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Abstract: In order to improve vehicle driving safety in a low-cost manner, we used a monocular
camera to study a lane-changing warning algorithm for highway vehicles based on deep learning
image processing technology. We improved the mask region-based convolutional neural network
for vehicle target detection. Suitable anchor frame ratios were obtained by means of K-means++
method clustering for 66,389 vehicle targets with the width/height ratio, which is one more set of
anchor frames than the original setting, so as to ensure that the generation accuracy of candidate
frames can be improved without sacrificing more network performance. Using the vehicle target
annotation set, we trained the vehicle targets. Through the analysis of indicators for mean average
precision, a new set of anchor frames was added to improve the accuracy of vehicle target detection.
Based on the improved vehicle detection network and an end-to-end lane detection network in series,
we proposed an algorithm for the detection of highway vehicle lane-changing behavior with the
first-person perspective by summing the inter-frame change rates in the vehicle lane-changing data
pool. After the identification and verification of the marked lane-changing picture sequences, a
lane-changing detection accuracy rate of 94.5% was achieved.

Keywords: vehicles; vehicle detection; deep learning; lane-changing detection; Mask R-CNN

1. Introduction

In recent years, the technology of advanced driver assistance systems has been rapidly
developed and applied. However, the current functions of advanced driver assistance
systems configured by vehicles on the road are uneven, and some lack basic driving
assistance functions, such as collision avoidance warning and lane-changing warning
functions. In addition, 18% of road traffic accidents and 10% of delays are caused by unsafe
lane-changing behavior in China [1]. A large proportion of straight driving sections under
highway conditions and long-term driving under good road conditions will make the
driver fatigued and more likely to cause an accident. Therefore, it is beneficial to improve
vehicle safety by the early warning of lane-changing behavior of the preceding vehicles.
How to improve the driving safety of these vehicles in a low-cost manner and realize the
development of the corresponding functions of the driving warning system have important
research value. Due to the low-cost and easy deployment of the monocular camera, it can
complete the detection and positioning tasks of all targets in the detection module of the
warning system. Therefore, based on a monocular camera, we used deep learning image
processing technology to research and develop the vehicle lane-changing warning system.
The warning system realized perception of the surrounding environment by a low-cost
monocular camera. The basic environmental information of the road should include vehicle
information and lane information. Through the deep learning pre-processing module,
the information of preceding vehicles and the lane information of the ego-vehicle were
obtained and combined with the analysis of a lane-changing warning post-processing
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module to obtain warning information of dangerous road conditions, which improve the
driving safety of the ego-vehicle.

Due to the parallel computing wave triggered by deep learning in recent years, a
large number of algorithms based on deep learning methods have emerged in the field of
target detection. Region-based Convolutional Neural Networks (R-CNNs) were proposed
by Girshick et al., in 2014, which combines the region proposal with the image feature
convolutional neural network to improve the detection accuracy [2]. The proposed region
size was re-adjusted and used as the input of the standard CNN architecture [3], such
as Alexnet [4], Visual Geometry Group Network (VGG), Inception, and Deep Residual
Network (ResNet). Among them, the last layer of the CNN network architecture was
trained using the Support Vector Machine (SVM) algorithm to detect whether there is a
target of one of the target classes in the region. According to a linear regression model, the
bounding box obtained by the region proposal could further converge to the real bounding
box. However, the R-CNN method did not achieve the end-to-end learning.

In 2015, Girshick et al. proposed an improved algorithm for R-CNN—Fast R-CNN [5],
which only performs CNN inference once, greatly reducing the amount of calculation.
A new pooling technology, Region of Interest (RoI) pooling, was introduced. According
to the regional suggestions, CNN features were pooled together. In this way, after the
reasoning of the CNN network, the features obtained in the pooling step would form a
set. The advantage of this approach was that the end-to-end learning can be achieved,
thus avoiding the use of multiple classifiers. The previous SVM classifier was replaced
by a Softmax layer, but still required a lot of computing power because it still proposes a
selective search area.

In 2016, Ren et al. proposed Faster R-CNN [6], which replaces selective search with
a CNN framework such as VGG and Inception. A Region Proposal Network (RPN) was
proposed. RPN is a fully convolutional network that can achieve the end-to-end learning.
The most important breakthrough was to make the RPN network and the object detection
network share the convolutional features, which realizes the area proposal with almost no
computational cost and reduces the computational time.

Mask R-CNN was proposed by He et al., in 2017 [7], and made two improvements
on the basis of Faster R-CNN. The RoI pooling layer was replaced with an RoI align layer,
and a mask branch was added to predict the segmentation mask of each region of interest.
Because the RoI align layer used bilinear interpolation, the output of RoI was aligned with
the source image, resulting in more accurate instance segmentation. Because the mask
branch was operated in parallel with the original classification branch and the border
regression branch, time loss was reduced and the segmentation accuracy was improved.

In terms of research on algorithms for detecting lane-changing behavior, there is a
method based on a third-person fixed perspective. By detecting the angle between the
trajectory of the target vehicle and the fixed lane line, when the angle is greater than a
certain threshold, it is determined that the target vehicle has changed lane. Shi et al. [8]
calculated the variance of the lateral distance between the target vehicle’s trajectory line
and the corresponding points of the ego-vehicle’s lane line based on the third-person
fixed perspective, and determined the lane-changing behavior based on this. Although
it is possible to send lane-changing warning information to the driver of the ego-vehicle
through third-party observation and through the internet of vehicles, it requires a large
number of cameras beside the road, and the threshold for drivers to use is relatively
high. Hu [9] proposed an algorithm for extracting the edge feature of the lane line with
a direction-tunable filter, using a Kalman filter to track and correct the parameters of
the lane line, and proposed a vehicle lane-changing detection method based on the lane.
Wei et al. [10] proposed a lane-changing detection method for vehicle violation based on
the actual behavior of the vehicle crossing the solid line. Zhao et al. [11] proposed a vehicle
merging warning system with a preset safety zone. When the midpoint of the vehicles on
both sides of the ego-vehicle lane crossed the trapezoidal safety zone of the ego-vehicle, the
warning message was prompted. The above methods all determined the result of the lane-



Sensors 2022, 22, 3326 3 of 15

changing, failed to meet the requirement of real-time warning to a large extent, and could
not feedback in a timely manner the lane-changing information of the preceding vehicles.

A good prediction for the lane-changing actions of surrounding vehicles will sig-
nificantly improve the safety and passenger comfort of driver-assisted and automated
vehicles [12]. Woo et al. [13] installed a position sensor and six lidars on the ego-vehicle to
obtain the positions and speeds of four adjacent target vehicles, used SVM to estimate the
driver’s intention, and predicted the target vehicle’s trajectory to detect lane-changing be-
havior. Zhang et al. [14] used the relative speeds and distance data of the target vehicle and
four adjacent vehicles to simulate the lane-changing behavior of the target vehicle with a
continuous hidden Markov model, calculated the lane-changing probability, and predicted
the lane-changing behavior of the target vehicle, which reached 85% of the true positive
rate. Zhang et al. [15] used a passive-aggressive algorithm to design a lane-changing source
classifier with a large number of lane-changing operations as training samples according
to the motion state of the target vehicle before the lane change and the parameters of the
relative motion with the surrounding vehicles, and proposed an online transfer learning
strategy to predict the lane-changing intention of the target vehicle. This method requires an
ego-vehicle equipped with a GPS and millimeter-wave radar. Based on the data provided
by radars and cameras, Lee et al. [16] input a simplified bird’s-eye view into a convolutional
neural network to predict the lane-changing intention of the target vehicle. Wei et al. [17]
proposed a deep residual learning neural network to identify the lane-changing behavior
of the vehicle on a highway based on images captured by a forward-facing vehicle camera
and measured ego-vehicle braking and accelerator pedal forces, speed, steering angle, and
longitudinal and lateral acceleration information, achieving an accuracy of 87%.

In summary, the research on the vehicle lane-changing warning algorithm is partly
based on the determination of the lane-changing result, which leads to the inability to
feedback in a timely manner the lane-changing information of the preceding vehicles, or
is based on the lidar or the radar and camera to obtain the relative motion parameters
between the ego-vehicle and the target vehicles, which leads to high hardware cost, and the
recognition accuracy needs to be further improved. In order to realize the lane-changing
warning of the ego-vehicle in a low-cost way to improve the safety of the driver assistance
system, we studied the lane-changing warning algorithm based on a monocular camera.
The current mainstream target detection frameworks such as Mask R-CNN are multi-target
detection networks, which are not optimized for single target detection tasks such as vehicle
detection. We improved the generation process of the candidate frame of Mask R-CNN
by counting the relevant size parameters of the vehicles, so as to obtain a better candidate
frame and improve the detection accuracy of the target vehicles. We proposed to calculate
the sum of the inter-frame change rate when the target vehicle changes lane based on the
first-person perspective. We could remind the driver in a timely manner to pay attention
to dangerous lane-changing behavior by determining the target vehicle’s lane-changing
behaviors instead of the lane-changing results, and we achieved a high lane-changing
detection accuracy.

2. Materials and Methods
2.1. Improved Network Framework of Vehicle Target Detection

In the field of deep learning, there are many ways to obtain the bounding box of the
vehicle target. One method is to directly predict the bounding box value of the vehicle.
Szegedy et al. [18] proved that neural networks can be directly used for coordinate regres-
sion purposes. Yolo V1 [19] directly predicted the four values of the bounding box, but
the corresponding loss function did not truly reflect the accuracy of the predicted box.
The disadvantage of this method is that it is more inclined to use a large-size bounding
box. Although the approximate position of the vehicle can be identified, it has a large
defect in the warning system that requires accurate vehicle positioning. In addition, the
training process of this method is unstable, because the predicted frame value may change
significantly as the posture of the vehicle changes or the distance relationship changes.
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Other methods, such as Mask R-CNN, Faster R-CNN, and Single Shot Detector (SSD) [20],
use anchors. Based on the preset anchors, after obtaining the proposed frame, going back,
and fine-tuning the frame size and position, the problems of former method can be solved.

Mask R-CNN is a multi-task deep learning model. This network can realize the
classification and positioning tasks of the instances in the picture by the end-to-end learning,
and can realize the pixel-level mask to complete the instance segmentation. Mask R-CNN
includes three main sub-networks, namely the backbone network, which is a combination
of ResNet and Feature Pyramid Network (FPN) [21], RPN, and the head network, as shown
in Figure 1.

Figure 1. Mask R-CNN network framework.

The head network has three branches. In the classification and regression branches,
the input of the head network first passes through a two-layer convolutional network,
enters two fully connected layers, and then enters a Softmax classification layer and the
linear regression layer. The same activation function as in the RPN network is used. The
Mask branch goes through the steps of multi-layer convolution, Batch Normalization
(BatchNorm), Rectified Linear Unit (ReLU) layer, etc., and the 28 × 28 Mask feature map of
each class is obtained. The activation function Sigmoid is used to distinguish the value of
each pixel as 0 or 1. A binary cross-entropy loss function is used for training.

Anchor boxes are a series of candidate boxes obtained by combining different aspect
ratios and different aspect proportions. According to (P2, P3, P4, P5, P6), five pyramid
feature layers, three anchor frames, and 15 anchor frame sizes are set in Mask R-CNN to
detect the preset of the frames (see Figure 2). There are 5 scales of anchor frames (16, 32,
64, 128, 256). The ratios of anchor frames have three kinds of aspect ratios (0.5, 1.0, 2.0).
Three anchor boxes with different aspect ratios, as shown in Figure 3, are generated on each
feature map as the pre-selection boxes.

Figure 2. Relationship between Resnet and FPN.
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Figure 3. Three ratios of same size anchor.

The proportions of the anchor frames need to be modified appropriately to adapt to
different target detection tasks, speed up the convergence of the model, and improve the
positioning accuracy of the targets. In order to obtain the appropriate anchor frame ratios
setting for the vehicle targets, the K-means++ clustering algorithm [22] was performed for
the vehicle bounding box label of the dataset to obtain the appropriate width/height ratios
of anchor frames.

The K-means algorithm is a distance-based clustering algorithm that uses the distances
between points as an indicator of similarity. If the distance between two pixels is closer,
the similarity is higher. This algorithm gathers points that are close to each other into
a cluster, and finally obtains compact, bounded, and independent cluster objects. The
inherent defect of the K-means algorithm is that it needs to manually specify the number
of cluster points. The K-means algorithm is more sensitive to the location of the starting
point. The K-means++ algorithm compensates for these defects to a certain extent. It
can speed up the convergence of the model and improve the positioning accuracy of
the target by using K-means++ clustering to obtain more suitable anchor frame ratios of
vehicle targets. A higher positioning accuracy is used to meet the need of accurate vehicle
lane-changing detection.

We used the road target dataset labeled by CrowdAI Company in the United States
to perform the clustering task. The data contained traffic information in Mountain View,
California, USA, and nearby cities, including 9423 frames of pictures (sampled at 2 Hz)
and a road traffic information dataset for a total of 72,064 targets. The resolution was
1920 × 1200.

We cleaned the dataset before clustering. The dataset contained three different targets:
cars, trucks, and pedestrians. The lane-changing warning system we designed was to
conduct research on vehicles. Pedestrians were not the subject of research, so the pedestrian
tag data were eliminated, leaving 66,389 vehicle targets.

If the anchor was appropriately increased in an appropriate proportion, more ap-
propriate anchor frames could be generated, which could theoretically increase the value
of the average Intersection over Union (IoU). This was because choosing more priori an-
chor frames would cause the anchor frames to have greater overlap with the real frames.
However, as the number of anchor frames increases, the corresponding convolution filter
would also increase, increasing the size of the network and leading to a longer training
time. Therefore, we set the ratios of anchor frames to 4, which is one more set of anchor
frames than the original setting to ensure that the generation accuracy of candidate boxes
can be improved without sacrificing more network performance.

The results of clustering four cluster points according to the vehicle’s aspect ratio
are shown in Figure 4, and the colors distinguish the clusters of the four cluster points.
According to the coordinates of the center of the cluster points, the corresponding four
anchor frames were set with a ratio of (1.26249845, 1.20118061, 1.40220561, 1.15757855). As
the vehicle proportions were relatively consistent, taking the average of the above four
types of anchor frames could obtain the new anchor frame ratio of 1.256. Adding a new
ratio to the original anchor frame ratios could obtain four anchor frame width/height ratios
(0.5, 1.0, 1.256, 2.0). The anchor frames of the feature map would generate four proportions
of frames on the original field of view, as shown in Figure 5.
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Figure 4. The clusters of four cluster points.

Figure 5. The new anchor ratios.

2.2. Dataset Preparation for Vehicle Detection Network

The datasets in the field of target detection usually include the Pascal Visual Object
Classification (VOC) dataset, MS Common Objects in COntext dataset, and ImageNet
dataset. We annotated the original data according to the standard format of the Pascal VOC
dataset, and created the vehicle detection dataset of CQ_Vehicle_Dataset for the training of
the improved Mask R-CNN network.

The original data were 4-channel videos collected by the staff of the China Automotive
Engineering Research Institute. The video contained a total of 4 perspectives, namely
the left, the right, the front, and the back perspective. The road information in front of
the vehicle and vehicle dynamic information were analyzed and processed, so the data
source needed to be tailored. An example of the original video screenshot was shown
in Figure 6a. The video screenshot was obtained after cropping by FFmpeg software, as
shown in Figure 6b.

Figure 6. (a) Original video screenshot. The upper left indicates the left rear view of the ego-vehicle,
the upper right indicates the right rear view, and the lower left indicates the front view; the rear view
is not displayed. (b) Cropped screenshot of forward video.

The size of the video was 1280 × 720. The 64 videos obtained were subjected to
frame extraction processing to obtain a sufficient amount of data. A batch conversion
file was written based on Python. The 64 videos in the folder were batch-converted and
sampled every 50 frames to prepare pictures as a prerequisite for annotation. After data
cleaning, 2537 images were retained, which covered the urban, suburban, and highway
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driving conditions, and the weather covered sunny and rainy. The size of the image
was 1280 × 720 pixels. On this basis, a total of 317 images had been marked with mask
information for a total of 1364 vehicle targets.

Labelme software (https://github.com/wkentaro/labelme, accessed on 1 March 2020)
uses polygon boxes to label target objects. We used Labelme software to label the entire
shape of the vehicles, as shown in Figure 7. The effect diagrams of instance segmentation
of vehicles on the road are shown in Figures 8 and 9.

Figure 7. Polygon vehicle labeling.

Figure 8. Instance segmentation annotation.

Figure 9. Mask labeling of instance segmentation.

The vehicle dataset contained two folders, which were image and groundtruth. The
image folder was a set of pictures with 1280 × 720 pixels, and the groundtruth folder was a
set of segmentation mask pictures for vehicle instances.

2.3. Vehicle Lane-Changing Detecting Algorithm

Combining the improved vehicle detection network and the end-to-end lane detec-
tion network in series [23], the integrated outputs were obtained, as shown in Figure 10.
We proposed a lane-changing detection method based on the first-person perspective,
which can discriminate the target vehicle’s lane-changing behavior and obtain a higher
detection accuracy.

The proportion of straight driving sections in the highway driving conditions is very
large, and driving under good road conditions for a long time will make the driver tired and
easily cause accidents. Therefore, it is necessary to inform the driver of the lane-changing
behavior of the preceding vehicles under highway conditions to reduce the accident rate.
The lane-changing detection algorithm made the following assumptions: (1) the driver’s
ego-vehicle was stable without obvious lateral displacement; (2) the driving section was a
straight section.

https://github.com/wkentaro/labelme
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Figure 10. Vehicle and lane detection results of a frame.

According to the perspective principle, two parallel lane lines will intersect at a point
in the distance. If two other parallel lines are added between the two parallel lines, because
the fan-shaped area in the two lane lines eventually converge to a point, the other two
parallel lines eventually converge to the same intersection. Thus, the four parallel lanes
will eventually converge to a point P0 (P1) in the distance. As shown in Figure 11.

Figure 11. Schematic diagram of the lane change-detecting algorithm for the preceding vehicles.

The middle lane in Figure 12 was the driving lane of the ego-vehicle, and the other
two lanes were adjacent lanes on the left and right. All lane lines intersected at a point P0.
The lower corner points on the outside of the target vehicle detection frames were selected
as the mark points connected with the point P0. The reason for choosing the lower corner
points on the outside of the detection frames as the marking points was as follows.

Figure 12. Selection of vehicle observation points.(a) detection result of the white van. (b) detection
result of the white van. (c) detection result of the blue vehicle. (d) detection result of the blue vehicle.



Sensors 2022, 22, 3326 9 of 15

Figure 12a,b show the detection characteristics of the white van on the adjacent left
lane. It could be seen that the lower left corner of the white van detection frame was close
to the body, and there was basically no offset. As the distance between the target vehicle
and the ego-vehicle increased, the information on the right side of the target vehicle was
gradually reduced and compressed, resulting in a shift in the lower right corner point to
the left. Figure 12c,d show the detection results of the blue target vehicle on the adjacent
right lane line. Therefore, the lower right corner of the detection frame should be selected
as the target vehicle marking point to avoid the relative deviation in the marking point
caused by the change in relative displacement of the target vehicle and ego-vehicle.

The lower right corner of the target vehicle in the right adjacent lane at time t0 was
marked as A0, and the pixel coordinates of A0 in Figure 11 were (xA0, yA0). The target
vehicle changed lane to the left, the lower right corner of the target vehicle at time t1 was
marked as A1 (xA1, yA1), and the yellow box on the right side indicated the position where
the target vehicle did not change lane. In Figure 11, a point on the right lane line of the
ego-vehicle was marked as B0, and ∠A0P0B0 was set to the angle α. The angle α between
frames would change, and the rate of change of the angle α between frames was defined as
βt. For time t (frame):

βt =
αt − αt−1

αt

where αt is the angle α at time t, α−1 is the angle α of the previous frame at time t, and βt is
the inter-frame change rate.

As the two premise assumptions of the lane-changing detection algorithm were met,
the road intersection P0 of adjacent frames and P1 (the next frame intersection) approxi-
mately coincided. If the target vehicle with the yellow detection frame on the right was
driving along the parallel direction of the lane, at time t1 (the next frame), the lower right
corner of the target vehicle detection frame should be near the straight line P1A0.

If the target vehicle on the right made a lane-changing to the ego-vehicle lane, the
lower right corner point at this moment was A1 (xA1, yA1), which should be on the left side
of the line P1A0, and the corresponding angle α also reduced.

When the target vehicle changed lanes, the inter-frame angle α would decrease. As
the target vehicle lane-changing was a continuous behavior, the inter-frame change rate
should remain at a certain negative value. According to this, the lane-changing behavior
could be determined according to the change law of the inter-frame change rate. The
actual measurement found that the rate of change between frames was negative in most
cases, but positive in a few cases. In order to suppress the influence of the detection
fluctuation of some frames, a measure was taken to accumulate the inter-frame change rate.
If the detection misalignment of the previous frame caused the inter-frame change rate to
fluctuate greatly, the accurate detection of the next frame of the picture would cause the
inter-frame change rate to fluctuate in the opposite direction, which would largely suppress
the detection fluctuation. We designed a data pool (array) with 5 elements. The detection
result of each frame of the picture was the inter-frame change rate, which is rolled and
stored in sequence, summing the elements of the array and taking the opposite number,
and comparing it with the adjustable parameter threshold ρ. If it was greater than ρ, it
was regarded as a lane-changing; otherwise, no lane change had occurred. For a specific
calculation example, see the introduction in Section 4.

3. Results
3.1. The Improved Effects of Vehicle Detection Network Training

Based on the improved Mask-RCNN, the vehicle targets were detected and the bound-
ing boxes of the vehicle targets were drawn. As the vehicle dataset we have established
was relatively small, over-fitting problems might easily occur if we directly performed long-
term training based on this sample. Therefore, 20 epochs of pre-training were performed
on the COCO train2017 dataset using Resnet50 architecture. When training vehicles, a data
augmentation method was used to suppress the possible overfitting of the network.
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We made a random horizontal flip on the training data, and set the application
probability to 0.5, as shown in Figure 13.

Figure 13. The random horizontal flipping.

In order to suppress over-fitting and speed up training, we constantly adjusted the
reasonable parameters during the training period. The final specific parameter settings are
shown in Table 1, which refer to this link (https://haochen23.github.io/2020/06/fine-tune-
mask-rcnn-pytorch.html, accessed on 1 June 2020).

Table 1. Setting parameters of vehicle detection network.

Parameters Descriptions Values

Lr Learning rate 0.005
Ic Impulse constant 0.9

Wd Weight decay 0.0005
Nt Data Number of threads 4
Ip Iteration periods 20

R Ratio of training set to
validation set 4:1

The experimental environment was ubuntu 18.04, a 64-bit system, the deep learning
framework was Pytorch, the hardware was an Nvidia RTX 2070s, and the Python version
was 3.6. We adopted the mean Average Precision (mAP) and Inference time (It) as the
evaluation indexes.

Figure 14 shows a graph of loss function decline after pre-training based on our
self-built dataset retraining. As the training period increased, the loss function decreased
significantly, indicating the effectiveness of model training.

Figure 14. Loss function decline chart.

Figure 15 shows a comparison of two anchor frame settings for the mAP indicator
of the test set. The solid black line shows the results of the original Mask-RCNN network
setting. The dashed red line shows the results of adding a new set of height-width ratios of
anchor frame. It could be seen that after adding a new set of anchor frames that were more
suitable for the proportion of vehicle detection frames, the mAP of 0.5IoU was significantly
improved compared to the original setting, with an improvement rate of about 2.6%.
Because the model was first trained on the CoCo2017 dataset for a long time, the value of
mAP was relatively high even if it was not trained on the self-built dataset. After adding
a set of anchor frames that were more suitable for the proportion of the vehicle target

https://haochen23.github.io/2020/06/fine-tune-mask-rcnn-pytorch.html
https://haochen23.github.io/2020/06/fine-tune-mask-rcnn-pytorch.html
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detection frame, although the convergence speed of the model had not been significantly
improved, the mAP index had been significantly increased, which improved the accuracy
of vehicle target detection.

Figure 15. mAP of 0.5IoU.

It could be seen from Figure 16 that after a new set of anchor frames that were more
suitable for the proportion of vehicle detection frame, the mAP of 0.75IoU was significantly
improved compared to the original setting, with an increase of about 10.5%, which greatly
improved the accuracy of vehicle target detection.

Figure 16. mAP of 0.75IoU.

Figure 17 shows the output results of the bounding box of network vehicles. The
numbers on the upper side of the vehicle box indicate the accuracy of the target being
detected as a vehicle. The accuracy rates from left to right were 0.999, 0.943, 0.993, 0.999,
and 0.997, respectively. Figure 18 shows the output results of the network vehicle mask.
It could be seen that the network had a good detection effect on vehicle targets, and the
frames were closely enveloped with the vehicles.

Figure 17. Detection results.

Figure 18. Output masks of detection network.
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As shown in Table 2, we added a set of anchor frames and performed inference tests
on the dataset. The average inference time increased from 0.109 s in the original network to
0.117 s, and the time consumption increased by about 7%. The time-consumption increase
was not very obvious, and it could still meet the timeliness requirement of the lane-changing
behavior detection.

Table 2. Comparisons of time consumption before and after improvement.

Configuration Average Inference Time/s Average Number of
Inference Frames

Original Mask R-CNN 0.109 9.174

Improved Mask R-CNN 0.117 8.547

3.2. The Angle α between Frames during Vehicle Lane-Changing

As shown in Figure 19, the road information of the target vehicles in the left and right
lanes on both sides of the ego-vehicle lane is displayed. The yellow dot showed the distant
intersection point P0 of the two lane lines of the ego-vehicle, and the red detection box
surrounded the vehicle closest to the ego-vehicle on the left lane line. The angle formed by
the lower left corner of the red detection frame, the far corner point P0 of the two lane lines
of the ego-vehicle, and the left lane line was 0.560 rad. The corresponding angle formed by
the lower right corner of the blue detection frame on the right was 0.214 rad.

Figure 19. Diagram of lane corner and angle a.

Figure 20 shows the change in angle α when the target vehicle in the left lane changed
lane. The angles formed by the lower left corner of the red detection frame, the far corner
point P0 of the two lane lines of the ego-vehicle, and the left lane line were 0.407, 0.380,
0.318, and 0.197 rad, respectively, from Figure 20a–d. It could be seen that as the left target
vehicle changed lane to the ego-vehicle lane, the angle α decreased gradually.
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Figure 20. Target vehicle angle α changing with the target vehicle lane-changing. (a) First frame.
(b) Third frame. (c) Fifth frame. (d) Seventh frame.

4. Discussion

Before designing the lane-changing warning system, it was necessary to produce
statistics on the change in α in each frame of the picture and the value of the inter-frame
change rate βt during the course of the lane-changing behavior to find the certain rule, and
then set the corresponding judgment index through the rule.

Figure 21a shows a graph of changes in angle α of the target vehicle lane-changing
behavior at the left and right adjacent lanes sampled in ten groups (data source: China
Automotive Engineering Research Institute), and the abscissa is the number of frames. The
frame rate of the data source video was 25 frames per second. The total time of the vehicle
detection network and the lane detection network was about 200 ms. The 25 frames-per-
second video was taken every 6 frames for analysis. It could be seen that as the target
vehicle gradually changed lane to the ego-vehicle lane, the angle α gradually decreased
and approached zero. Because the intensity of the lane-changing was different, the length
of time from the beginning to the end of a lane-changing was also different. It could be seen
that some of the curves fell faster (such as the ninth group) and took up less time frame.
This was because the target vehicle had performed a fast lane-changing behavior.

Figure 21. (a) α in target vehicle lane-changing behavior. (b) βt caused by target vehicle lane-changing.
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Figure 21b shows the variation statistics of inter-frame variation rate βt with the lane-
changing of the target vehicle. During the continuous lane-changing of the target vehicle,
βt remained negative in most cases. The positive value appeared because there was an
error in the lane line detection of a certain frame due to interference, which resulted in a
large deviation in the point P0, or a misalignment in the vehicle detection frame.

According to the method in Section 2.3, a method of accumulating the inter-frame
variation rate βt was adopted to suppress the influence of the detection fluctuation of
some frames. Through the above ten groups of lane-changing video data analysis, the
lane-changing threshold ρ = 0.18 was set, and the value greater than the threshold was
regarded as the target vehicle lane-changing. Based on this setting, the accuracy rate of the
lane-changing behavior detection for 55 groups of target vehicles was 94.5%. We found
that the cause of the loss was the missing slow lane-changing of some target vehicles. If the
value of ρ was increased, the false alarms that the target vehicle does not change lane could
be further suppressed. If the value of ρ was lowered, the lane-changing behavior of the
target vehicle could be detected more sensitively.

The link to the program codes and dataset for target vehicle detection and lane-
changing recognition used in this paper is https://www.aliyundrive.com/s/ydaqAXs5
2zh, accessed on 15 April 2022. Please download the PC desktop app from the website
www.aliyundrive.com, and install Aliyun disk on your PC. Click the link, save the files to
your own cloud disk, and then download the cloud disk to your PC.

5. Conclusions

In order to improve the driving safety of vehicles that are not equipped with a lane-
changing warning driving assistance system at a lower cost, we used deep learning image
processing technology and realized the research and development of the function of the lane-
changing warning system based on a monocular camera. We made full use of the accuracy
and real-time characteristics of the deep neural network to detect vehicle targets, and
improved the Mask R-CNN network for vehicle target detection, the accuracy of vehicle
target detection was improved, and the system could meet the real-time requirement.
A vehicle lane-changing detection algorithm based on the first-person perspective was
proposed, a high accuracy rate had been achieved, and a highly time-efficient, low-cost,
and high-accuracy lane-changing warning function had been realized. In the future, we
will consider further optimizing the target detection network structure to reduce the time-
consuming detection; we will conduct warning research on vehicle lane-changing behavior
in curve situations.
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