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Abstract: This paper reviews the developing progress on the synthesis of the silicon quantum
dots (Si-QDs) via the different methods including electrochemical porous Si, Si ion implantation,
and plasma enhanced chemical vapor deposition (PECVD), and exploring their featured applications
for light emitting diode (LED), color-converted phosphors, and waveguide switching devices.
The characteristic parameters of Si-QD LED via different syntheses are summarized for discussion.
At first, the photoluminescence spectra of Si-QD and accompanied defects are analyzed to distinguish
from each other. Next, the synthesis of porous Si and the performances of porous Si LED reported
from different previous works are compared in detail. Later on, the Si-QD implantation in silicide
(SiX) dielectric films developed to solve the instability of porous Si and their electroluminescent
performances are also summarized for realizing the effect of host matrix to increase the emission
quantum efficiency. As the Si-ion implantation still generates numerous defects in host matrix owing
to physical bombardment, the PECVD method has emerged as the main-stream methodology for
synthesizing Si-QD in SiX semiconductor or dielectric layer. This method effectively suppresses the
structural matrix imperfection so as to enhance the external quantum efficiency of the Si-QD LED.
With mature synthesis technology, Si-QD has been comprehensively utilized not only for visible
light emission but also for color conversion and optical switching applications in future academia
and industry.

Keywords: Si quantum dots (Si-QD); light emitting diode (LED); porous Si; Si ion implantation;
plasma enhanced chemical vapor deposition

1. Introduction

Silicon (Si) is the most popular semiconductor comprehensively to be employed as various
electronic and photonic devices. The data transmission rate gradually approaches the upper limitation
of the copper wire when the spatial resolution of device pattern continuously increases to reduce
chip size. The integrated Si photonics can help to take pace with Moore’s law. Therefore, they can
serve as one promising solution to overcome the current bottleneck on the evolution of microelectronic
data communication, as shown in Figure 1. However, the crystalline Si (c-Si) can hardly perform
active optical functionality including efficient lasing and amplification owing to its indirect bandgap
and small exciton binding energy (~10 meV). These reasons lead to weak spontaneous emission with
ultralow quantum efficiency at room temperature [1,2]. For the complete integration of photonic and
electronic circuits with devices in Si photonics, the quantum-confined emitters become one of the
potential research fields in past decades. Specially, the Si nanocrystal (NC) and quantum dot (QD)
possess great quantum efficiency. This approach is typically used to release the constrained set by
momentum conservation which predominates the indirect-bandgap optical transition. That is because
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the band diagram broadening occurs via spatial-confinement in low-dimensional Si nanostructures.
In principle, the categories of the low-dimensional semiconductor system can be classified as the
two-dimensional quantum wells, one-dimensional quantum wires, and zero-dimensional quantum dots
to induce specific physic mechanisms. The first mechanism is the small size or quantum confinement
effect [3,4]. The boundary condition for the crystalline periodicity can be broken up to redistribute the
density of states in energy-momentum space when the material size is decreased around or below the
optical wavelength, the de Broglie wavelength, and the coherence length of superconducting state.
This phenomenon induces nanostructure with decreasing surface atomic density to change most of the
material characteristics. Moreover, the quantum size effect can be induced when the crystal size is
further decreased to the Bohr radius of exciton [5,6] as approximately 4.5 nm for Si material [7]. If the
NC only contains the limited atoms, the interaction among neighboring atoms is weakened to form
the discrete energy state via quantum confinement. In this case, the energy gap between the highest
occupied and the lowest unoccupied molecular orbitals (HOMO and LUMO) can be broadened by
shrinking the NC size. Simultaneously, the surface effect can be effectively enhanced to induce the
higher chemical activity by enlarging the ratio of the surface atoms to total atoms when the NC size is
suppressed [8,9]. On the basis of the occurrence of abovementioned effects in Si nanostructure, some
material parameters such as acoustics, optics, electricity, magnetics, thermodynamics, and mechanics
may change or deviate accordingly. For example, the melting point of 1687 K for bulk Si is lowered to
600 K by decreasing the Si structure to a NC size of 4 nm or less [10].
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Figure 1. Schematic diagram of all-Si based photonic integrated circuit.

More important, the optical characteristics of Si NC or QD also deviate from those of bulk
material including the broadened absorption spectrum, the blue-shifting bandgap energy, and the
enhanced quantum confinement, etc. The Si-NC also increases its unsaturated dangling bonds as it
exhibits large specific surface to degrade the average coordination number. This contributes to the
broadband distribution on the vibration mode of bonding resonance instead of single and preferable
vibration modes. For Group-IV semiconductor NCs or QDs with their broadening absorption spectra
by decreasing the NC size [11,12], two mechanisms are responsible for their blue-shifting peaks. One is
the sizing effect by shrinking the nanostructure size to enlarge its energy gap, and another is the surface
effect with enlarging the surface tension to deform the crystal lattice. The bonding length of the Si
NC or QD can be shortened to increase its vibration frequency via reducing the lattice constant for
blue-shifting the whole absorption band [13]. The mean free path of electrons is limited because of the
quantum confinement by shrinking the radius of Si NC or QD below the Bohr radius. The electrons
easily combine with holes to form exciton via the induced overlap of electron-hole wave functions
when they are confined in such small region. In principle, the overlapping coefficient is increased to
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shorten the recombination time (τR) for increasing the oscillator strength (fosc(ω)) of exciton in Si NC or
QD, as described by [14]:

fosc(ω) =
2πε0mc3

e2nω2 ·
1
τR

, (1)

where ε0 denotes the dielectric constant in vacuum, c the light speed in vacuum, e the electron charge, n
the refractive index of Si, ω the angular frequency, and m the exciton mass equivalent to the summation
of the effective masses for electron (me) and hole (mh) in the weak quantum confinement regime, where
me and mh are respectively, 0.19 m0 and 0.286 m0, with m0 denoting the free electron mass [15,16].
Decreasing the Si NC or QD size enlarges the oscillator strength of exciton to enhance the absorption
coefficient in the exciton band. In addition, the recombination mechanisms are also affected by the
quantum confinement effect [17] as the localized recombination predominates the carrier behavior
prior to their diffusion into defects. This effect suppresses the Shockley–Read–Hall recombination.
In addition, the Auger recombination can hardly happen unless two excitons concurrently exist
in the same Si NC or QD. These phenomena urge the fast radiative recombination process for
the efficient visible light emission from group-IV semiconductors NC or QD [18–20]. Therefore,
the new era of investigation has been developed toward their related devices with strong photo- and
electro-luminescence (EL) [21–31]. The content of this review paper is divided into five categories for
discussion. In Section 2, the luminescence mechanisms of Si-QDs are comprehensively overviewed.
Then, the performances of the light emitting diode (LED) made by nano-porous Si are discussed in
Section 3. In contrast, the optical and electrical properties of LEDs made by Si-ion-implanted dielectric
films with buried Si-QDs are presented in Section 4. At last, the discussion on lighting performances of
the Si-QD in various silicide semiconductor or dielectric layer via plasma-enhanced chemical vapor
deposition are given in Section 5.

2. Photoluminescence of Si-QD

In general, the photoluminescence (PL) of Si-QD is mainly dominated by the quantum confinement
effect to induce the direct band-to-band transition. However, the minor effect is sometimes caused
by luminescent structural defects such as the weak oxygen bond, the neutral oxygen vacancy,
the precursor of Si-QDs and the non-bridging oxygen hole center under different syntheses. For the
quantum confinement effect, the varied displacement of energy via changing the QD size effectively
scales down the valence band level and moves up the conduction band level to enhance the bandgap
energy. At early stage of development, the porous Si was the first candidate for generating the efficient
PL because of its low dimensionality with survived Si skeleton. Among the impressive researches on
the efficient PL from porous Si [6,32–40], Canham demonstrated the most distinguished work to use
electrochemical and chemical dissolution methods for the mesoporous Si layer and the Si quantum
wire array fabrication as early as 1990 [6]. Under the excitation at 514.5 nm for 6 h, the Si quantum
wire array preserves its PL at 762 nm (1.62 eV) [6]. In 1991, Bsiesy et al. also demonstrated the PL of
porous Si at 560 nm, and further used the electrochemical oxidation process to stabilize the luminescent
characteristics [32]. Moreover, Tsai et al. observed that the PL of porous Si was measured between
750 and 800 nm after annealing at different temperatures [33]. Koshida et al. detuned the chemical
etching parameters to anodize the porous Si for shifting its PL spectra to the shorter wavelength via the
stronger quantum size effect [34]. In 1996, Mizuno further employed the postanodization illumination
without adding any oxidation process for 15 min to obtain blue PL emission to 400 nm [35].

In addition to the porous Si structure, the buried Si-QDs in the host matrix have also been observed
to provide efficient visible and near-infrared (IR) luminescence as the host matrix with larger bandgap
confines the Si-QDs with the smaller bandgap. This phenomenon was known to induce the stronger
quantum confinement for Si-QDs. In 1995, Mutti et al. used the Si+-ion implantation and post-annealing
to synthesize the buried Si-QDs in SiO2 matrix. Then, they increased the annealing temperature to
red-shift the PL peak from 490 to 640 nm [41]. In 1996, Min et al. adjusted the dose concentration from
2 × 1016 to 5 × 1016 cm−2 to enrich the Si-QDs in the SiO2 film [42]. The PL of the buried Si-QD in
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SiO2 matrix was varied from 650 to 790 nm after deuterium passivation and annealing at 1100 ◦C [42].
Shimizu-Iwayama et al. also confirmed that the PL peak at 729 nm (1.7 eV) was contributed by the
Si-QDs in Si-implanted SiO2 film [43]. In 1999, Linnors et al. reported the radiative recombination
time of 10–150 µs for the 689–775 nm (1.6–1.8 eV) PL from Si-QDs in Si-implanted SiO2 [44]. Lin et al.
discriminated the PL from defects (410–460 nm and 520 nm) and Si-QD (820–850 nm) in Si-implanted
SiO2 [45]. For example, the PL spectroscopy of Si-QDs in Si-implanted SiO2 film is also observed
in Figure 2. It indicates that the PL peak can be blue-shifted to 725 nm for the buried Si-QDs in
Si-implanted SiO2 film after annealing at 1100 ◦C in 3 hr. In addition, the defect-related PL peak is also
observed at 450 nm.
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Figure 2. The photoluminescence (PL) spectrum of silicon quantum dots (Si-QDs) in Si-implanted SiO2

host matrix.

In addition to Si-ion implantation, other methods including sputtering [46–50], e-beam
evaporation [51,52], and plasma-enhanced chemical vapor deposition (PECVD) [53–62] are employed
to grow the Si-QDs in host matrix. In 2004, Wu et al. utilized the radio frequency (RF) magnetron
sputtering to synthesize Si-QDs in SiO2 matrix with 2–4 nm size for 533–716 nm PL after post-annealing
at 600 ◦C [46]. In particular, Samanta et al. fabricated the SiOx nanowire with buried Si-QDs by using
the DC sputtering. The observed PL peak can be blue-shifted from 669 to 575 nm owing to the spatially
confinement of Si-QDs within SiOx nanowire [47]. In 2009, Hao et al. further grew the Si-QD/SiO2

multilayer film via the RF sputtering for sandwiching the Si-QDs with SiO2 matrix to provide the red
PL emission with a peak wavelength of 800 nm [48]. Moreover, the microcrystalline Si was synthesized
in SiOx film via the e-beam evaporation and post-annealing in N2 and O2 gaseous mixture [51]. Similar
process was performed by using the thermal evaporation for amorphous SiOx film deposition and post
annealing at 1000 ◦C for Si-QD formation. The buried Si-QDs with an average size of 4.3 nm were
formed to generate the broadband red PL emission between 754 and 882 nm [52]. In comparison with
sputtering and evaporation, the PECVD method can perform the precise synthesis for the composition
ratio variation by adjusting various parameters such as substrate temperature, reactant fluence, RF
plasma power, etc. Such a parametric tool facilitates to flexibly grow the buried Si-QDs with precisely
controlled sizes in any host matrix. For example, Iacona et al. varied the N2O/SiH4 fluence ratio in
PECVD from 6 to 10 to synthesize the SiOx film with different composition ratio [53]. With 1100 ◦C
annealing for Si-QD precipitation, the PL peak is observed to blue-shift from 900 to 650 nm [53].
Alternative approach was proposed by changing the thickness of Si layer during the deposition of
Si/SiO2 superlattice. The Si-QD size can be enlarged from 0.9 nm to 2.3 nm for red-shifting the PL
peak from 800 to 910 nm [54]. Similarly, the thickness of SiOxNy layer in SiOxNy/SiO2 film can be
adjusted for controlling the Si-QD size from 2.5 to 7 nm and red-shifting the PL peak from 729 to
886 nm [55]. Later on, the N2O/SiH4 fluence ratio was varied from 6.8 to 2.3 during the SiOx growth to
control its composition ratio. This can effectively reduce Si-QD size in SiOx film with enlarging the O/Si
composition ratio such that the less Si content can hardly generate the larger Si-QD in SiOx film [56].
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This method helps to enhance the quantum confinement for improving the blue-shift of PL spectrum.
With increasing the O/Si composition ratio, a huge PL blue-shift of the buried Si-QD is obtained from
760 to 380 nm [56]. On the contrary, the RF plasma power during the PECVD growth for the Si-QD in
SiOx film can be enlarged from 20 W to 70 W to shrink the Si-QD size from 4.5 to 1.7 nm [57]. In our
work, Figure 3a exhibits that the PL peak of the buried Si-QDs can be detuned from 800 to 380 nm by
adjusting the fabricating parameters during growth.
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In contrast to SiOx, either SiNx or SiCx is also considered as host matrix to confine the Si-QDs [63–76].
In 1992, Chen et al. utilized the PECVD and Ar+-laser annealing to fabricate the Si:H/SiNx:H multiple
quantum well (MQW). This MQW structure effectively suppresses a full width at half-maximum
(FWHM) of PL to only 5 nm [63]. Another approach varied the flow rates of SiH4 and N2 gas to detune
the Si-QD size [64]. Reducing the Si-QD size from 6.1 to 2.7 nm significantly blue-shifts the visible
PL peak from 850 to 410 nm [64]. Negro et al. used the PECVD method and post-annealed at 700
◦C for 60 min to form the Si-QDs in Si-rich SiNx with corresponding PL at 850 nm [65]. In our work,
the flexible control on N/Si composition ratio and Si-QD size is demonstrated via the adjustment of
NH3 fluence during PECVD synthesis. With increasing the NH3 fluence from 170 to 250 sccm to vary
the N/Si composition ratio from 0.85 to 1.32, the observed PL peaks can be blue-shifted from 675 to
385 nm, as shown in Figure 3b. By using the SiC matrix and changing the Si-QD layer thickness in
Si-QD/a-SiC superlattice, the Si-QD can shrink its size from 10 to 3 nm for emitting the PL from 1170 to
775 nm [70]. Coscia et al. synthesized the buried Si-QDs in a-SiC via changing the RF plasma power to
generate the 636–827 nm PL [71]. Huang et al. changed the SiH4 fluence from 0.5 to 8 sccm to suppress
the C/Si composition ratio and increase the Si-QD size for blue-to-green shifting PL wavelength from
440 to 520 nm [72]. Tai et al. further demonstrated the Si-rich SiC synthesis for obtaining red PL
between 630 and 660 nm from Si-QDs and 480 nm for SiC-QDs [73,74].

Instead of the Si-QD related PL, the radiative-defect related weak PL by the contribution of
structural or interfacial defects in SiOx or SiNx host matrices is comprehensively investigated to realize
their bonding mechanisms. Particularly, these defect-related PL emissions are usually located between
green- and blue-light regions. The PL spectra of the weak oxygen bond (WOB, denoted as O-O) and
neutral oxygen vacancy (NOV, denoted as O3≡Si-Si≡O3) are ranged between 415 and 455 nm [77–82].
As a supporting evidence, Cheang-Wong et al. obtained the visible PL peak at 415 nm in Ir2+-doped
silica glass owing to the contribution of the WOB defect [77]. Lin et al. also observed the PL at the
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same wavelength from Si+-implanted SiOx film [78]. In addition, similar PL peak was also observed in
SiOx/SiNx superlattice [79]. Tohmon et al. claimed that the PL of NOV defects in oxygen-deficient
high-purity silica glass at 459 nm [80]. The blue PL for NOV defects not only in the Si-implanted
SiO2 film [81] but also in the RF sputtered Si-rich SiOx film was observed at 460 nm [82]. Other than
WOB and NOV defects, the precursor of Si-QDs (E’δ, denoted as Si↑Si-Si) and the non-bridging
oxygen hole center (HBOHC, denoted as O3≡Si-O•) defects also contribute to the green and yellow
PL [83–86]. The PL of E’δ defect in the Si-implanted SiOx film without annealing was observed at
653 nm by Shimizu-Iwayama et al. in 1994 [83]. Sakurai et al. analyzed another green PL of the E’δ
in oxygen-deficient silica glass at 554 nm [84]. On the other hand, Skuja measured the 653-nm PL of
HBOHC defects in silica glass under different temperature condition [85]. For confirmation, Song
et al. also reported the PL around 630 nm for the HBOHC defects in Si-implanted SiOx film [86].
In addition to the SiOx host matrix, there are some other defects with radiative recombination in
SiNx host matrix [87–89]. For example, the PL of Si dangling bonds (denoted as K0 center) is located
in the middle of bandgap [87]. In addition, the N4

+ center is located close to the conduction band
and the N2

0 center state is close to the valence band [88]. Notably, the PL emission of these K0, N4
+,

and N2
0 centers is dependent on the varied optical bandgap of SiNx host matrix by detuning the

composition ratio of SiNx film [89]. However, most of their luminescence can be vanished after the
annealing recrystallization.

3. Porous Si LED

In early years, the fabrication of the Si-QD LED mainly relies on the development status of
the porous Si substrate. With using the anodic electrochemical etching process shown in Figure 4,
the hydrofluoric acid (HF) at the anode reacts with the crystalline Si to form the porous Si. The porous
or island Si structure is generated upon the surface and the Si pillar structure is formed at the flank
during the anodic electrochemical etching. Such an etching procedure etches down the Si wafer along
direction of its crystalline axis without causing the variation on other directions. However, the doped
Si film such as the p-type Si with more holes can somewhat affect the etching process. Gardelis et al.
used the anodic electrochemical etching to fabricate the p-type porous Si with a corresponding PL of
709 nm [90]. Dimova-Malinovska et al. found the short-wavelength PL peak of same p-type porous
Si at 690 nm [91]. Because of the n-type Si with more electrons, the etching without assistance of
illumination or bias can increase more holes to accelerate the etching process. In 1990, Lehmann and
Föll utilized tungsten lamping for the enhanced etching formation of porous Si [92]. Theunissen
also confirmed that the n-type Si with >1018 cm−3 donor concentration can suffer from the anodic
dissolution for hole generation below 10-V bias operation [93]. On the other hand, the porous-like
Si nanostructure can also be obtained via a metal-assisted chemical etching method alternatively.
Under the interaction with single or double phonons, such Si nanostructure reveals a redshifted and
broadened Raman scattering peak when comparing with bulk Si, which is in good agreement with the
prediction of phonon confinement effect within Si nanostructure [94].
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Moreover, the porous Si diameter can be tunable to vary its PL peaks from 770 to 730 nm by
changing the HF concentration [95]. With the tungsten lamp illumination to enhance the reaction rate,
the porous Si diameter is gradually shrunk to blue-shift its PL from 709 to 310 nm [35]. A similar
etching method was utilized to demonstrate the porous Si with its PL at 479 nm, internal quantum
efficiency of 0.1%, and a PL decay time of 1 ns [39]. Prokes et al. increased the etching time to
4 h to decrease the porous Si diameter. This phenomenon also contributes to its PL blue-shifting
to 697 nm [38]. With the electrochemical etching with a current density of 50 mA/cm2 for 10 min,
the 10-nm QDs can be observed in porous Si with a pore diameter of 3.5 µm and a pore depth of
60 µm to generate the PL at 750 nm [96]. Such simple fabrication for the porous Si urges a rapid
development of the porous Si LED in 1990s. The first porous Si LED grown on n-type Si wafer by
using anode electrochemical etching with halogen lamp illumination can emit visible luminescence
at 650 nm under biasing at 5 mA and 200 V [97]. By lengthening the anode oxidation time from 1 to
7 s, the porous Si LED with a film thickness of 1–2 µm blue-shifted its EL wavelength blue-shifted
from 830 to 700 nm [98]. With the fabrication of indium-tin-oxide (ITO)/porous Si/p-Si/aluminum (Al)
LED, the EL at 680 nm with external quantum efficiency (EQE) below 10−5% was observed under
bias current density of 370 mA/cm2 [99]. Apparently, Canham et al. reached a significant progress on
the efficient porous Si LED with its EL peak from 740 to 670 nm via increasing the bias from −1.01
to −1.23 V for the maximal EL density of up to 0.1 W/cm2 [100]. More important, the respectively
maximal PL and EL power conversion efficiencies of 1% and 0.1% were ranked top record then [100].
Later on, Koshida and co-workers changed the contact of porous Si LED to the electropolymerized
contact for improving the EL intensity. The porous Si LED exhibited its EL peak at 593 nm with the
intensity 2.6 times larger than that using Au contact [101]. Steiner et al. were the first group employing
the porous p–n junction structure to enhance the EQE of porous Si LED [102]. With the mesoporous
p+-Si/nanoporous n-Si/macroporous n-Si structure, the EQE can be effectively improved to 0.01% [102].
In addition, the green and blue EL of porous Si LED at 560 nm and 480 nm was also demonstrated in
the same time [103]. Subsequently, Li et al. utilized the conducting polymer contact to replace the
Au or ITO contact for improving the EL intensity because it provides relatively higher transparency
at emission wavelength of porous Si (630 nm) than Au or ITO [104]. The enhancing EQE of 0.16%
from the p+–n–n+-junction-structured porous Si LED with a corresponding EL peak at 630 nm under a
pulsed bias of 20 V was reported by Linnors and co-workers in 1995 [105]. In the same year, Loni et al.
also demonstrated the visible EL with its EQE of 0.1% under continuous-wave (CW) operation at 2.3 V
and 0.01 A/m2 [106]. In 1998, Nishimura et al. further constructed the porous Si LED with a p+-n
structure to enhance its EQE to 0.8% [107]. With using the semitransparent Au as electrode, the EQE of
device can be expected to exceed 1% [107]

In view of previous reports, the porous Si can be regarded as the active layer, however, the porous
Si is easily oxidized to degrade its EL stability as the extremely large porous Si surface reacts with
abundant oxygen molecules [108–112]. In 1996, Tsybeskov et al. passivated the porous Si surface by
annealing the layer at 800–900 ◦C to extend the LED stability without suffering from power degradation
during pulsed operation over one month [108]. Another method employed thin transparent alumina
layer to protect the porous Si surface for achieving the CW operation over one month [109]. Alternative
approach via the anodic oxidation to oxidize the porous Si surface has also emerged to effectively
enhance the EQE to 0.21% and extend its operation time to 8 min with an intensity decay of <10% [110].
A similar approach employed the electrochemically oxidizing thin porous Si layer to enhance the
EQE over 1% with intensity degradation by only 8% within 120 s [111]. Other works on the surface
passivation of porous Si layer were demonstrated via the covalent bonding with organic monolayers.
This method maintains the unchanged EL intensity of porous Si LED during 2-h operation [112].
In 2006, the high-pressure water vapor annealing technology was also developed to maintain the EL
intensity without decay during 20-min operation [113]. Even though tremendous efforts were paid to
improve the device stability, its EQE is still too low to enable its practical application.
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4. Si-Implanted Si-QD LEDs

To take over porous Si LED with instable and low EQE during long-term operation, the Si-ion
implantation into SiO2 or Si3N4 host matrix for the Si-QD formation has emerged in the beginning of
21st century. This method self-aggregates these excessive Si+ ions as Si-QDs with their sizes tuning by
changing the dose concentration of Si+ ions. At beginning, Shimizu-Iwayama and co-workers varied the
dose concentration from 1 × 1017 to 4 × 1017 ions/cm2 for Si-implanted SiOx synthesis. With increasing
dose concentration of Si+ ions to enlarge the Si-QD size in SiOx film, the red-shifted luminescent
variation was observed under room-temperature operation [83]. Unfortunately, the implanted Si+ ions
only distribute in a very shallow layer beneath the surface of host matrix. For example, the Si+-ions
with dose concentration of 5 × 1016 ions/cm2 and energy of 40 keV can only cover a depth of 60 nm from
the SiO2 surface with non-uniform distribution of implantation ions according to the transportation
of ions in matter (TRIM) software simulation [114]. Such shallow and non-uniform distribution
can be overcome through multiple ion-implantation with different dose concentrations and energies.
This method can approach the depth of 350 nm with employing different implantation energies at same
Si dose concentration of 1016 ions/cm2 [115]. By taking one example in detail, the implanted dose recipes
of Si+ ions were set as 5 × 1015 ions/cm2 at 40 keV, 1 × 1016 ions/cm2 at 80 keV, and 2.5 × 1016 ions/cm2

at 150 keV to uniformly distribute the excessive Si atoms in SiOx layer with its depth between 10 and
200 nm from the surface [116]. As shown in Figure 5, using the lower (higher) dose concentration
and smaller (larger) implantation energy makes the Si+ ions stay with shallower (deeper) depth from
SiO2 surface with narrower (broader) distribution. With post-annealing the Si-implanted SiOx for
aggregating the Si-QDs, recrystallizing the host matrix and suppressing the structural defects in host
matrix, numerous studies of the Si-implanted Si-QD LED have been reported [117–127].
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Figure 5. Schematic diagram for the multiple Si ion-implantation with different dose concentrations
and implantation energies into SiO2 layer to form the Si-QDs.

In 1996, the Si-implanted Si-QD in SiO2 layer with a thickness of 300 nm was synthesized by
using a recipe with Si+-ion dose concentration of 2 × 1016 ions/cm2 and implantation energy of 120 keV
to perform EL at 620 nm under a bias at 15 V [117]. A latter experiment used 200-keV Si+-ions with
dose concentration of 3 × 1016 ions/cm2 as first recipe and 100-keV Si+-ions with 1.8 × 1016 ions/cm2

as the second recipe to increase the excessive Si content in SiO2 film. Then, the fabricated Si-QD
LED performed its EL at 455 nm under a bias with current of 100 nA and voltage of 370 V [118].
In contrast, Song and co-workers utilized Si+-ions implantation at 25 keV with dose concentration
of 1 × 1016 ions/cm2 and post-annealed the Si-implanted SiO2 film with temperature increasing from
100 ◦C to 1100 ◦C [119]. The LED exhibited the enhancement on the Si-QD-related EL peak at 730 nm
and the degradation on the defect-related EL peaks at 470 and 600 nm. With raising the Si+ dose
concentration from 3 × 1016 to 3 × 1017 ions/cm2 under constant implantation energy of 150 keV to
enlarge the Si-implanted SiO2 thicknesses from 12 to 18 nm, the Si-implanted Si-QD LED red-shifts its
EL peak from 752 to 855 nm under a bias voltage of 16 V, and shortens its EL decay time from 100 to
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6 µs [120]. In 2005, Walters and co-workers employed the Si-implanted Si-QDs in SiOx layer as the
active layer to implement the metal-oxide-semiconductor LED (MOSLED). This device contains the
Si-QDs with average size of 2–4 nm to demonstrate EL emission at 750 nm with a decay time of 2.5 µs
under a bias voltage of 6 V [121]. In addition, our work employs the multiple ion-implantation and
post annealing to demonstrate the Si-QD dependent EL from Si-implanted SiOx LED. Figure 6 reveals
the EL between 400 and 600 nm with the blue emission by the WOB and NOV defects (405–455 nm),
green emission via the precursor of Si-QDs (520 nm), and red emission from the larger Si-QDs (600 nm),
as shown in Figure 6. The turn-on current and voltage are respectively measured as only 0.2 mA and
5 V, as shown in the inset of Figure 6. The maximal power achieves 100 nW under biasing at 10 V and
70 mA.
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Besides, the Si3N4 host matrix is also employed to fabricate the Si-implanted Si-QDs in SiNx

film [124–127]. In 2009, Cen et al. utilized the multiple ion-implantation with the Si+ dose concentrations
of 4 × 1016 ions/cm2 at 25 keV at the first time, 8 × 1015 ions/cm2 at 8 keV at the second time,
and 3 × 1015 ions/cm2 at 2 keV at the third time into Si3N4 film to form the Si-implanted Si-QD in SiNx

film with an average excess Si concentration of 1.2 × 1022 cm−3 [124]. This LED exhibits three main EL
peaks at 886 nm, 564 nm, and 413 nm [124]. The EL peak at 886 nm is attributed to the Si-QDs and
other two EL peaks at 564 and 413 nm are contributed by the structural defects [124]. With the Si+

dose concentration enlarging from 2 × 1016 ions/cm2 to 4 × 1016 ions/cm2, the excessive Si content in
SiNx film also increases to form more Si-QDs. This Si-implanted Si-QD LED exhibits its green-yellow
EL and the promoting EQE of 10−4–10−3% [125–127]. Nevertheless, most of the previous reports
for the Si-implanted Si-QD LEDs seldom mentioned their EQE as the uniform size distribution of
Si-QDs in host matrix is still hardly achieved for providing efficient visible luminescence. In addition,
the structural damage in SiOx or SiNx film is too serious such that a lot of irradiative defects appear to
scatter or absorb electron-hole pairs for efficient recombination. Therefore, the PECVD-grown Si-QD
LED with less damaged structure than the implanted device gradually develops as the main-stream
device nowadays.

5. PECVD Grown Si-QD LED

In the 2000s, the PECVD-grown Si-QD LED has emerged not only because of its reduced structural
imperfection but also because of its precise control on the Si-QD size distribution. In addition,
the PECVD-grown Si-QDs can more uniformly exist in host matrix as compared to other syntheses.
For example, the transmission electron microscopy (TEM) image of the PECVD-grown Si-QDs in Si-rich
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SiOx film is shown in the upper part of Figure 7. From the upper part of Figure 7, the thickness of Si-rich
SiOx layer can be evaluated as 200 nm. To observe the Si-QDs in Si-rich SiOx, the high-resolution TEM
(HR-TEM) image of the Si-QDs in Si-rich SiOx film is shown in the lower part of Figure 7. The Si-QDs
with their size between 2.4 and 5.6 nm are observed and the Si-QD volume density is estimated as
1.1 × 1018 cm−3. Versatile orientations of Si-QDs in Si-rich SiOx film are evaluated as (110), (111),
(002), and (021) with the corresponding plane spaces of 0.38, 0.31, 0.27, and 0.24 nm, respectively.
In comparison with porous Si and implanted Si-QDs, the density and size of PECVD-grown Si-QDs can
easily be controlled by varying the reactant gas content, the substrate temperature, and the RF plasma
power during growth. As a result, the PECVD becomes the most common technology for the Si-QD
synthesis [128–143]. In 2002, Franzò et al. employed SiH4 and N2O molecules as reactant gaseous for
the growth of the Si-rich SiOx sample, and performed the post-annealing at 1100–1250 ◦C to form the
Si-QDs [130]. For the Si concentration of 46% in Si-rich SiOx film, the EL peak of SiOx MOSLED with
buried 1-nm Si-QDs can be observed at 850 nm under biasing at 50 V and 0.2 A/cm2 [130]. In addition,
the SiOx MOSLED with average Si-QD size of 4 nm exhibited its EL peaks at 700 nm and maximal
output power of 48 nW with a corresponding P–I slope of 0.84 mW/A under a bias at 86 V [130].
The EQE can be also obtained as 1.6 × 10−3% [131]. The Si nanopyramids were also used at SiOx/Si
interface for decreasing the turn-on voltage and increasing the turn-on current density to enhance the
current injection and recombination efficiency. This method significantly enhanced its EL power to
30 nW and maintained the EL intensity over 10 h [132,133]. In 2006, Perálvarez et al. fabricated the
Si-QDs with an average size of 3.6 nm and a volume density of 5 × 1017 cm−3 in Si-rich SiOx film as
luminescent centers to achieve its EL peak at 816 nm, EL decay lifetime of 5 µs, and EQE of 0.03% [134].
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(Lower) images of plasma enhanced chemical vapor deposition (PECVD)-grown Si-QDs in Si-rich
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Similar material was employed to demonstrate the Si-QD MOSLED with two main EL wavelengths
of 740 and 1000 nm [135]. In 2007, Barreto et al. also constructed the 815-nm Si-QD MOSLED with
its turn-on voltage of 15 V and EQE of 0.03% [136]. Lin et al. also utilized the CO2 laser annealing
to generate the Si-QDs in SiOx MOSLED [137]. Three main EL peaks at 590, 715, and 810 nm are
contributed by different-size Si-QDs to achieve the maximal output of 50 nW under a bias at 85 V and
2.3 mA/cm2 [137]. The Si nanopillars with a size of 30 nm, a height of 350 nm, and an area density
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of 2.8 × 1010 cm−2 were employed in Si-QD MOSLED to enhance the current injection. This device
obtained its maximal output power of 700 nW with a corresponding P–I slope of 2.8 ± 0.8 mW/A to
achieve the EQE of 0.1% under biasing at 0.375 mA [138]. In 2008, Chen and co-workers employed
the Si-QD/SiO2 multilayers to enhance the EL intensity of the Si-QD p-i-n LED by 50 times than
single-layered Si-QD LED [139]. In 2009, Anopchenko et al. further used the SiO2/Si-QD in SiOx

multilayers to demonstrate the power efficiency of 0.01% for Si-QD MOSLED under 1-µA bias
operation [140]. With increasing the bias voltage from 2.5 to 6 V, the EL peak can be blue-shifted from
916 to 827 nm [140]. Moreover, the EL peak of MOSLED can be blue-shifted from 700 to 430 nm by
suppressing the average Si-QD size from 4 to 1.7 nm to achieve the maximal output power of 1 µW
and the EQE of 2.4% [141–143]. In our work, decreasing the Si-QD size can effectively blue-shift the EL
peak with a corresponding EL pattern from red to blue, as shown in Figure 8a. Therefore, adjusting
the fabricating parameters to detune the Si-QD size demonstrates versatile-color Si-QD MOSLED,
as shown in Figure 8b.
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In recent years, the SiNx dielectric material becomes another host matrix to demonstrate the Si-QD
LED although the SiNx material has the lower energy bandgap to degrade the quantum confinement
effect [144–152]. In 2001, Park and co-workers fabricated the Si-QDs in SiNx to exhibit its EL peak at
620 nm and turn-on voltage of <5 V, and the EQE of 2 × 10−3% [144]. In 2005, Cho et al. used the SiH4

and NH3 molecules as reactant gaseous to fabricate the Si-QDs in Si-rich SiNx film. The Si-QD LED
obtained its EL at 600 nm, maximal output power of 2.3 mW, and maximal EQE to 1.6% under biasing
at 70 mA [145]. The periodic micron-scale rugged SiNx patterns were fabricated on the surface of
Si-QD LED to increase the light extraction efficiency by 2.8 time than the flat-surfaced Si-QD LED [146].
In addition, the Ni/Au contact was also used to enhance the carrier injection for improving EQE by
10−65% as compared to the amorphous Si-QD LED [147]. Huh et al. further utilized the 2.5-nm-thick
Ag interlayer inserting between the indium tin oxide (ITO) contact layer and SiC doping layer to
enlarge the output power by 40% [148]. Moreover, the undoped SiC layer was added between the
Si-QD active layer and n-type SiC layer to enhance the output power [149]. In 2010, Lin et al. compared
the lighting performance of SiNx and SiOx LED [150]. Owing to the lower barriers at Si-QD/SiNx and
Al/SiNx interfaces, the SiNx LED has a lower turn-on voltage of 10.45 V to easily escape the electrons
and holes from Si-QD to decrease the EQE [150,151].

In our work, the Si-QD LED exhibits its EL peak at 740 nm because of the contribution of Si-QDs,
as shown in Figure 9. In addition, the EL peak at 420 nm is attributed to the structural defects in SiNx

host matrix. In 2012, Huang et al. also fabricated the Si-QDs with an average size of 2.4 nm and an area
density of 4.6 × 1012 cm−2 in Si-rich SiNx film to demonstrate the 710-nm Si-QD LED [152]. Owing to
the dielectric host matrix with the relatively large resistivity to decrease the current injection efficiency,
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the SiC semiconductor was selected as a candidate of host matrices [153–157]. In 2011, Rui et al.
detuned the Si-QD from 4.2 to 1.4 nm in SiC host matrix by detuning the C/Si composition ratio and
annealing temperature to blue-shift the EL peak of the Si-QD LED from 775 to 539 nm. Moreover,
the 2.7-nm Si-QDs in Si-QD/SiC multilayer were used as active layer. This Si-QD LED exhibited its
EL peak at 650 nm and improved EL power by 8.6 times than the device with the Si-QD/SiC single
layer [154]. Wang and co-workers also fabricated the SiC LED with a p-i-n structure to observe two EL
peaks at 689 and 775 nm owing to the contribution of different-size Si-QDs [155]. Cheng et al. changed
the substrate temperature from 300 ◦C to 650 ◦C during the growth to detune the average Si-QD size
from 2.5 to 2.7 nm. This method respectively decreased the turn-on voltage and current of yellow-light
Si-QD LED to 4.2 V and 0.42 mA to enhance the maximal output power density to 8.52 µW/cm2 with a
corresponding P–I curve of 0.75 µW/A [156]. Tai and co-workers further suppressed the thickness of
SiC with buried Si-QDs to 50 nm to enhance the EQE to 0.158% [157]. In our work, Figure 10 exhibits
the EL peaks at 480, 700, and 850 nm for Si-QD LED owing to the contribution of the different-size
Si-QD. From abovementioned works, the performance of Si-QD LED can be improved.
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Figure 9. EL spectra of Si LEDs by using the SiNx film as host matrix. Inset: The photographs of
corresponding EL emission pattern.
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Figure 10. EL spectrum of Si LED by using the SiC film as host matrix. Inset: The photographs of
corresponding EL emission patterns.
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Up until now, the Si-QD LEDs via versatile syntheses are still developed and studied for visible
light emission but also for color conversion and optical switching applications in the future. On the
basis of abovementioned works, the studies of Si-QD LED approaches more piratical application
in recent three years. In 2018, Hsu et al. inserted Si-QDs into Al2O3 membrane to confine the size
distribution. The confined size distribution can suppress the luminescent linewidth [158]. In addition,
Zhao et al. utilized the Al2O3 material as interlayer to suppress the exciton quenching and hole
accumulation and reduce the carrier leakage [159]. This interlayer effectively improved the optical
density and EQE of Si-QD LED to 14 µW/cm2 and 0.1%. In 2018, Ghosh et al. firstly demonstrated the
flexible red Si-QD LED with its luminance of 5000 cd/m2 and EQE of 3.1% on polyethylene terephthalate
substrate [160]. In 2019, the same group used ITO/ZnO/Si-QD/WO3/Al multilayer to construct the
red Si-QD LED with its EQE of 0.25% and luminance of 1400 cd/m2 [161]. This device without any
encapsulation can maintain its EL performance under 80% humidity in ambient air over 45 days [161].
In 2020, Zhang further demonstrated the white-light Si-QD LED to provide a possibility to replace the
commercial LED in the future [162]. This device exhibited its luminance of 225.8 cd/m2 and EQE of 1%
under biasing at 2.9 V [162].

6. Conclusions

In view of previous progress on the Si-QD based electronics and photonics, various syntheses
have been developed to enable versatile applications of the Si-QDs for light emission, color conversion
and switching. For efficient visible light emission, the EL emission wavelength of Si-QD LEDs has been
demonstrated to be widely tunable from 400 to 1000 nm with corresponding EQE varied from 0.1–2%
obtained by optimizing the selected material synthesis and device design for implementing visible and
near-infrared LEDs. In addition, the real EL power of Si-QD LEDs was observed between 30 nW and
2.3 mW. However, different syntheses such as porous Si etching, Si-ion implantation, and excessive
Si deposition also reveal their inherent limitations and individually contribute to some weakness for
developing the Si-QD LED with sufficient EQE and power. Up until now, versatile studies specially on
improving the conductive host matrix, transparent contact electrode, and spatially-confined synthesis
are still going to enhance the stability and efficiency of the Si-QD LED. For different market demands,
the fabricated Si-QD by mature syntheses has been comprehensively utilized not only for visible light
emission but also for color conversion and optical switching applications in future academic and
industrial applications.
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