the homogeneous system and larger number

of cells. We explain the causes behind these phenomena.

Introduction

Recombinant protein production requires suitable cell hosts and culture conditions [1]. For

this purpose mammalian cells are often grown in chemostat-like cultures where a continuous

flow of incoming fresh media replaces culture liquid containing cells and metabolites. Alterna-

tive processes such as batch or fed-batch are also adopted by many industrial facilities, but the

advantages of the continuous mode have been predicted to drive its wide adoption in the near

future [2–7]. However, experiments have demonstrated that continuous cultures exhibit hall-

mark phenomena of nonlinear dynamics, such as multiple steady states under identical exter-

nal conditions [8–11] and hysteresis loops [8, 12, 13]. Sophisticated control strategies are then

required to drive the system towards desired steady states.

In this context, mathematical modeling has been used with some success [13–15]. Already

in Ref. [13], we have shown how a model of a homogeneous continuous cell culture can

explain these phenomena in the context of a detailed metabolic model, while predicting

numerous metabolic transitions as a function of the ratio between cell density and dilution

rate (also known as the inverse cell-specific perfusion rate [16]). However, most of these works

deal with simple cell populations, consisting of identical cells (as in Ref. [13]), or at most of a

few competing species [15, 17]. Although it is known that no two cells in culture are alike [18],

the effects of individual cell-to-cell variability are seldom considered [19]. Attempts to model

heterogeneity in cell cultures are often based in population balance models [20] or similar

approaches, which require prior postulation of the mechanism driving the heterogeneity and

depend on more quantitative parameters than homogeneous modeling. These models are

affected in part by the limited availability of quantitative data [21], but also by an incomplete

understanding of the role played by different mechanisms driving heterogeneity. Indeed,

many complex processes contribute to heterogeneity in a cell population, including gene

expression noise [22], partition errors at cell division [23, 24], mutations [25], size variability

[26], as well as environmental gradients in the culture [27].

It is then important to understand what features change or are missed in a model of contin-

uous culture by treating the cell population as an homogeneous system. In this work we pro-

pose to apply the maximum entropy principle [28–34] to model cell heterogeneity in a

continuous bioreactor. This approach necessitates much less parameters than a microscopi-

cally detailed model based on population balance. We show how the model can be resolved

computationally in large metabolic networks by exploiting a recent implementation of the

Expectation Propagation algorithm [35, 36]. To highlight the phenomenology of the heteroge-

neous cell population, we establish a comparison to the chemostat model of Ref. [13] which

considers a homogeneous population, but we note that the framework presented here can eas-

ily accommodate other models of continuous cell cultures and metabolic networks. Although

some of the predictions of Ref. [13] remain valid in the presence of heterogeneity (such as the

importance of the ratio between cell density and dilution rate as a control parameter), the het-

erogeneity introduced here leads to important qualitative differences that we discuss in detail

below. These include changes in the kinds of metabolic transitions observed (e.g., diverging

concentrations of byproducts that should be zero if the population were homogeneous or
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depletion of different nutrients), higher cell densities in the presence of toxicity, and drastic

modifications of the dynamical landscape of the system such as disappearance of a bistable

regime.

Materials and methods

General framework

We study the steady states of a population of cells inside a well-mixed bioreactor, where fresh

medium continuously replaces culture fluid at a given dilution rate D. Each cell will be

described by vectors rðhÞ and uðhÞ, giving the flux of every reaction in the metabolic network of

the cell line under study and the metabolite uptake rates, respectively. Here and in what fol-

lows, the super-index h denotes an individual cell. If Nik denotes the stoichiometric coefficient

of metabolite i in reaction k (Nik> 0 if metabolite i is produced in the reaction, Nik< 0 if it is

consumed, and Nik = 0 if it does not participate in the reaction), then cell h produces metabo-

lite i at an overall rate
P
kNikr

ðhÞ
k . This production must balance the cellular demands for

metabolite i. In particular we consider a constant maintenance demand eðhÞi which is indepen-

dent of growth [37, 38], and the requirements yðhÞi of each metabolite for the synthesis of bio-

mass [39, 40]. If biomass is synthesized at a rate z(h), we obtain the following overall balance

equation for each metabolite i:
X

k

Nikr
ðhÞ
k þ u

ðhÞ
i ¼ e

ðhÞ
i þ y

ðhÞ
i zðhÞ ð1Þ

For simplicity we will assume that the overall macromolecular composition of the cell is con-

stant, i.e. that eðhÞi ¼ ei and yðhÞi ¼ yi are independent of h. The net growth rate of a cell depends

both on the rate of biomass synthesis, z, and on the concentration of metabolites in the media.

We assume that some metabolites are toxic (such as lactate and ammonia) and affect the

growth rate of cells. In order to accommodate the most common dependencies found in the

literature, we assume:

l
ðhÞ
¼ zðhÞ � KðsÞ � sðsÞ ð2Þ

where s is the vector of metabolite concentrations in the culture, λ(h) is the net growth rate,

KðsÞ is a growth inhibition factor, and sðsÞ a death rate.

In addition to Eq 1, the fluxes rðhÞk ; u
ðhÞ
i must respect physico-chemical constrains arising

from thermodynamics and molecular crowding. These constrains will also depend on the

extracellular conditions of the culture, specifically the concentrations s of metabolites. They

can be summarized as:
X

k

akjr
ðhÞ
k j � C ð3Þ

lbk � r
ðhÞ
k � ubk ð4Þ

� Li � u
ðhÞ
i � Ui ð5Þ

where αk are the enzymatic flux costs per unit of flux through reaction k, C is the maximum

enzymatic cost available to the cell, lbk, ubk are the lower and upper bounds of reaction k, Li =
0 for metabolites that cannot be excreted from the cell and Li =1 otherwise, Ui is the maxi-

mum uptake rate of metabolite i, and X the total number of alive cells. The value of Ui will
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depend on the conditions of the culture and will be specified below. The reaction bounds lbk,

ubk are −1 and1 respectively for reversible reactions, while lbk = 0, ubk =1 for irreversible

reactions.

The constrains (1–5) define a convex polytope of feasible metabolic states [41, 42] that we

denote by Ps. Each point within this space consists of coordinates v ¼ ðr; uÞ which fully spec-

ify the metabolic state of a cell in the model. Let PsðvÞ be the density of cells with metabolic

fluxes v. To determine the form of PsðvÞdv, we adopt the Principle of Maximum Entropy

(MaxEnt), which in this context can be stated as follows [28, 32]:

Given the set of allowed metabolic states (Ps), the dependency of the cellular growth rate

with metabolic fluxes (lsðvÞ), and the average growth rate of the cell population hλi, the

distribution of cells within Ps has the form PsðvÞ / ebls ðvÞ, where β is chosen so that the

expectation of λ under PsðvÞ coincides with hλi.

For β = 0 every point in the space Ps is equally likely. In this case cells explore uniformly the

space of allowed solutions defined by Eqs (1–5). For β =1 the distribution is a Dirac delta

with infinite mass on the points of maximum growth rate. In the language of Statistical

Mechanics this is the ground state of the system, also known in the Systems Biology literature

as the Flux Balance Analysis (FBA) solution [41].

Simple metabolic model

To gain some insight, we analyze first a simplified metabolic model that exhibits a switch from

oxidative pathways at low growth rates to fermentative pathways at higher growth rates [43].

The model consists of the following stoichiometric constrains:

2vg þ vl � vo ¼ 0 ð6Þ

2vg þ 18vo ¼ vatp ð7Þ

vg � minfVg ; cgD=Xg ð8Þ

vl � 0; 0 � vo � R ð9Þ

where vg is the velocity of consumption of glucose, vl the excretion of lactate, vo the velocity of

oxidative phosphorylation, and vatp the synthesis of ATP (see Fig 1). We only consider the

ATP requirements of growth and maintenance and ignore additional biomass components.

Therefore the rate of biomass synthesis (z) is an affine function of the rate of ATP synthesis, z
= (vatp − e)/y, where y is the biomass yield and e is the constant maintenance demand for ATP

[37]. The rate of oxidative phosphorylation is caped by the limited capacity of mitochondria, R
[44]. This simplified model or close variations have been extensively discussed in the literature,

e.g. [13, 43, 45, 46].

We assume that the secreted lactate is toxic, so that the net growth rate is given by λ = z − σ,
where the death rate σ is some increasing function of the extracellular concentration of lactate,

w. For simplicity we use a linear form, σ = τw, where τ is the death rate per unit of lactate. One

can think of τ as the slope of a more realistic description of the dependence of the death rate

on the concentrations of toxic compounds, thus avoiding the introduction of too many param-

eters into this simplified model.

Parameters are based on experimental values obtained for mammalian cells in the literature.

The ATP maintenance demand e = 1mmol/gDW/h has been measured for mouse LS cells [37]
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(see [47] for similar values in other cell types). The value R = 0.45mmol/gDW/h was calculated

in [13], based on measurements of the glucose uptake threshold that triggers a switch to fer-

mentation in mammalian cells [43]. The maximum velocity of glucose uptake, Vg = 0.5mmol/

gDW/h is based on a value measured for HeLa cells [48]. The value y = 348mmol/gDW was

then adjusted so that the maximum growth rate matches typical duplication rates of mamma-

lian cells of 1/day. From a linear approximation of the death rate dependence on lactate con-

centration measured in a mammalian culture [49] we obtain τ = 0.0022h−1mM−1. The

concentration of glucose was set at a value typical of mammalian cell culture media, cg =

15mM.

Metabolic network of CHO-K1

Motivated by the fact that most therapeutic proteins requiring complex post-translational

modifications are produced in Chinese hamster ovary (CHO) host cell-lines [1], our second

example is a metabolic model of this cell line. We employed a CHO-K1 line-specific metabolic

model, based on the latest reconstruction of CHO metabolism available at the time of writing

[50]. The network recapitulates experimental growth rates, essential enzyme requirements and

cell line specific amino acid auxotrophies. In order to enforce (3), we complemented this net-

work with a set of reaction costs of the form αi =MWi/ai, whereMWi is the molecular weight

of the enzyme catalyzing reaction i and ai the specific activity. These values were mined by T.

Shlomi et. al [51] from public enzyme data repositories for use in a human metabolic network.

Unfortunately there is no experimental data available to determine a set of reaction costs spe-

cific for CHO-K1, but those of a human network should give a good approximation of the cost

coefficients of generic mammalian cells. For reactions where the corresponding value could

not be found, we set its flux cost to the median of all the flux costs available. Finally

C = 0.078mg/mgDW is the mass fraction of metabolic enzymes in the dry weight of a typical

Fig 1. Simplest metabolic network exhibiting a switch. A primary carbon source (glucose) is consumed at a rate vg. It

is processed into an intermediate P, generating energy (ATP). The intermediate can be excreted generating waste (W)

at a rate −vl, or it can be further oxidized via the respiratory pathways (rate vo). The respiratory pathway is capped, vo�
R.

https://doi.org/10.1371/journal.pcbi.1006823.g001
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mammalian cells, which can be estimated from protein abundance measurements [51, 52].

The predictions of combining flux balance analysis with a crowding constrain obtained in this

manner have been shown to exhibit significant correlation with enzyme mRNA expression

levels [51].

A constant maintenance demand was added as an ATP hydrolysis flux at a rate 1mmol/

gDW/h, based on measurements for mouse LS cells [37]. The maximum glucose uptake was

set at Vg = 0.5mmol/gDW/h, a value measured in HeLa cells [48]. Unfortunately kinetic

parameters to estimate Vi for many other metabolites are not available. However, based on

multiple reports in the literature [49, 53, 54] we estimated that amino acid uptakes are typically

tenfold slower than sugar uptake, and therefore set Vi = Vg/10 for amino acids. In the simula-

tions we used Iscove’s modified Dulbecco’s medium (IMDM) to set the values of ci, and set Vi
=1 and infinite concentrations for water, protons and oxygen (see Supplementary Materials

for full specification). Since lactate and ammonia are the most commonly recognized toxic

byproducts in mammalian cell cultures, we set λ = K × z with

K ¼ ð1þ snh4=Knh4Þ
� 1
ð1þ slac=KlacÞ

� 1 ð10Þ

with Knh4 = 1.05mM and Klac = 8mM, based on the values and functional form reported by

[55].

Expectation propagation approximation for the computation of moments

In order to compute the steady state concentrations si, it is necessary to compute the expected

value of ui under the MaxEnt distribution. Although in the simple model this poses no diffi-

culty, in a genome-scale metabolic network such as the CHO-K1 considered in this paper the

vector v has hundreds of components and an exact computation [56] becomes intractable. A

hit and runMonte Carlo approach has been used for moderately sized networks [32, 57].

Although these methods are guaranteed to converge to an uniform sample, this is only true in

the asymptotic limit of an infinite number of steps. Unfortunately the geometrical shape of the

metabolic flux space is highly elongated in some directions but very compressed in others [57].

In practice it becomes very hard to determine how long the Monte Carlo computation should

run to achieve convergence, particularly so for large metabolic networks.

A better approach is to use message-passing algorithms [58]. Recently, Expectation Propa-

gation (EP) [35] has been successfully employed to compute a very good approximation of the

marginal flux distributions in absence of selection (β = 0) [36]. In [36] the reader can find an

exhaustive assessment of the quality of this approximation in a variety of metabolic networks.

In Supplementary Materials we describe how the same method can be used to approximate the

marginal flux distributions for non-zero β.

Additional details

All model simulations were carried out in Julia [59]. The CHO-K1 metabolic network [50] was

loaded and setup using the COBRApy package [60]. The expectation propagation implementa-

tion was taken from https://github.com/anna-pa-m/Metabolic-EP [36].

Since taking the absolute value in (3) is not a linear operation, we must replace reversible

reactions in the model by two reactions, one in the forward and another in the backward direc-

tion. This ensures that all reaction fluxes are non-negative variables and (3) becomes a linear

inequality. However, this almost doubles the number of reactions in the CHO-K1 model,

which makes Expectation Propagation extremely slow to converge or in some cases it even

fails to do so. In order to obtain a reduced tractable network, we first solved our model at β =

1, which can be done with standard linear programming packages [61]. In cases where FBA
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produces multiple solutions maximizing biomass production [62], we select the one that mini-

mizes the enzymatic cost in (3) [63]. This guarantees that the solution is uniquely determined,

because the cost coefficients are sufficiently heterogeneous that the contours of constant cost

are almost surely not parallel to the contours of constant biomass production. Moreover from

the biological viewpoint it is reasonable that the cell minimizes the enzymatic mass required to

support a certain metabolic goal [63–65]. Then we removed from the CHO-K1 model all reac-

tions that were identically zero for all values of ξ. This results in a reduced model with 380

metabolites and 401 reactions (provided as supplementary materials), where Expectation

Propagation converges robustly and fast.

Results

General solution of the model

In order to determine Ps we need to know the concentrations si, the function lsðvÞ giving

the growth rate for each feasible metabolic state, and the average growth rate hλi. The later

is easy in the chemostat: hλi = D (the dilution rate) [15]. It is much more difficult to obtain

experimental data for all the relevant si. In the worst case in which no information about

the si is available, we notice that when the chemostat is in steady state, the input flux of

metabolite imust balance its consumption by the cells and its output flow. The input and

output fluxes per culture volume in the chemostat are given by Dci and Dsi, respectively,

where ci is the concentration of metabolite i in the external feed. Since the rate of consump-

tion of individual cells is uðhÞi , the total consumption by the population of cells can be esti-

mated as:

X

h

uðhÞi � X
Z

uiðvÞPs ðvÞdv ð11Þ

where X is the total number of cells. In the limit of a large number of cells this equation

becomes exact. In steady state, the concentration si is constant, which leads to the following

mass-balance equation:

Dðci � siÞ � X
R
uiðvÞPs ðvÞdv ¼ 0 ð12Þ

To obtain the steady state values of si, Eq (12) must be solved self-consistently together with

the MaxEnt form of the distribution PsðvÞ. Moreover since the steady state value of si must

be non-negative, we can extract from this equation an approximate form for the maximum

uptake rate that further simplifies the computation (see Supplementary Materials for a deri-

vation of this equation from Michaelis-Menten kinetics),

Ui ¼ min fVi; ciX=Dg ¼ min fVi; cixg ð13Þ

where Vi is the maximum uptake rate of metabolite i. The solution of the model in the case

β =1 (FBA) is described in detail in Ref. [13], where it was argued that the ratio ξ = X/D
determines the steady state of the culture and links steady states in the chemostat with

those in perfusion systems. It has units (cells × time / volume), and can be interpreted as

the number of cells maintained alive for a period of time per unit of volume of fresh media

supplied into the culture.

In the case of finite β, the value of ξ only determines the shape of the polytope of phenotypic

states that cells can adopt. According to the maximum entropy principle, the distribution of
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cells within this polytope is of the form:

PðvÞ ¼
eb0zðvÞ

R

Pe
b0zðvÞdv

ð14Þ

where b
0
¼ bKðsÞ and the parameter β quantifies the level of heterogeneity in the population

of cells. It is a macroscopic representation of the underlying noisy processes that sustains cell-

to-cell variability in the population. Small values of β lead to an almost uniform distribution

PðvÞ over all possible states. This corresponds to a highly heterogeneous population. In con-

trast, at larger values of β the population concentrates around the FBA solution maximizing

the growth rate. This corresponds to a highly homogenous population.

From (14), we compute the expected values of the exchange fluxes huii using the Expecta-

tion Propagation algorithm described in the appendix [36]. Next, the values of the metabolite

concentrations are obtained from (12):

si ¼ ci � huiix ð15Þ

Given s, we compute KðsÞ; sðsÞ and then b ¼ b
0
=KðsÞ. Similarly, hli ¼ hziKðsÞ � sðsÞ, which

then determines the value of the dilution rate consistent with this solution, D = hλi. Finally,

the total number of cells in the steady state is given by X = ξD.

Simple metabolic model

Within our framework the simple metabolic model admits an exact solution that provides

important clues about the role of heterogeneity in more realistic models. For a given value of ξ,
in this case the MaxEnt distribution takes the form:

Pðvatp; vg ; xÞ ¼ e� bvatp=y=ZðxÞ ð16Þ

for ðvatp; vgÞ 2 Px, where Px is the polytope defined by the constrains (6)–(9) (after eliminating

vl, vo), and

ZðxÞ ¼
R

Px
dvatpdvge� bvatp=y ð17Þ

Notice that constant terms, including the additive death rate σ and the maintenance demands,

cancel upon normalization. Due to the low-dimensionality of this model, the moments of (16)

can be evaluated by numerical integration to any desired accuracy. Then the steady state con-

centrations of glucose and lactate can be calculated using (15).

Fig 2 shows typical flux distributions of vatp and vglc in the population of cells, for different

values of ξ and β. As β increases (more homogeneous populations), cells cluster around the

maximum feasible rate of ATP production, which also coincides with maximum glucose con-

sumption. In the β! 1 limit (FBA) the distribution becomes a Dirac delta (purple line)

localized in this optimal point. On the other hand, when β! 0 cells distribute uniformly in

the space of feasible metabolic states, favoring states with low growth rate. This observation

has been interpreted as implying that higher growth rates require active regulation in the cell

[32] (see Supplementary Material for a study of an evolutionary model consistent with this

explanation within our framework).

Fig 3 shows the solution of the model as a function of ξ, for selected representative values of

β. For comparison the β =1 solution is shown in purple. As the crossing curves in Fig 3a indi-

cate, the effect of decreasing β is not simply to decrease the average growth rate of the popula-

tion of cells. At first sight this seems to contradict the fact that the β = 1 solution is where

cells adopt a phenotype with maximum growth rate (the FBA solution). However, due to the
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accumulation of toxic byproducts in the culture, maximizing zmay result in higher toxicities,

and the net effect is to decrease the overall growth rate of the population. This translates into

the fact that the heterogenous population may have higher cell numbers than the homogenous

one (where the red curve is higher than the purple in Fig 3b). This explanation is confirmed in

Fig 3d, which shows that the concentration of lactate reaches the highest levels when β =1.

Fig 2. Distributions of the fluxes vatp and vg. Distribution among cells of the (a) glycolytic flux (vg) and (b) the ATP

synthesis reaction flux (vatp). Since β has units of inverse time, we use the dimensionless parameter λmβ, where λm is

the maximum growth rate at ξ = 0, β =1.

https://doi.org/10.1371/journal.pcbi.1006823.g002

Fig 3. Steady states of the simple metabolic network as a function of ξ. The different panels show the steady state values of (a)D, (b) X, (c) sg and (d) sw, as functions of

ξ for different values of β (indicated in the legend). Discontinuous lines indicate unstable steady states.

https://doi.org/10.1371/journal.pcbi.1006823.g003
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A second feature connected to heterogeneity is that even for high values of β and ξ, the con-

centration of lactate in the culture increases with ξ. However in the strictly homogeneous limit

(β =1) it goes to zero. This striking difference has important implications in the interpreta-

tions of bulk metabolic measurements in populations of cells. For example, the observation of

an increasing concentration of lactate could be interpreted as the result of a selective pressure,

pushing cells towards fermentation. On the contrary, our model shows that in a chemostat this

is a natural consequence of the heterogeneity of the population.

Moreover notice that, for high enough β, the curve of D versus ξ (Fig 3a) displays multi-

stability. To the same value of D there may correspond more than one value of ξ. A theorem

proved in Ref. [13] establishes that a steady state is stable ifD(ξ) is decreasing at ξ. The theorem

also holds in the present model, where the heterogeneity only redefines the function D(ξ) to

which the theorem was originally applied. In this case, an important consequence of the het-

erogeneity is that it reshapes the dynamical landscape of the system, which is tightly connected

to the decrease of the accumulation of lactate in the system as β decreases (cf. Fig 3d). For

example, increasing the heterogeneity (decreasing β) abolishes the bistable regime. This is

shown clearly in Fig 4, where the steady state values of X are plotted against the dilution rate.

Heterogeneity also has the undesirable consequence of decreasing themedium depth (ξm),

the maximum value of ξ with a non-zero steady state concentration of live cells. It is important

to realize that even if the heterogeneity may help to increase the number of cells in the presence

of toxicity (as discussed in the previous paragraphs), the medium depth never decreases with

β. A plot of ξm as a function of β is shown in Fig 5 (continuous line). For highly heterogeneous

systems (low values of β), ξm is almost insensitive to changes in β. Then there is a sharp slope

change after which ξm steadily increases with β.

Since the stability of the system depends on the level of heterogeneity, in Fig 5 we show how

the values of ξ corresponding to unstable steady states depend on β (discontinuous lines). This

way the ξ, β plane is divided into three regions: infeasible, where no steady state is possible, sta-
ble and unstable, according to the type of steady state. This confirms the dramatic effect of het-

erogeneity on the dynamic landscape of the system, as unstable steady states disappear below a

certain threshold value of β, i.e. after a critical level of heterogeneity. For large β, the system

becomes more robust in the sense that the range of values of ξ defining unstable states is con-

stant, while the stable regime becomes wider.

Fig 5 also shows the density of cells in steady state for each pair of values (β, ξ) (color gradi-

ent). Notice that in this model, the highest cell densities occur near unstable states. This should

be interpreted as a word of caution, since trying to increase the number of cells in the indus-

trial setting can have the undesired effect of washing the culture.

Analysis of a genome-scale metabolic network of the CHO-K1 cell line

Next, we study a reconstruction of the CHO-K1 cell line metabolic network [50]. Fig 6 shows

the steady state concentrations of selected metabolites as functions of ξ and for certain repre-

sentative values of β. There are several differences between the homogeneous (shown in purple

in the plots) and heterogeneous regimes. Formate, a byproduct of mitochondrial oxidative

metabolism secreted by normal tissues and especially cancer cells [66], stabilizes at a constant

concentration for large ξ when β =1. The selective pressure for growth predicted by an FBA

calculation only favors a mild secretion of this metabolite that is not enough to support its

accumulation at larger ξ. In contrast, even mild levels of heterogeneity result in an increasing

accumulation of formate at larger values of ξ. Ammonia shows a similar behavior. An hetero-

geneous population shows an accumulation of formate and ammonia that does not originate

Maximum entropy and population heterogeneity in continuous cell cultures
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Fig 4. Cell density versus dilution rate in the simple metabolic model. Plot of the steady state cell density as a multi-

function of the dilution rate, for different values of β. Discontinuous lines indicate unstable steady states.

https://doi.org/10.1371/journal.pcbi.1006823.g004

Fig 5. Critical values of ξ versus β. Medium depth (continuous line) and critical values of ξ separating stable steady states from unstable

steady states (discontinuous lines), versus β. The gradient shows the steady state concentration of cells (X).

https://doi.org/10.1371/journal.pcbi.1006823.g005
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from the selective pressures for faster growth acting on individual cells. These differences

resemble the behavior of lactate in the simple model.

In the case of histidine and valine, we have the opposite situation, where the homogeneous

model predicts non-vanishing concentrations at large ξ, but even mild levels of heterogeneity

drive the concentrations of these metabolites to zero. Other metabolites show less significant
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Fig 6. Steady state metabolite concentrations as functions of ξ for the CHO-K1 model. Steady state concentrations of selected metabolites as functions of ξ, for the

simulations of the CHO-K1 metabolic network. Representative values of β are plotted (see legend). The purple line corresponds to the β!1 limit. To reduce clutter,

this figure does not distinguish between stable and unstable steady states.

https://doi.org/10.1371/journal.pcbi.1006823.g006
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differences, such as glutamate, serine and glycine, where the level of heterogeneity only con-

trols the rate of depletion as ξ increases but does not seem to produce any qualitative differ-

ences. Glucose and glutamine are almost insensitive to variations in β. This means that the

structure of the metabolic network itself favors maximal consumption of these metabolites,

even in absence of active regulation.

In Fig 7(a) and 7(b) we plot the dilution rate and the cell concentration in steady state as

functions of ξ, for representative values of β. The crossing of curves corresponding to different

values of β indicates that under certain conditions, heterogeneity may enable larger quantities

of cells or faster dilution rates. This is surprising because larger values of βmean that the popu-

lation of cells concentrate nearer the point of maximum growth rate. The explanation is that in

this case larger β also leads to higher secretion of toxic byproducts. For example, in Fig 7 the

red curve has a higher β than the black curve, but at ξ = 0.1 the black curve has higher cell

counts. Comparing with Fig 6, we see that the red curve at this point also has higher concentra-

tions of the toxic byproducts ammonia and lactate, explaining the reduction in cell growth.

This also confirms a prediction already made in the simpler model.

Fig 7(c) plots the steady state values of the cell density for each dilution rate, with unstable

steady states shown in dashed lines. As in the simple metabolic model, we find that the system

admits more than one steady state for some dilution rates. The dynamical landscape of the sys-

tem depends on the value of β. In particular, if β is too low the unstable regime disappears,

again recapitulating the behavior found in the simple metabolic model.

Since many of the enzymatic flux costs used in these simulations (cf. Eq (3)) are unknown

or poorly annotated, we repeated these simulations after doing random perturbations on all

these coefficients of up to 25% relative to the original values. Figures S3 and S4 in the Appen-

dix show that all of the qualitative features discussed here are preserved under these

perturbations.

Discussion

In this work we have developed a framework to model cell heterogeneity based on the Maxi-

mum Entropy principle (MaxEnt) [28]. In contrast to previous applications of MaxEnt to

model metabolic heterogeneity [32], our work has focused on continuous cell cultures in

steady state. As we have shown, in this case it is possible to write down a self-consistent set of

equations that determines the distribution of cells in phenotypic space as a function of the

dilution rate. The dependence has a non-trivial character due to the nonlinear nature of the

chemostat, in some cases including multistable regimes.

We applied this framework in a simple metabolic network first, where all the computations

can be carried out exactly. In this toy model we were able to discuss in detail many qualitative

features of the model. We found that heterogeneity enables larger populations of cells because

of reduced toxicity, that the dynamical landscape includes includes a multistable regime which

shrinks or even disappears entirely as the level of heterogeneity increases, and that a byproduct

predicted to be zero if heterogeneity is ignored exhibits increasing concentrations when het-

erogeneity is included in the model.

In this work we have also shown how the Maximum Entropy approach to metabolic model-

ing can be applied to large metabolic networks, by taking advantage of a recent implementa-

tion of the Expectation Propagation algorithm [36]. By exploiting this algorithm we were able

to obtain a numerical solution of our model, applied to a CHO-K1 genome-scale metabolic

network reconstruction. Although this metabolic model is much more complicated than the

toy model, it nonetheless recapitulates all the qualitative findings made in the simpler network,

but with a richer phenomenology.
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In order to obtain a tractable model, we have made some simplifications. We chose to

ignore cell-to-cell heterogeneity in mass composition (the parameters ei, yi in the notation of

Methods). Indeed, although cells can vary widely in their metabolic arrangements, the mass

fractions of major constituents such as total protein, lipids, and nucleotides, are approximately

invariant for a given cell type. This approximation is not essential for the formal statement of

the model, but it greatly simplifies calculations because then the exponent in the Maximum

Entropy distribution is a linear function of metabolic fluxes. We have assumed that the avail-

ability of nutrients depended only on the total cell concentration. In a more realistic model

cells compete for certain metabolites and their concentrations determines the uptake bounds.

In the literature models of this type have been studied [67, 68] and they have an interesting

phenomenology of their own. Our approach can be seen as a “mean-field” approximation

where each cell interacts with the entire population instead of with specific nutrients. We

believe that our main conclusions will remain valid if this approximation is relaxed, but further

work is needed in this direction. Finally, incorporating the crowding constrain entails replac-

ing reversible reversible reactions by two reactions in the forward and backward direction,

almost doubling the total number of reactions. We therefore applied a reduction where reac-

tions found to carry no flux identically for all ξ in the β =1 regime were removed from the

model. Obviously this modifies the solution space of the model. On the other hand, an exten-

sive model such as the genome-scale CHO-K1 model [50] contains many reactions that are

inactive under most conditions and therefore including them would only add noise to our

analysis. Since FBA has been a successful tool in the detection of relevant metabolic pathways

in multiple organisms [50, 51, 69–71], we believe that this reduction improves the quality of

our predictions. Indeed, all the byproducts predicted by this model have been observed experi-

mentally to be secreted by mammalian cells [13].

Fig 7. Dilution rate and cell density in steady states of the CHO-K1 metabolic model. Dilution rate (a) and cell density (b) as functions of ξ. (c) Cell density versus

dilution rate. Different curves correspond to different levels of heterogeneity. In (c), the discontinuous line indicates unstable steady states.

https://doi.org/10.1371/journal.pcbi.1006823.g007
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Some general qualitative features are common to both the homogeneous regime (β =1)

and the heterogeneous regime (finite β). In both cases, multistability is a consequence of nega-

tive feedback by toxicity accumulation, although extremely heterogeneous populations become

monostable as shown in Figs 4, 5 and 7. For a given combination of cell-line and feed media,

the ratio of cell density to the dilution rate (ξ = X/D, inverse of the cell-specific perfusion rate

[16]) determines the steady state of a continuous culture and therefore can be used to connect

different modes of continuous cultures (chemostat and perfusion). This conclusion was

obtained in [13] in the context of an homogeneous model (β =1). In the presence of hetero-

geneity the steady state does not consist of single flux values for every reaction in the network.

Instead, it must be described by a global probability distribution representing the fraction of

cells adopting each metabolic phenotype. The parameter β quantifies the spread of this distri-

bution. Although following the standard practice of the MaxEnt principle, β should be deter-

mined to match experimental data on the average growth rate of a population, for the sake of

generality, in this work β was treated as a free parameter. This is analogous to studying differ-

ent temperatures in statistical physics. Therefore the selected values of β used in the figures

carry no special significance, except that they are representative of the most salient aspects of

the general phenomenology of the model. In the Appendix we show how β can be connected

to a simple underlying model of the evolutionary dynamics of a cell population.

Interestingly, toxicity also leads to the paradoxical result that more heterogeneous popula-

tions can achieve larger sizes. This happens because at finite β less cells are secreting the toxic

byproduct at maximal rate. Thus, a prediction of our model is that inducing heterogeneity

might be beneficial in an industrial setting where cell numbers are limited by the accumulation

of toxic byproducts. We also showed that heterogeneity might be responsible for features of

the bulk population not derivable from selective pressures on individual cells. The CHO-K1

reconstruction exhibits divergence of formate accumulation, while for the simplified metabolic

model it is lactate that accumulates. This difference is not surprising because in the toy model

lactate is the only allowed byproduct, while the CHO-K1 model has many possible byproducts.

In both cases an homogeneous model would predict zero or constant concentrations.

Compared to population balance models of heterogeneity, our approach has several advan-

tages. First, by using MaxEnt, assumptions about the detailed mechanisms behind cellular het-

erogeneity are not required. As a consequence, the description of heterogeneity is simple and

only one additional parameter β suffices for this purpose. This simplicity enables the study of

genome scale metabolic networks such as the CHO-K1, which are not accessible to detailed

population balance models.
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