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Abstract

Eating disorder is highly associated with obesity and it is related to brain dysfunction as well.

Still, the functional substrates of the brain associated with behavioral traits of eating disorder

are underexplored. Existing neuroimaging studies have explored the association between

eating disorder and brain function without using all the information provided by the eating

disorder related questionnaire but by adopting summary factors. Here, we aimed to investi-

gate the multivariate association between brain function and eating disorder at fine-grained

question-level information. Our study is a retrospective secondary analysis that re-analyzed

resting-state functional magnetic resonance imaging of 284 participants from the enhanced

Nathan Kline Institute-Rockland Sample database. Leveraging sparse canonical correlation

analysis, we associated the functional connectivity of all brain regions and all questions in

the eating disorder questionnaires. We found that executive- and inhibitory control-related

frontoparietal networks showed positive associations with questions of restraint eating,

while brain regions involved in the reward system showed negative associations. Notably,

inhibitory control-related brain regions showed a positive association with the degree of obe-

sity. Findings were well replicated in the independent validation dataset (n = 34). The results

of this study might contribute to a better understanding of brain function with respect to eat-

ing disorder.

Introduction

Eating disorder is one of the important factors underlying obesity [1–3], which is related to

type 2 diabetes, cardiovascular diseases, stroke, and cancers [3–5]. Previous neuroimaging

studies have shown that eating disorders were highly associated with the executive function of
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people with obesity [3,6–9]. Siep et al. found that an individual’s appetite was regulated by the

inhibitory control centers of the brain [9]. Val-Laillet et al. reported a significant relationship

between eating disorder and altered cognitive- and reward-related brain systems [3]. Our pre-

vious studies also demonstrated that executive- and inhibitory-related brain regions had

strong associations with eating disorders in people with obesity [6–8]. These studies collec-

tively suggested that neurologic dysfunctions were highly related to the eating disorders of

people with obesity.

The association between brain alterations and eating disorders can be effectively explored

using neuroimaging modalities such as functional magnetic resonance imaging (fMRI), posi-

tron emission tomography (PET), and single-photon emission computed tomography

(SPECT) [3,9–11]. However, most existing neuroimaging studies did not make full use of the

available information regarding participants’ eating disorders [6–8]. They used summary

scores instead of the responses to the full list of questions. For example, the Three-Factor Eat-

ing Questionnaire (TFEQ) quantifies behavioral traits of eating disorders and has a total of 51

questions condensed into three factors of dietary restraint, disinhibition, and hunger scores

[12,13]. The Eating Disorder Examination Questionnaire (EDE-Q) evaluates the psychopa-

thology of eating disorders and has a total of 34 questions condensed into four factors of die-

tary restraint, eating concern, shape concern, and weight concern [14,15]. This approach

allows researchers to quantify an individual’s eating disorders succinctly, but it does not utilize

all the available information, and thus could lead to suboptimal findings regarding neurologi-

cal alterations in the brain. Thus, considering all the questions in the questionnaire might

allow us to better explore the associations between brain function and eating disorder.

Machine learning is widely used in neuroimaging and medical field, and we applied one of

machine learning technique, canonical correlation analysis (CCA), for data analysis [16,17].

CCA is a useful method to identify the multivariate association between two types of high-

dimensional features (e.g., neuroimaging and questionnaire) [18]. Sparse CCA (SCCA) is an

extension of CCA, which aims to identify a sparse set of loading vectors in two types of features

using a regularization technique [19–30]. SCCA could be more suitable than the regular CCA

since it helps to reduce the overfitting problem, which is becoming more problematic with

increased dimensionality of modern neuroimaging data. Associations between brain regions

over the whole brain and all the questions of the eating disorder questionnaire could be effec-

tively assessed using the SCCA approach. Especially, incorporating the information on eating

disorders in a question-level might allow us to better model the complex associations between

brain and behavioral traits of eating.

We adopted a functional connectivity analysis based on graph theory to estimate brain

function [31,32]. Graph theory-based connectivity analysis is a representative method to iden-

tify the connection strengths of different brain regions, which requires graph nodes and edges

[31,32]. Graph nodes are the brain regions defined by pre-defined structural or functional

atlases and graph edges are the connections between two different nodes [31,32]. Graph the-

ory-based functional connectivity analysis has been useful for explaining brain alterations in

people with obesity, as well as identifying associations between the brain and eating disorders

[6–8].

In the current study, we aimed to investigate the multivariate association between the func-

tional connectivity of all brain regions and eating disorders at question-level using the SCCA

approach. Our study is not limited to assess obesity-related eating disorders in the obese

group, rather we aimed to associate functional connectivity of brain regions and behavioral

patterns of eating disorders in a general population. The results of this study might contribute

to a better understanding of brain function with respect to eating disorder.
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Materials and methods

Imaging data and participants

This study was a retrospective analysis of anonymized data and institutional review board (IRB)

approval was obtained at Sungkyunwkan University. All data were obtained with informed

written consent in accordance with established human subject research procedures expressed in

the Declaration of Helsinki. Our study was performed in full accordance with the local IRB

guidelines. For the discovery set, the T1-weighted structural MRI and resting-state fMRI (rs-

fMRI) data were obtained from the enhanced Nathan Kline Institute-Rockland Sample database

[33]. All imaging data were obtained using a 3-T Siemens Magnetom Trio Tim scanner. The

scanning parameters of the T1-weighted structural data were as follows: repetition time (TR) =

1900 ms, echo time (TE) = 2.52 ms, flip angle = 9˚, field-of-view (FOV) = 250 mm × 250 mm, 1

mm3 voxel resolution, and 176 slices. Those of the rs-fMRI data were as follows: TR = 645 ms,

TE = 30 ms, flip angle = 60˚, FOV = 222 mm × 222 mm, 3 mm3 voxel resolution, 40 slices, and

900 volumes. Among the total of 650 participants, 320 participants have full demographic infor-

mation, obesity-related clinical scores (body mass index [BMI] and waist-to-hip ratio [WHR]),

and TFEQ scores. BMI and WHR are calculated from the vitals (i.e., height, waist measurement,

hip measurement, and weight) that were recorded by staff with a standardized procedure.

Thirty-six subjects with medical conditions (e.g., attention deficit hyperactivity disorder, bal-

ance dysfunction with severe motion sensitivity, depression, diabetes, high blood pressure, high

cholesterol, and hypoglycemia) were excluded and total 284 participants were considered in this

study. Detailed demographic information is reported in Table 1. The study participants had a

large variation in BMI as stated in Table 1 and the S1 Fig in S1 File.

Data obtained from Saint Vincent’s hospital in South Korea was used for validation. All

data were obtained with informed written consent in accordance with established human sub-

ject research procedures expressed in the Declaration of Helsinki. Our study was performed in

full accordance with the local IRB guidelines. The dataset includes T1-weighted data, rs-fMRI,

full demographic information, BMI, WHR, and Eating Attitudes Test (EAT-26) scores of 34

participants [34]. The T1-weighted structural MRI and rs-fMRI data were scanned using a Sie-

mens Magnetom 3T scanner housed at St. Vincent’s Hospital. The image acquisition parame-

ters of the T1-weighted structural MRI were as follows: TR = 1900 ms; TE = 2.46 ms; flip

angle = 9˚; FOV = 250 mm × 250 mm; 1 mm3 voxel resolution; and 160 slices. Those of the rs-

Table 1. Demographic information of study participants.

Dataset eNKI dataset (n = 284) Vincent dataset (n = 34)

Information Mean (standard deviation) Mean (standard deviation)

Age 36.79 (13.63) 39.06 (10.76)

Sex (male: female) 106:178 17: 17

BMI (kg/m2) 27.30 (5.79) 29.56 (6.43)

WHR 0.83 (0.09) 0.92 (0.06)

healthy weight: overweight: obesity 119: 86: 79 3: 19: 12

TFEQ/EAT-26 scores Dietary restraint/Diet 8.11 (4.96) 6.06 (4.82)

Disinhibition/Bulimia 5.04 (3.36) 0.24 (0.50)

Hunger/Oral control 4.48 (3.33) 1.76 (2.22)

Healthy weight group was defined as BMI value less than 25 kg/m2, overweight group was defined as BMI value between 25 and 30 kg/m2, and obesity group was

defined as BMI value greater than or equal to 30 kg/m2. TFEQ has dietary restraint, disinhibition, and hunger scores and EAT-26 has diet, bulimia and food

preoccupation, and oral control scores.

BMI, Body mass index; WHR, waist-to-hip ratio; TFEQ, Three-Factor Eating Questionnaire; EAT-26, Eating Attitudes Test.

https://doi.org/10.1371/journal.pone.0237511.t001
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fMRI data were as follows: TR = 2490 ms; TE = 30 ms; flip angle = 90˚; FOV = 220 mm × 220

mm; 3.4 × 3.4 × 3.0 mm3 voxel resolution; 36 slices; 150 volumes.

Eating disorder scores

The eating disorder scores were measured using the TFEQ, which contains a total of 51 ques-

tions [12]. All the questions were assigned to one of the three factors of dietary restraint, disin-

hibition, or hunger. The question list of the TFEQ is stated in the Supplementary Tables in S1

File. Each question had a binary response and the score of each factor was calculated by sum-

ming the responses of the assigned questions. In this study, the response to each question was

considered rather than the score for each factor.

EAT-26 is a reliable screening tool for eating disorders [34–38] and it was used to access the

degree of eating disorders in the validation set. This has 26 questions and the answers are

scored among 0, 1, 2, 3, 4, or 5 (correspond to never, rarely, sometimes, often, usually, or

always respectively). Those scores are rescored into 0 to 3 and summed up into three subscales

(diet, bulimia and food preoccupation, and oral control).

Data preprocessing

The T1-weighted structural data and rs-fMRI data were preprocessed using a Fusion of Neuro-

imaging Preprocessing (FuNP) pipeline that integrates AFNI, FSL, and ANTs software [39–

42]. The T1-weighted structural data were preprocessed as follows: the distortion arising from

the magnetic field inhomogeneity was corrected and non-brain tissues were removed. The rs-

fMRI data were preprocessed as follows: the volumes from the first 10 s of the scan were

removed and distortions caused by head motions were corrected. Intensity normalization of

the 4D volumes was applied and nuisance variables of the cerebrospinal fluid, white matter,

head motion, and cardiac- and large-vein-related artifacts were removed using FIX software

[43]. The artifact-removed rs-fMRI data were registered onto preprocessed T1-weighted struc-

tural data and then subsequently registered onto 3 mm isotropic Montreal Neurological Insti-

tute (MNI) standard space. Spatial smoothing with a full width at half maximum of 5 mm was

applied. The preprocessing pipeline is summarized in Fig 1A.

Functional connectivity analysis

Graph theory-based functional connectivity analysis was adopted in this study. Graph nodes

were the brain regions defined by the Brainnetome atlas [44] and the graph edges were defined

by Pearson’s correlation coefficients of time series between two different nodes. Recent rest-

ing-state fMRI studies suggested that inter-regional functional connectivity shows a small-

world property linked with scale-free topology [45–47]. The soft-thresholding approach was

applied to the correlation coefficients to satisfy the scale-free topology using the following for-

mula: {(r+1)/2}β, where r is the correlation coefficient and β is the scale-free index that was set

to six [48,49]. The soft-thresholded correlation coefficients were transformed to z-values using

Fisher’s r-to-z transformation. The betweenness centrality, a graph measure estimating the

importance of a given node, was calculated by counting the number of shortest paths between

any two nodes that run through that node [31,32]. The steps for functional connectivity analy-

sis are represented in Fig 1B.

Association between functional connectivity of the brain and eating disorders

The multivariate association between the functional connectivity of the whole brain and eating

disorders was explored using the SCCA approach. The betweenness centrality values of 246
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brain regions and responses of 51 questions in TFEQ assessment were considered (Fig 1C).

The goal of SCCA is to compute loading vectors (u and v) of two feature matrices, X and Y, by

maximizing the correlation between the linear combinations of the features from two matrices

(Xu and Yv), where X is the betweenness centrality values of all brain regions (n × 246

regions), Y is the responses to all questions in the TFEQ assessment (n × 51 questions), and n

is the number of participants. L1 regularization was used to control the sparse relationship

between the two different feature matrices [50]. The objective function of SCCA can be

defined as

max
u;v

uTXTYv s:t: uTXTXu � 1; vTYTYv � 1; kuk1 � c1; kvk1 � c2: ð1Þ

We can rewrite the objective function as

min
u;v
� uTXTYvþ bukuk1 þ bvkvk1 s:t: uTXTXu � 1; vTYTYv � 1: ð2Þ

Solving Eq (1) under the sparsity constraints lead to solving Eq (2). We initially tuned the regu-

larization parameters (i.e., βu and βv) using five-fold cross-validation where the built SCCA

model from the training fold was tested using various beta values in the left-out fold to maxi-

mize the canonical correlation. The final beta values were determined by averaging them

across the cross-validation. The SCCA is a multivariate approach, which aims to optimize the

association between one set of variables (i.e., functional connectivity of various brain regions)

and another set of variables (i.e., questions in the TFEQ) by maximizing the canonical correla-

tion between the linear combination of a subset of each variable and relevant loading vector.

This approach does not involve multiple tests of univariate statistics and therefore, we

Fig 1. Overall flowchart of procedures in the study for the discovery set. (a) Data preprocessing pipeline of T1-weighted structural data and rs-fMRI

data. (b) Functional connectivity analysis steps applied to preprocessed rs-fMRI data. The mean BOLD signal of each region as defined by the BNA atlas

was calculated and the connectivity matrix was computed using Pearson’s correlation coefficients from the mean BOLD signal of two different regions.

This connectivity matrix was soft-thresholded and then z-transformed. The between centrality (BC) values were estimated from this matrix. (c) Sparse

canonical correlation analysis (SCCA) was adopted to find an association between brain function and eating disorders. The BC values of all 246 brain

regions and 51 responses of the TFEQ assessment were considered. (d) The post-hoc correlation analysis was conducted between obesity-related scores

and brain regions showing associations with eating disorders as result of (c). Pearson’s correlation was computed from the BC values of the

corresponding brain regions and BMI/WHR scores.

https://doi.org/10.1371/journal.pone.0237511.g001
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evaluated the model just once. Thus, there are no corrected p-values in that sense. Bootstrap-

ping was performed in order to assess the reliability of the results, randomly selecting 80% of

subjects for 1000 times. The loading vectors were computed for each bootstrapped subset and

the frequently selected features were compared with those obtained from the full data.

Correlation with obesity-related clinical scores

Post-hoc correlation analysis between the betweenness centrality values of the identified brain

regions, which showed an association with eating disorders, and the obesity-related clinical

scores of BMI and WHR was conducted at two levels, one at the large-scale network and the

other at the smaller-scale region (Fig 1D). This was to explore whether brain regions were

associated with obesity as well as eating disorders. The r- and p-values were calculated and the

regions with significant correlation with BMI/WHR were selected (false discover rate [FDR]

corrected p< 0.05).

Validation of the association between brain regions and eating disorders

Independent validation was conducted using data of the Saint Vincent’s hospital in Suwon,

South Korea. The betweenness centrality was calculated from rs-fMRI data and the same atlas

was used. SCCA was applied to the centrality values of 246 brain regions and responses to 26

questions of EAT-26. The optimal regularization parameter was obtained in the same way

described before, but three-fold cross-validation was used in parameter tuning due to the

small sample size.

Results

Association between functional connectivity of the brain and eating

disorders

Twenty-seven brain regions and 19 questions were selected as a result of the SCCA. The

canonical correlation coefficient between two linear combinations of two features was 0.4945.

The brain regions with a large magnitude of the loading vector (i.e., the strong association

with TFEQ questions) were primarily located at the frontoparietal and limbic networks that

process cognition- and reward-related functions (Fig 2). The questions in the TFEQ with a

large loading vector magnitude were primarily involved in factor 1, dietary restraint, which

indicates the ability to control food intake. Detailed information for selected features is stated

in the Supplementary Tables in S1 File. Positive associations were observed between the ques-

tions of dietary restraint factor and cognition-related brain regions, while negative associations

were found between the same factor with reward-related brain regions. The results indicate

that the inhibitory function in cognition-related brain regions might regulate eating disorders,

while hunger-related responses in reward-related brain regions could lead to a failure in die-

tary regulation.

Bootstrapping was performed for 1000 times and the frequently selected features were com-

pared with those from the main results. Twenty-seven selected brain regions of the main

results were compared with the top 27 frequently selected brain regions from the bootstrap-

ping. A total of 21 regions (77.78%) overlapped. Nineteen selected questions of the main

results were compared with the top 19 frequently selected questions from the bootstrapping. A

total of 18 questions (94.74%) overlapped and overlapped features were mostly assigned in die-

tary restraint. The list of the most frequently selected features is stated in the Supplementary

Tables in S1 File.
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Correlation with obesity-related clinical scores

To explore whether the eating disorder-related brain regions were associated with obesity,

post-hoc correlation analysis between the betweenness centrality values of the networks in the

behavioral domain of the identified regions and BMI/WHR was conducted. Twenty-seven

identified brain regions were mapped into five behavioral domains which appeared domi-

nantly in the identified regions (cognition-, reward-, sensorimotor-, visual-, and language-

related region) and the averaged centrality values of each domain were computed. The results

are shown in Table 2. The cognition-related network showed a significant correlation with

WHR with r-value of 0.1588 and FDR corrected p-value of 0.0366. We further explored the

Fig 2. The coefficients of the loading vector for the brain visualized in atlas space. The color scale indicates a strong

association with blue and red colors. The regions in red (strong positive correlation with dietary restraint) are mostly

cognition-related regions. The regions in blue (strong negative correlation with dietary restraint) are mostly reward-

related regions. IPL, inferior parietal lobule; OrG, orbital gyrus; INS, insula; FuG, fusiform gyrus; CG, cingulate gyrus.

https://doi.org/10.1371/journal.pone.0237511.g002

Table 2. The correlation between the behavioral domain of the identified brain regions and obesity-related clinical scores.

Behavioral domain Clinical score

BMI WHR

r-value p-value r-value p-value

Cognition 0.0969 0.2576 0.1588 0.0366 �

Reward -0.0341 0.7091 -0.0480 0.6636

Sensorimotor -0.0136 0.8191 0.0259 0.6636

Visual -0.1185 0.2301 -0.1028 0.2095

Language -0.0614 0.5040 -0.0357 0.6636

Significant results are reported in bold italic. BMI, body mass index; WHR, waist-to-hip ratio; p-values were corrected using FDR approach.

https://doi.org/10.1371/journal.pone.0237511.t002
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association in six regions in the cognitive domain with WHR to give a fine-grained explana-

tion of the results. Table 3 shows the results of the second correlation analysis. Two regions

(rostal area 35/36 and caudal area 40) showed a significant correlation with WHR, indicating a

significant association among cognition-related brain networks, eating disorders, and obesity.

Validation of the association between brain regions and eating disorders

As a result of SCCA, 16 brain regions and eight questions were selected. The canonical correla-

tion coefficient between two canonical features was 0.8851. The cognition- and reward-related

regions showed a large magnitude of loading vectors and the ‘diet’ subscale had the largest

magnitude in loading vectors. Thus, high associations between cognition-/reward-related

brain regions and diet were observed in the validation. The diet subscale in EAT-26 is not

equal to the dietary restraint in TFEQ at the subscale-level but it includes some questions

related to dietary restraint and might be partially comparable. In this sense, these results of the

validation were largely compatible with those of the discovery set. The list of selected features

is stated in the Supplementary Tables in S1 File.

Discussion

Despite extensive research [3,6–10], association between brain connectivity topology and

behavioral patterns of eating disorder is underexplored, which makes it difficult to understand

the underlying mechanisms of brain function related to eating disorders. Leveraging a multi-

variate association analysis, we established that reward and frontoparietal networks showed

significant associations with eating disorders of dietary restraint. Regions involved in fronto-

parietal network positively related to restraint eating, while reward regions showed a negative

association. These results support that increased inhibitory control of the brain may suppress

errant eating behavior, while increased reward signaling induces loss of control for eating. Fur-

ther association with the degree of obesity revealed a potential link between inhibitory control

and obesity. Together, our work provides a new perspective on understanding functional con-

nectivity topology associated with eating disorders.

In this current study, we adopted SCCA to identify highly contributable brain regions asso-

ciated with eating disorders across a wide range of BMI. We found frontoparietal network to

be related to restraint eating, supporting the role of this brain region for regulating inhibitory

behavior [51–54]. In addition, reward-related brain regions showed significant associations

with eating disorders as well. Unlike inhibition control-related brain regions, these regions are

involved in hunger domain, which encodes food-related responses leading to an individual to

feel hunger [55–60]. Previous neuroimaging studies proved that dysfunction in frontoparietal

network broke the executive and inhibitory control system, yielding aberrant eating behaviors

Table 3. The correlation between the identified cognition-related brain regions and WHR.

Atlas index Region Gyrus Hemi-sphere r-value p-value

109 rostral area 35/36 Parahippocampal Gyrus L 0.2377 0.0003 �

127 caudal area 7 Superior Parietal Lobule L -0.0197 0.7408

135 caudal area 39(PGp) Inferior Parietal Lobule L 0.1211 0.0828

137 rostrodorsal area 39(Hip3) Inferior Parietal Lobule L 0.0947 0.1670

141 caudal area 40(PFm) Inferior Parietal Lobule L 0.1693 0.0127 �

209 lateral superior occipital gyrus lateral Occipital Cortex L 0.0826 0.1983

Significant results are reported in bold italic. p-values were corrected using FDR approach.

https://doi.org/10.1371/journal.pone.0237511.t003
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and subsequently weight gain [6,7,53,61–65]. Molecular studies support our findings in a biologi-

cal context by suggesting atypical signaling from neuroendocrine factors of insulin, leptin, and

ghrelin and corresponding gene expressions modulate perturbed inhibitory and reward systems,

encouraging eating disorders [66,67]. These studies collectively suggest neural substrates of execu-

tive-control and reward-related brain regions that influence the behavioral traits of eating.

Our work adopted eating disorder scores at the question-level rather than the factor-wise

scores. We hypothesized that using the full information provided in the question-wise

responses (51 features) would be better suited for exploring the link between the brain and eat-

ing behaviors than using factor-wise scores (three features) due to the increased information

content. Indeed, our previous study investigated the association between functional brain net-

works and eating behaviors in people with obesity using factor-wise scores and found the asso-

ciation with an effect size (i.e., Pearson’s r) of 0.2422 [6], which was largely improved in our

current study (Pearson’s r = 0.4945). These results indicate that our approach could better

select the combination of functional brain connectivity to be maximally linked to behavioral

traits of eating disorders. Thus, the regions identified in our study might have higher levels of

statistical confidence, although the identified regions were similar to those identified in previ-

ous studies. Interestingly, we found that the questions related to a similar behavioral trait, espe-

cially dietary restraint, showed clustered association with the brain, confirming previous

studies that linked cognition- and reward-related brain networks to eating behaviors [3,6–9].

Together, our work supports that the TFEQ at question-level could be a reliable measurement

for assessing eating disorders in conjunction with brain function.

Although we found significant associations between the identified brain regions and dietary

restraint scores, no significant association was detected for disinhibition or hunger factors.

This should be investigated further, but this inability might be due to the demographic charac-

teristics of enrolled participants, in which obesity-related diseases were excluded. Further vali-

dations are required by recruiting participants with aberrant eating disorders.

Our study has several limitations. First, we only used betweenness centrality for quantifying

complex brain networks. Other graph-related measures such as degree- and eigenvector-cen-

trality, and efficiency might be used to associate the brain and eating behaviors. This is left to

future work. Second, obesity is a multifactorial disorder affected by a wide range of factors,

including eating behaviors, genetic factors, and other environmental factors [68,69]. Strict

control of these factors was difficult since we obtained our data from an open database. Third,

a longitudinal study that follows the changes in eating behaviors is needed to assess the stability

of our findings. Fourth, patient demographic and eating disorder questionnaires were not

exactly matched between discovery and validation sets (p-value < 0.05). Despite these poten-

tial confounds, we found largely consistent results between discovery and validations sets.

However, a controlled validation set is needed to fully test the generalizability of our approach.

Here, we introduced a framework for associating functional brain connectivity and eating

disorders at question-level. Harnessing a multivariate association analysis, SCCA, we identified

brain regions in executive control and reward system are functionally associated with restraint

eating in people with a wide range of BMI. Association between the functional connectivity

and WHR suggested the potential role of functional variations in inhibitory control associated

with obesity. Our work provides a new perspective on understanding the relationship between

eating disorder and brain function.

Supporting information

S1 File. The list of questions from the TFEQ and the results of SCCA. The distribution of

obesity-related clinical scores in the discovery set. The list of 51 questions of the TFEQ. The
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