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The comparison of cancer gene mutation
frequencies in Chinese and U.S. patient
populations

Fayang Ma1,2, Kyle Laster 2 & Zigang Dong 1,2

Knowing the mutation frequency of cancer genes in China is crucial for
reducing the global health burden. We integrate the tumor epidemiological
statistics with cancer gene mutation rates identified in 11,948 cancer patients
to determine their weighted proportions within a Chinese cancer patient
cohort. TP53 (51.4%), LRP1B (13.4%), PIK3CA (11.6%), KRAS (11.1%), EGFR (10.6%),
and APC (10.5%) are identified as the top mutated cancer genes in China.
Additionally, 18 common cancer types from both China and U.S. cohorts are
analyzed and classified into three patterns principally based upon TP53
mutation rates: TP53-Top, TP53-Plus, and Non-TP53. Next, corresponding
similarities and prominent differences are identified upon comparing the
mutational profiles from both cohorts. Finally, the potential population-
specific and environmental risk factors underlying the disparities in cancer
gene mutation rates between the U.S. and China are analyzed. Here, we show
and compare the mutation rates of cancer genes in Chinese and U.S. popula-
tion cohorts, for a better understanding of the associated etiological and
epidemiological factors, which are important for cancer prevention and
therapy.

Cancer is one of the leading causes of death for humans. In 2020, an
estimated 19.3million new cancer cases and 10.0million cancer deaths
occurred worldwide1. China ranked highest with 4.6 million new cases
and 3.0 million cancer deaths, accounting for 24% of newly diagnosed
cases and 30% of cancer deaths globally2. For the U.S., it is estimated
that 1.9 million new cases and 0.6million cancer deaths have occurred
in 2021. However, the cancer death rate has decreased continuously
between 1991–2018, which is largely attributed to smoking cessation
initiatives and advances in detection and treatment modalities3.

There are commonalities and differences in cancer incidence rates
worldwide and identification of population-specific etiologies may
serve to decrease the global health burden. Measures for effective
cancer prevention can be enacted only when the underlying etiology is
determined. In China, HBV vaccines have dramatically reduced the
prevalence of HBV infection, a major risk factor for liver cancer4. As a
result, the incidence and mortality rates of liver cancer have decreased

since the late 1970s5. Additionally, China exhibits the highest regional
incidence rates of esophageal squamous cell carcinoma (ESCC) for
both men and women. Potential risk factors for ESCC include con-
sumption of high-temperature drinks and food, and pickled vegetables.
However, the incidence rates of ESCC are broadly in decline due to
improved living standards in China. InWestern countries, the reduction
of ESCC incidence is considered primarily due to a large-scale decline in
cigarette smoking6. For certain types of cancer, the exact underlying
etiology has not been fully elucidated. For example, African-Americans
and Asians living in Korea and Japan (but not in the U.S.) had higher
death rates from lung cancer than individuals of European descent7.
Lung cancer incidence rates were higher and more variable among
women in East Asia (EAS) than in other geographic areas with low
female smoking rates7. Factors other than cigarette smoking may
mainly account for the increasing incidence of lung adenocarcinoma
(LUAD) among EAS, European (EUR) and U.S. females8–12.
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Genomic sequencing has provided an increasingly comprehen-
sive view of the geneticmutations implicated in tumorigenesis and has
paved the way for the development of personalized cancer
therapies13,14. Additionally, multi-national comparisons are critical to
determine differences in racially or regionally biased mutated cancer
genes. In a recent U.S. pan-cancer study, TP53 (34.5%), PIK3CA (13.5%),
LRP1B (13.1%), KRAS (10.5%), APC (10.1%), FAT4 (9.5%), KMT2D (9.2%),
KMT2C (9.1%), BRAF (7.7%), and ARID1A (7.0%) were identified as the
top mutated cancer genes for the U.S. population15.

In this work, by integrating genomic and epidemiological data, we
calculated the weighted proportions of observed mutated cancer
genes within the Chinese population. We then compared the weighted
cancer gene mutation rates between the Chinese and U.S. pan-cancer
datasets. The differences observed in cancer gene composition and
mutation rates are potentially attributable to genetic predisposition,
ethnic diversity, population-specific and environmental risk factors.
These investigations are significant for guiding cancer prevention and
drug development.

Results
Prevalence rates of mutated cancer genes in China
Epidemiological data documenting the incidence rates of cancer
within the Chinese population were derived from the 2004~2016 edi-
tions of the “ChinaCancer Registry Annual Report”; details inMethods.
According to cancer types in the epidemiological information, publicly
available sequencing profiles of Chinese cancer patients were col-
lected from the cBioPortal data repository and supplemented with
several other sources (see Methods). The disparity between the can-
cers observed within the epidemiological data and the sequencing
data should be noted; several cancers, including laryngeal, testicular,
and vaginal cancers, are under-represented within the sequenced
datasets. Thus, we overlapped the cancer types represented in the two
datasets and exclusively focused on the anatomical sites at the
intersection. In total, 94 detailed cancer subtypes (11,948 cancer
patients/samples) with both qualified epidemiological information
and sequencing profiles were included for analysis (Fig. 1). The
corresponding demographic and clinical data of the patients included
within our investigation are shown in Supplementary Fig. 1a–f. The
regions of sample origin were overlappedwith cancer registry location
presented within the “China Cancer Registry Annual Report” (Supple-
mentary Fig. 2a). The mutation data was then filtered for quality
assurance. In the tier-1 filtering, the mutation profiles of 94 cancer

subtypes were filtered using a census panel of 382 cancer genes to
facilitate identification of mutated cancer genes within each cancer
subtype. In tier-2 filtering, the results from the tier-1 filtering were
further processed to retain only protein coding mutations that confer
amino acid substitutions. The Mutation Profiles_1 of the 94 cancer
subtypes were organized and reclassified into Mutation Profile_2 of 23
major tumor sites based on the ICD_10 classification system (Supple-
mentaryData 1_Sequencing data_23mutation profiles). To quantify the
mutation proportion of cancer genes across the 23 major cancers
represented in the China pan-cancer dataset, we integrated the
mutation rates with epidemiological cancer statistics to produce a
weighted percentage of the CN_382 mutated cancer genes. We iden-
tified that TP53 (51.4%), LRP1B (13.4%), PIK3CA (11.6%), KRAS (11.1%),
EGFR (10.6%), and APC (10.5%) are the top mutated cancer genes in
Chinese cancer patients. The ranked prevalence of mutated cancer
genes can serve as guidance for etiology investigation, cancer pre-
vention, and drug development.

Comparison of cancer gene mutation rates between CN and US
The comparison of cancer mutation profiles across population-based
groups is critical to determine if there are differences in racially or
regionally biasedmutated genes. Mendiratta et al.15 recently produced
a list containing 21,271 genemutation proportions observedwithin the
U.S. pan-cancer based on epidemiology data (ICD-O-3) spanning nearly
two decades. However, the epidemiological data of Chinese cancer
patients were collected based on the ICD-10 classification system via
nationally distributed cancer registry centers. To ensure an equal
comparison of mutation rates between CN cohorts and U.S. cohorts,
we recalculated theU.S.mutations rates by reclassifying the categories
presented in the ICD-O-3 format to the ICD-10 format (see Methods).

The comparisonof the epidemiologicallyweightedmutation rates
of the 382 cancer genes derived fromCN pan-cancer datasets and U.S.
pan-cancer datasets showed no statistically significant differences
(p = 0.2014) (Fig. 2a). The mutation rates of the 382 cancer genes were
highly and positively correlated (r =0.95) (Fig. 2b); the degree of cor-
relation between the two datasets was slightly decreased after the
contribution of TP53was removed (r = 0.93) (Fig. 2c). Interestingly, we
noticed that EGFR deviated the most from the best-fit line: EGFR_CN
(10.6%) vs EGFR_U.S. (3.1%). The differences in EGFR mutation rates
between the two populations are further investigated in Fig. 5.

The top 50 genes from the CN_382 and U.S._382 cancer gene lists
(Supplementary Data 1_Sequencing data_MutationFrequencies_382)

Fig. 1 | Workflow of current study. The workflow for calculating epidemiologically weighted cancer gene mutation proportions within the Chinese cancer population.
Source data are provided as a Source Data File.
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were compared to evaluate the similarity rate of the significantly
mutated cancer genes. We found that 80% (40 / top 50) were shared
between Chinese and U.S. patient populations (Fig. 2d–f). The top 10
mutated cancer genes observed in the weighted China pan-cancer
dataset were TP53 (51.4%), LRP1B (13.4%), PIK3CA (11.6%), KRAS (11.1%),
EGFR (10.6%),APC (10.5%),KMT2D (9.7%),KMT2C (8.8%),ARID1A (8.4%),
and FAT4 (7.7%). The top mutated cancer gene is TP53 both in China
(51.4%) and U.S. (34.0%). The mutation rates of the remaining cancer
genes were relatively low in both populations, with the majority at
frequencies below 10%, and the overall mutation rates of cancer genes
in China and U.S. are generally equivalent.

Top mutated cancer genes derived from CN and U.S. cohorts
18 cancer types with high prevalence in either China or the U.S. were
selected. Next, themost prevalentmutated cancer gene in each cancer
type was determined from the corresponding mutation profiles for
both population groups. Finally, the most prevalent mutated gene in
each of the 18 cancer types for both population groups were sum-
marized (Fig. 3a, b). The results indicated thatTP53 is ranked highest in
nine cancer types of the CN cohort (51.4%) and in eight cancer types of
the U.S. cohort (34.0%). This observation is unsurprising but indicates
the reason the weighted mutation proportion of TP53 within the can-
cer populations is so high. BRAF is the top mutated gene in the skin
cutaneousmelanoma (SKCM) and papillary thyroid carcinoma (THCA/
PTC) cohorts in both countries. In most cancer types included in this
study, U.S. and CN patients share the same top gene; KRAS for pan-
creatic adenocarcinoma (PAAD) in CN & U.S., PIK3CA for cervical
squamous cell carcinoma (CESC) in CN & U.S., EGFR for lung adeno-
carcinoma (LUAD) in CN, APC for colorectal adenocarcinoma (COCA)

inU.S., PTEN for uterine corpus endometrial carcinoma (UCEC) inCN&
U.S., IDH1 for brain glioblastoma and low grade glioma (GBM) in CN &
U.S., VHL for kidney renal clear cell carcinoma (KIRC) in CN & U.S.,
SPOP for prostate adenocarcinoma (PRCA) in CN & U.S. TP53, KRAS,
PIK3CA, EGFR, APC, BRAF, PTEN, IDH1, VHL, and SPOP, as the top
mutated cancer genes in different cancer types, are further analyzed in
the following results.

Three mutational patterns were identified in CN and U.S.
cohorts
The mutation rates of the top 50 genes between the China and U.S.
patient cohorts were compared among the 18 most common cancer
types (Fig. 4a–c). The results showed that TP53, KRAS, PIK3CA, APC,
PTEN, and BRAF are frequently mutated in most of the cancer types
analyzed. TP53, a tumor suppressor gene, is the most frequently
mutated gene in nearly all cancers16,17. Based upon the TP53mutation
rate and rank in each respective cancer cohort, we classified the 18
cancer types into three distinct patterns: TP53-Top, TP53-Plus, and
Non-TP53 (Fig. 4a–c). In the TP53-Top pattern, TP53 is ranked highest
and is themost prevalent mutated gene in ESCC, OVCA, LUSC, HNSC,
GACA, BLCA, and LIHC in both China and U.S patient cohorts
(Fig. 4a). The highest mutation rate of TP53 was observed in the
OVCA_CN cohort (93.5%) and the lowest mutation rate in the LIH-
C_U.S. cohort (26.4%). Our findings indicated that TP53 has the
highest mutation rates in the China and U.S. pan-cancer datasets and
is the topmutated cancer gene in nearly half of the 18 most common
cancers.

COCA, LUAD, BRCA, PAAD and GBMwere classified into the TP53-
Plus pattern (Fig. 4b), in which TP53 is clustered with one/two other

Fig. 2 | The comparison of the mutation rates of the top50 cancer genes
between CN and U.S. patient population. a The comparison of the epidemiolo-
gically weighted mutation rates of the 382 cancer genes derived from CN pan-
cancer datasets (n = 11,948 patients) and U.S. pan-cancer datasets (n = 18,584
patients), p =0.2014 (unpaired t test with Welch’s correction, two-tailed, Welch-
Corrected t = 1.279, df= 713; F test: F = 1.707, DFn = 381, Dfd = 381, p <0.0001), CN _
Mean ± SE= 0.02067± 0.001578 (n = 382 genes), U.S. _ Mean±SE= 0.01813 ±
0.001208 (n = 382 genes), 95% confidence interval −0.001354 to 0.006437. b The
correlation analysis visualizing the epidemiologically weighted mutation rates of
the 382 genes observed in CN and U.S. patient populations, the blue dashed line
indicates the linear trend, Pearson r =0.9542, 95% confidence interval 0.9443 ~

0.9624, p <0.0001. c The correlation analysis detailing the mutation rates of the
381 genes (the dominant contribution of TP53 was removed) between the two
cohorts, Pearson r =0.9307, 95% confidence interval 0.9159 to 0.9430, p <0.0001.
d 40 of the top50 mutated cancer genes were shared between CN and U.S. pan-
cancer datasets. e–f Comparison of the weighted mutation frequencies of the
top50 cancer genes derived from CN (n = 11,948 patients) and U.S. (n = 18,584
patients) pan-cancer datasets, respectively. Mean±Error, error bars represent the
95% confidence limits determined through simulated samples (n = 2000 indepen-
dent Poisson distributed computational samples with the calculated mutation
proportion as the central value), andmeasure of centre (bar levels) representmean
of simulatedmutation proportions. Source data are provided as a Source Data File.
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genes with respect to mutation rate. In the COCA, BRCA, PAAD and
GBM patient cohorts from China and the U.S., the observed gene
clusters are TP53/APC/KRAS, TP53/PIK3CA, KRAS/TP53 and IDH1/TP53,
respectively. However, distinct top mutated gene clusters were
observed in the LUAD_CN (EGFR/TP53) and LUAD_U.S. cohorts (TP53/
EGFR/KRAS). Recently, a genomic analysis of 103 Chinese LUADs
showed that EGFR (50%) and TP53 (51%) are predominantly mutated
genes and that co-mutation of EGFR and TP53 often indicated poorer
prognoses than those harboring EGFR mutations alone18.

The KRAS/TP53 gene cluster is the most highly ranked in the
Chinese and U.S. PAAD cohorts. Previous studies have shown that
KRAS, TP53, CDKN2A, and SMAD4 are the four major driver genes
identified in pancreatic cancer. Of these four drivermutations, genetic
alternations in KRAS and CDKN2A have been suggested as early events
in pancreatic tumorigenesis19. The IDH1/TP53 gene cluster is the most
highly ranked in the GBM-CN/U.S. cohorts. GBM is the most common
primary malignant brain tumor. A comprehensive analysis of 22 GBM
samples led to the discovery of recurrentmutations in the active site of
isocitrate dehydrogenase 1 (IDH1) in 12% of GBM patients. These
genetic alterations are potentially useful for the classification and
targeted therapy of GBMs20. Recently, it has been proposed that glio-
blastoma be reclassified based on molecular profiling, with particular
emphasis placed on IDH mutation status21.

In the Non-TP53 pattern, the mutation rates of several genes
exceed those observedwith respect to TP53. TheChinese andU.S. PTC,
SKCM, KIRC, UCEC, CESC, and PRCA cohorts were grouped into this
pattern (Fig. 4c). The topmutated gene for PTC_CN/U.S and SKCM_CN/
U.S. cohorts is BRAF. VHL, PTEN, PIK3CA, and SPOP are the topmutated
genes of Chinese and U.S. KIRC, UCEC, CESC, and PRCA cohorts,
respectively.

In the UCEC cohorts, PTEN (69.4% in UCEC_CN, 53.7% in UCE-
C_U.S.) and PIK3CA (34.7% in CN, 49.2% inU.S.) are the top twomutated
genes. The tumor suppressor gene PTEN, a negative regulator of the
PI3K/AKT/mTOR pathway, is mutated and lost in up to 80% of UCEC
tumors. PTEN mutations frequently coexist with mutations in PIK3CA,
PIK3R1, andKRASwithin a givenUCEC tumor22. Themutation signature
is concordant with type I endometrioid carcinomas, which are pre-
ferentially associated with mutations in PTEN (52%–78%), KRAS,
CTNNB1 and PIK3CA, whereas type II serous carcinomas frequently
harbor TP53 (60%–91%) mutation and HER2 amplification22. PIK3CA is

the top mutated gene for the CESC_CN (35.5%) and CESC_U.S. (29.4%)
cohorts. Additionally, KMT2C/D and FBXW7mutations were frequently
observed in both populations. Most CESCs are characterized with
APOBEC signature mutations, predominantly caused by human
papillomavirus (HPV) infection, and suggests that APOBEC activity is a
key driver for PIK3CAmutagenesis and HPV-induced transformation23.
BRAF is the top mutated gene for the PTC and SKCM cohorts of both
populations. Papillary thyroid cancer (PTC) is the most common type
of thyroid cancer. Previously, BRAFV600E and RAS mutations were
identified as the most common pathogenic mutations with respect to
PTC. Interestingly, the observation of general mutual exclusion
between BRAF,NRAS,HRAS, andKRASmutations confirmed the crucial
role of MAPK signaling alterations in PTC carcinogenesis24. Activation
of BRAF in response tomutationhas been suggested as the earliest and
most common genetic alteration in humanmelanoma25. VHL/PBRM1 is
the top mutated gene cluster in the KIRC cohorts of both patient
populations. Kidney cancer is driven bymetabolic alterations, and VHL
mutations dysregulate tumor response to such changes26. In a survey
comprised of 400 clear cell renal cell carcinoma samples, VHL (con-
trolling cellular oxygen sensing) and PBRM1 (maintaining the chro-
matin states) were identified as significantlymutated27. SPOP is the top
mutated gene in the PRCA_CN and PRCA_U.S. cohorts. Tumors har-
boring SPOP mutations have the highest levels of androgen receptor-
induced transcripts. Based on the mutation status of SPOP and five
other genetic mutations, 74% (246/333) of primary PRCAs were clas-
sified into seven subtypes28.

The top 50 genes in each of 18 cancer types from the Chinese and
U.S. cohorts wereoverlapped to determine the commonmutated gene
rates between the two populations. We found large variances within
the top 50 mutated genes across the 18 cancer types of both popula-
tions, with common mutated gene rates in the top 50 genes ranging
between 28% and 100% (Fig. 4d). GACA (100%), COCA (84%), LUSC
(78%), LUAD (70%),UCEC (70%), andBLCA (64%) are the 6 cancerswith
the highest commonly mutated gene rates. The PTC (28%) and SKCM
(36%) cohorts have the lowest rates. It can be assumed that the
mechanismscontributing to carcinogenesis inboth populationswould
be similar if the same driver genemutations are shared between them.
Additionally, we found that the average mutation rate observed in the
PTC_CN cohort is significantly higher than the average rate observed in
the PTC_U.S. cohort. On the contrary, the average mutation rate

Fig. 3 | Topmutatedgenes inCN andU.S. cancers. a, bThe topmutated genes for
each of the 18 cancer types in the China and U.S pan-cancer cohorts. The case
number for each cohort are BLCA (CN_163 vsU.S._411), BRCA (CN_303vsU.S._1020),
CESC (CN_76 vs U.S._289), COCA (CN_1541 vs U.S._545), ESCC (CN_914 vs U.S._95),
GACA (CN_973 vs U.S._439), GBM (CN_286 vs U.S._896), HNSC (CN_94 vs U.S._508),
KIRC (CN_243 vsU.S._361), LIHC (CN_1131 vsU.S._364), LUAD (CN_1370 vsU.S._1027),
LUSC (CN_392 vs U.S._485), OVCA (CN_185 vs U.S._426), PAAD (CN_461 vs U.S._177),
PRCA (CN_65 vs U.S._497), PTC (CN_71 vs U.S._346), SKCM (CN_27 vs U.S._366), and
UCEC (CN_49 vs U.S._531). Cancer type abbreviations: Esophageal squamous cell

carcinoma (ESCC), High-grade serous ovarian carcinoma (OVCA), Lung squamous
cell carcinoma (LUSC), Head and neck squamous cell carcinoma (HNSC), Gastric
adenocarcinoma (GACA), Bladder urothelial cancer (BLCA), Liver hepatocellular
carcinoma (LIHC), Colorectal adenocarcinoma (COCA), Lung adenocarcinoma
(LUAD), Breast cancer (BRCA), Pancreatic adenocarcinoma (PAAD), Brain glio-
blastoma/glioma (GBM), Papillary thyroid carcinoma (PTC), Skin cutaneous mela-
noma (SKCM), Kidney renal clear cell carcinoma (KIRC), Uterine corpus
endometrial carcinoma (UCEC), Cervical squamous cell carcinoma (CESC), Prostate
adenocarcinoma (PRCA). Source data are provided as a Source Data File.
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observed in the SKCM_U.S. cohort is significantly higher than the
average mutation rate observed in the SKCM_CN cohort. These dif-
ferences were the most statistically significant across the 18 cancer
types analyzed. The potential etiological factors underlying these dif-
ferences were analyzed below.

EGFR and TP53mutation rates comparison between CN and U.S.
cohorts
TP53 is the top mutated cancer gene identified in Chinese and U.S.
cancer patient populations. The mutation rates of TP53 in the 20
cancer cohorts from China and U.S. were summarized and compared

(Fig. 5a). Themutation rates of TP53 ranged between 0.9% (PTC_U.S.) ~
93.5% (OVCA_CN) (Fig. 5b). Our analysis indicates that the
increased TP53 mutation rates in the Chinese cancer patient popula-
tions was largely attributed to the higher mutation rates of TP53 in
LUSC_CN, GACA_CN, ESCC_CN, LIHC_CN, and LUAD_CN after being
integrated with the corresponding cancer epidemiology data (Sup-
plementary Data 3_Epidemiological data_CN_ICD10).

The mutation rate of EGFR in Chinese cancer patients is 10.6%,
which is higher than that observed in the weighted U.S. pan-cancer
(3.1%) estimates. We found that EGFR (58.7%) is predominantly
mutated at higher frequencies in CN_ LUAD compared to 22.1% in

Fig. 4 | The classification of 18 common cancer types into three patterns.
a–c The comparison of the mutation rates of top 50 cancer genes in each of the 18
most common solid tumor types from China and U.S. cohorts. The 18 cancers are
classified into three types:TP53-Top type,TP53-Plus type, andNon-TP53 type, based
on the rank of TP53 with respect to other top mutated genes. The differences
between China and U.S. cohorts were statistically evaluated using the unpaired t

test. * represents 0.01 < p <0.05, ** represents 0.001 < p <0.01, *** represents
p <0.001, two-sided, 95% confidence interval. The cancer type abbreviations could
be referred to Fig. 3 legend. d The top 50 genes within each cancer type from both
populations were overlapped to determine the corresponding common rate in the
top 50 genes, which is calculated in 2* (TotalGeneNumber – TotalUniqueGen-
eNumber) / TotalGeneNumber. Source data are provided as a Source Data File.
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U.S._LUAD and other cancer types in both populations (Fig. 5c). To
determine the etiological or demographical factors responsible
for the disparity, the mutational profiles of LUAD patients within
each population were stratified according to gender and smoking-
status (Supplementary Data 1_Sequencing data_LUAD Sex-Smoking
Status). However, we consistently observed higher KRAS mutation
rates (except male non-smokers) in U.S. patients than in Chinese
patients (Fig. 5d), and higher EGFR mutation rates in Chinese
patients than in U.S. patients irrespective of gender or smoking
status (Fig. 5e). Of all the demographics analyzed, the Chinese
LUAD_female non-smokers (70.7%) exhibited the highest EGFR
mutation rates (Fig. 5e). However, no statistically significant dif-
ferences were observed in the top 50 cancer gene mutation pro-
files between China and U.S. LUAD_female non-smokers (Fig. 5f).
Additionally, we observed much higher EGFR accumulated muta-
tion rate in CN-LUAD patients (226.9%) than that in U.S. (111.8%).
For KRAS, the accumulated mutation rate between CN (49.4%) and
U.S. (58.9%) is almost comparable (Fig. 5g).

In total, 547 EGFR driver mutations were identified in the 478
Chinese LUAD_female non-smokers. The EGFRL858R mutation occurred
in 45.2% (216/478) of these patients (Fig. 5h). It is estimated that 40-
55% of Asian NSCLC patients have tyrosine kinase inhibitor (TKI)-
sensitive mutations, with EGFRL858R and EGFREx19Del comprising most
cases29. In contrast, 16.4% (45/275) of U.S. female TCGA_LUAD
patients have EGFR mutations, and only 6.2% (17/275) of these
patients harbor the EGFRL858R mutation. These observations suggest
the existence of other unknown environmental/cultural risk factors
that may contribute to the elevated EGFR mutation frequency
observed in Chinese LUAD cancer patients.

Etiological factors for CN and U.S._LUAD, SKCM, and PTC
Cancer somatic mutations are largely the product of repair processes
which are tightly associated with DNA replication. Distinctive patterns
of mutational signatures are indicative of these replication and repair
processes sustained over the course of tumor development30. We
utilized the SignatureAnalyzer program to generate mutation spectra
detailing single nucleotide variants occurring within the top 50
mutated cancer genes of the LUAD, SKCM, and PTC patient cohorts
before executingmutation signature prediction through non-negative
matrix factorization. Only samples with treatment-naïve status were
retained for the mutational signature analysis (Supplementary
Data 2_Treatment status data). The signature contribution for the
analyzed cancers are presented below and the corresponding cosine
similarity plots were provided in Supplementary Fig. 5. The results
showed that the mutation signature for female non-smokers in
CN_LUAD and U.S._LUAD were SBS40, an unknown etiology mutation
signature (Fig. 6a, b). The potential underlying etiological factors are
discussed in the discussion section.

Our previous analysis of themutation rates observed between the
SKCMandPTCpatient cohorts of bothpopulations indicated that their
differences were among the most statistically significant (Fig. 4c). We
identified differences within the mutation signatures for the SKCM
cohorts of the Chinese (SBS7b) and U.S. (SBS7a) patient populations
(Fig. 6c, d). However, the proposed etiology of both signatures fell in
the category of ultraviolet radiation exposure, which has been asso-
ciated with DNA replication timing30. Additionally, the SBS7a/b sig-
natures were mutually exclusive with the normal aging related
mutational signature SBS1/531,32. Themutational signatures for PTC_CN
and PTC_U.S. cohorts were both SBS25 (Fig. 6e, f), which is possibly

Fig. 5 | The comparisonofTP53andEGFRmutationratesbetweenCNandU.S. a,
b The mutation rates of TP53, derived from the 20 most common cancer types,
were compared betweenCNandU.S., respectively. p =0.6994 (unpaired t test, two-
tailed, t =0.3891, df = 38; F test: F = 1.379, DFn = 19, Dfd = 19, p =0.4899), CN _ Mean
±SE= 0.4003 ±0.07017 (n = 20), U.S. _ Mean ± SE= 0.3644 ±0.05975 (n = 20), 95%
confidence interval−0.1508 to0.2225. cThemutation rates of EGFRwere visualized
and compared in 20 cancers fromCN and U.S. cohorts. d, e In LUAD, themutations
rates of KRAS and EGFR between Chinese and U.S. patients were compared with
respect to gender and smoking status. f Comparison of the top 50 mutated genes

from Chinese (n = 676) and U.S. (n = 191) female LUAD non-smokers, the difference
was not statistically significant (NS), p =0.7221 (unpaired t test with Welch’s cor-
rection, two-tailed, t =0.3568, df= 88; F test: F = 2.007, DFn = 49, Dfd = 49,
p =0.0163), CN _ Mean±SE = 0.05003 ±0.01532 (n = 50), U.S. _ Mean ± SE=
0.04334± 0.01081 (n = 50), 95% confidence interval −0.03064 to 0.04402. g The
accumulated mutation rates of KRAS (d) and EGFR (e) in CN and U.S. cohorts,
respectively. h The spatial distribution of EGFR mutations in Chinese lung adeno-
carcinoma patients as female non-smokers visualized with a lollipop graph. Source
data are provided as a Source Data File.

Article https://doi.org/10.1038/s41467-022-33351-4

Nature Communications |         (2022) 13:5651 6



linked to chemotherapy treatment. The inconsistency between the
treatment-naïve status (included samples) and possible chemotherapy
treatment (produced mutational signatures) indicated other potential
etiological factors, which require further investigation and identifica-
tion.However, it was reported that the low somaticmutationdensity in
thyroid cancer relative to other cancers is correlated with age and not
associated with genotype or radiation exposure24, which partially
explains the significantly lowermutation rates observed in theU.S. PTC
cohort relative to the Chinese PTC cohort.

Discussion
Carcinogenesis is a dynamic, complex process caused by the interplay
between genetic susceptibility and environmental factors, resulting in
variable phenotypes across ethnicities and geography. It is estimated
that there are nearly 140 driver genes that contribute to cancer
development33. The generally accepted consensus is that cancer is
initiated and progresses due to alterations in between two to eight
critical driver genes33. Driver mutations with overwhelming carcino-
genicity were observed in TP53, the most frequently mutated tumor
suppressor gene in human34. This implies that the classification of
cancer based upon driver mutation clusters, such as those containing
TP53mutations, is a reliablemeans to identify tumors thatmay benefit
most from targeted gene therapies. Additionally, for a certain cancer,
the shared top mutated cancer genes between populations likely
suggest common etiological factors. However, the variability within
population-level mutation profiles with respect to gene constitution
and mutation frequency may suggest varied mechanisms responsible
for driving carcinogenesis.

In the present study, 382 cancer-associated genes (from OncoKB
database)mutated in 18 solid cancerswere investigated and compared
betweenChina andU.S. cancer populations.We found thatmost of the
analyzed cancer types between Chinese and U.S. cohorts share the
same topmutated driver gene or gene cluster. However, various driver
mutations within a single gene35–38 or across different genes39 have

differing carcinogenic potential and can produce synergistic effects
with respect to tumor progression. A deeper understanding of
tumorigenesis resulting from driver mutations will likely be achieved
as the cost of single-cell sequencing is reduced and bioinformatic
approaches continue to mature.

In China and other East Asian (EAS) countries, EGFR mutations
were found in 30%–50% of LUAD patients10,18,40. In contrast, EGFR
mutation rates were only observed in between 8%–21% of LUAD
patients from the U.S. and other regions18,40–42. EGFR mutations were
identified at a rate of 59.4% in female Asian LUAD patients with no
historyof smoking43. On the other hand,KRASmutationswere found in
6%–11% of Chinese LUADs10,18 comparedwith 25%–33% in U.S and other
populations18,41,42. However, TP53mutation rates in Chinese (36%–51%)
and U.S. (46%) LUAD cohorts were nearly equivalent10,18. TP53 and
LRP1B mutations were concurrent in EAS cohorts, whereas KRAS and
EGFR mutations were mutually exclusive10. Additionally, integrative
genomic analysis has shown that mutation of EGFR and TP53 generally
occur prior to whole genome doubling and most local somatic copy
number alterations44,45. Co-mutation of EGFR and TP53 was associated
with poor survival in LUAD patients, which was partially attributed to
the aggressive nature of their tumors18,46, thereby highlighting a crucial
role of these two driver mutations in the EGFR-mutant EAS LUAD
population. In summary, LUADs harboring EGFR and TP53 mutations
are enriched in EAS female non-smokers, while most LUADs with TP53
and KRAS mutations tend to occur in male smokers of European
descent10,40.

A genomic study reported by the TCGA revealed a unique muta-
tional landscape in tumors derived from Chinese NSCLC patients
compared to those from patients of European descent47, suggesting
genetic diversity of the cancer genome between ancestries48. In detail,
EAS LUADs are characterized by more stable genomes with fewer
mutations and copy number alterations at the chromosomal level,
lower driver abundance and tumor mutation burden, and a higher
proportion of intratumor heterogeneity due to early genomic

Fig. 6 | Mutational signature analysis of lung adenocarcinoma, skin cutaneous
melanoma, and papillary thyroid carcinoma in CN and U.S. a, b The mutation
signature derived from the mutational spectra across the top 50 mutated genes in
China (LUAD_CN,n = 550) andU.S. (LUAD_U.S., n = 57) female non-smokers. c–fThe
mutation signatures of skin cutaneous melanoma (SKCM_CN, n = 21; SKCM_U.S.,

n = 225) and papillary thyroid cancer (PTC_CN, n = 67; PTC_U.S., n = 104) derived
from the mutational spectra of the top 50 mutated genes in the Chinese and U.S.
patient cohorts, respectively. Source data for mutational signature analysis are
provided in Supplementary Software 1.
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diversification in evolutionary trajectory. In contrast, tumors from the
EUR cohorts were largely characterized by multiple genomic altera-
tions attributed to chronic tobacco exposure10,45,49,50.

Epidemiologically, among cigarette smokers, African-Americans
and Native Hawaiians are more susceptible to lung cancer than His-
panic, Japanese-American, and those of European descent51. In China,
increased rates of lung cancer in men reflect high smoking rates but
increased rates among non-smoking women appear to be related to
other factors52. In our analysis, the disparity of EGFR mutation rates
betweenChinese andU.S. LUADpatients remained after stratifying the
cohorts according to gender or smoking status. Genetically, the SNPs
significantly associated with increased lung cancer risk in the Chinese
population are different from those identified in patients of European
descent53. It has been suggested that ancestry is one of the key factors
responsible for the genetic differences between the two populations.
In several Asian populations, including China, an increased risk of lung
cancer in women is also likely associated with indoor pollution pro-
duced by heating and cooking oil fumes52,54. Importantly, household
pollutants resulting from coal and biomass fuel combustion have been
classified as Group 1 and Group 2A carcinogen for lung cancer by the
IARC, respectively55. Taken together, intrinsic genetic predisposition53

or environmental factors, especially air pollution and cooking oil
fumes56,57, can play important roles in the regional differences
observed in lung cancer incidence rates.

Thyroid cancer incidence is increasingworldwide, with the largest
number of cases occurring in China and the U.S.58,59; however, the
underlying etiology has not yet been elucidated. Potential risk factors
for thyroid cancer include radiation exposure, increased iodine intake,
and environmental pollutants such as nitrates and heavy metals60.
Recently, an investigation conducted in the U.S. found that nearly two-
thirds of large papillary thyroid cancer was correlated with increased
body weight and obesity61. Additionally, increased body weight and
obesity are also partially responsible for the high incidence of endo-
metrial carcinoma worldwide, especially in countries that have
undergone rapid socio-economic transitions, such as China62. In the
U.S., the estimated incidence of skin melanoma ranks fifth across all
cancers in both genders, with a total of 106,110 cases in 20213. In
contrast, only 7714 skin melanoma cases occurred in China (Globocan
2020). Despite the large difference in the incidence rate of skin mel-
anomabetween countries, over-exposure to ultraviolet radiation in the
formof sunlight is theprincipal risk factor. Therefore,melanomacould
be effectively minimised in both populations by limiting sun
exposure63.

ESCC incidence rates show remarkable variation worldwide and
are not fully explained by known lifestyle and environmental risk
factors6. The risk factors for ESCC include lifestyle factors (smoking,
alcohol drinking, and consuming pickled food or high temperature
drink/food), poor diet, and genetic susceptibility64. Recently, a multi-
national comparative study of 552 ESCC genomes indicated that the
mutation profiles were similar across all the investigated countries65.
Our results also showedno significant differences in themutation rates
of cancer genes of ESCC between the Chinese and U.S. population
groups. Additionally, Chinese and U.S. ESCC patient cohorts were
grouped in the TP53-Top pattern with common mutation rate as high
as 64% (Fig. 4d). Evidence accumulated from areas with high ESCC
incidence rates, including China, Iran, South America, and East Africa,
suggests that consumption of hot food/beverages (exceeding 65oC) is
likely the leading etiological risk factor for ESCC66. Therefore, ESCC
incidence rates may be potentially curbed by allowing food and drink
to cool before consumption67.

Ancestry differences observed in cancer incidence rates have long
been suggested as contributors tomany tumor types. Key examples of
differences include genetic predisposition68,69, environmental factors,
and distinct lifestyles70–72. The evidence presented above suggests that
the environmental factors accounting for lung adenocarcinoma,

esophageal squamous cell carcinoma, skin melanoma, papillary thyr-
oid carcinoma, and endometrial carcinoma are likely the same across
China and the U.S., although mutagen exposure likely varies in dura-
tion and intensity. As we enter the era of precision cancer medicine,
understanding the varied mutation rates of cancer genes across all
tumor types in different countries will undoubtedly lead to more
efficient targeted therapies. A concertedmulti-national effort is crucial
for overcoming barriers and balancing geographical disparities in
research and health care delivery73.

Methods
Epidemiological Data
In order to quantify the mutation proportions across tumors derived
from Chinese patients, we first determined cancer incidence rates
within the Chinese population. Epidemiological data for calculating
cancer incidence rates between 2004–2016 were collected (Supple-
mentary Data 3_Epidemiological data_CN_ICD10). The annual cancer
incidences of 2004–2016 were cited from the “China Cancer Registry
Annual Report” series, which were tabulated and published by China
NationalCancerCenter (NCC).According to the “Guidelines ofChinese
Cancer Registration”, “Technical Protocols of Cancer Registration and
Follow Up”, and the standards of International Agency for Research on
Cancer/International Association of Cancer Registries (IARC/IACR) on
“Cancer Incidence in Five Continents, Vol. XI”, a national criterion to
evaluate the quality of Chinese cancer registration data was estab-
lished following the rules of comparability, completeness, validity, and
timeliness.

Cancer registries collected data on all cancers’ incidence, mor-
tality, and survival. The demographic information and diagnostic
information of the registered cancer cases were also recorded. Cancer
incidence was recorded following the standards of ICD-O-3 or ICD-10.
Next, these records were reclassified based on the ICD-10 classification
system. The detailed methods used for data collection in cancer
registries, including Methods and Index, Methods of Data Collection,
Channels of Data Collection, Certification of Cancer Cases, and Follow-
up Practice, were provided in China Cancer Registry Annual Report,
2004–2016. After receiving the cancer registration data, NCC utilized
the IARC/IACR-check software to evaluate the completeness, validity,
and internal consistency of the data. The cancer datasets were exam-
ined and revised based on the evaluation results. Finally, qualified
cancer datasets were pooled and published for annual national cancer
report. For instance, a total of 1,110,867 cancer patients registered in
487 qualified cancer registries were included in the “China Cancer
Registry Annual Report, 2019”, which covered a total of 381,565,422
population (193,632,323 males, 187,933,099 females), accounting for
27.6% of the national population in 2016 (Supplementary Data 3_Epi-
demiological data_CN_registry data 2004-2016/487 registries). These
cancer registries are representative of nearly all provinces in China
(Supplementary Fig. 2a). In the 13-year range between 2004–2016,
5,878,712 cancer patients were registered (Supplementary Fig. 2b, c).
The population coverage data, as a function of census data, was col-
lected from departments of statistics and public security. In which,
Han Chinese comprised 91.59%, 91.51%, and 91.11% of the total Chinese
population in 2000, 2010, and 2020, respectively (Data from National
Bureau of Statistics, http://www.stats.gov.cn/tjsj/tjgb/rkpcgb/). The
proportions of urban population in the total population were docu-
mented as 36.22%, 49.68%, and 63.89% in 2000, 2010, and 2020,
respectively (Supplementary Fig. 2d) (Data from National Bureau of
Statistics). Over the past decades, the increased speed of urbanization
and population flow at the national level resulted in greater genomic
hybridization and homogenization in China (Supplementary Fig. 2e).

For the U.S. cohorts, the SEER 18 registries (2000–2017) are
commonly used in epidemiological statistical analysis (https://seer.
cancer.gov/statistics-network). Available registry data includes the
Alaska Native Tumor Registry, Connecticut, Detroit, Georgia Center
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for Cancer Statistics (Atlanta, Greater Georgia, Rural Georgia), Greater
Bay Area Cancer Registry (San Francisco-Oakland, San Jose-Monterey,
Greater California, Hawaii, Iowa, Kentucky, Los Angeles, Louisiana,
New Mexico, New Jersey, Seattle-Puget Sound, Utah) (Supplementary
Data 3_Epidemiological data_U.S._epidemiology and samples). The
cancer registry data covered 27.7% of the U.S. population according to
the race and ethnicity statistics represented within the SEER registry.
Delay-adjusted incidence rates for European Descent and African
Descent appear comparable over a 19-year period. An increase in the
number of American-Indian/Alaskan Native is apparent, while a
decrease can be seen for the Hispanic population. A flat-trend is
observed for the Asian/Pacific Islanders. Importantly, the statistical
analyses presented in SEER utilize a technique known as race bridging
which allows data collected using one set of race categories consistent
with data collected using a different set of race categories. The
bridged-race estimates used within the study were produced under a
collaborative arrangement with the U.S. Census Bureau. Correspond-
ing details could be found at https://www.cdc.gov/nchs/nvss/bridged_
race.htm. The ancestry influences on genomic profiles have also been
considered and provided for the included U.S. cohorts. From the
139 studies included in the U.S. cohorts (Supplementary Data 3_Epi-
demiological data_U.S. Ancestry_sequenced), 11,526 cancer patients
with known ancestry background were presented in the pie chart
(Supplementary Fig. 2f).

Cancer Genomic Data Processing
Publicly available cancer genomic sequencing data of the Chinese
population were collected from cBioPortal (OrigiMed2020)74,75, ICGC,
Chinese Glioma Genome Atlas76, brain cancer77, lymphoma78,79. The
genomic data of U.S. cancer patients were derived from cBioPortal
(“MSK-IMPACTClinical Sequencing Cohort”, and “Cancer Therapy and
Clonal Hematopoiesis”), the ICGC data portal, and TCGA (MAF files
provided by the BROAD Firebrowse database). For the CN cohorts,
11,948 cases in 94 detailed cancer subtypes were included for analysis.
The corresponding 94mutationprofiles underwent a two-tierfiltration
scheme. The tier-1 filtering was achieved by retaining all cancer genes
within theOrigiMed2020 dataset that are represented in theMemorial
Sloan Kettering Precision Oncology Knowledge Base (OncoKB; 382
genes)80. The tier-2 filtering was achieved by retaining protein-coding
mutations, including missense mutations, nonsense mutations (trun-
cating mutations), short inframe InDels, and splice mutations, which
could contribute to changes in the protein sequence. Structural var-
iants (SV) and gene fusions are not included in the results. Next, the
filtered 94 mutation profiles corresponding to 94 detailed cancer
subtypes were integrated into 23 mutation profiles matched to 23
major cancer types according to the ICD-10 classification scheme used
in the cancer epidemiological data collection. As gene namesmay vary
depending on the selected sources, we utilized an in-house Mathe-
matica script to map any gene synonyms to the official gene name.

Performance evaluation of different variant callers
Large differences in variant calls have been reported when the same
sequencing data was processed with variant multiple calling
algorithms81. However, our main focus was to calculate the proportion
of cancer patients harboring a specific mutated gene (from a panel of
382 cancer genes) in one cohort, the cancer patient would be counted
if one or more harbored mutations fall into our established category.
With this consideration in mind, the requirement of strict consistency
among the results produced from different variant callers markedly
decreases. Publicly available sequencing data was used to test the
consistency of the variant calls produced from commonly used variant
callers in the current study. The four commonly used variant callers
(Mutect2, Varscan2, Somaticsniper, and Muse) were used for
variant aggregation and masking against the GDC TCGA Esophageal
Cancer. The corresponding mutation profiles were downloaded

(Supplementary Data 4_Variant caller data_VariantCallerDataLink) and
analyzed in the procedure (Supplementary Fig. 3a). The consistencies
were analyzed in terms of Patient, Gene, Gene-Mutation, and Gene-
Patient via overlapping the corresponding lists produced from the four
variant callers (Supplementary Fig. 3b-e). We found that 81.1% (231/
285) of the four mutated gene lists produced from the variant callers
were commonly shared. If two variant callers were used in a compar-
ison, that percentage would be greatly increased to 82.3%–94.3%.
Additionally, the patient number corresponding to each of the shared
mutated genes produced from the four variant callers were compared
and showed no significant differences (Supplementary Fig. 3f). Most
importantly, the patient number corresponding to each of the com-
monly sharedmutated genes produced from the four callers werewell
overlapping with each other (Supplementary Fig. 3g). With respect to
Supplementary Fig. 3g, we developed ametric to assess the maximum
errorexistwithin this particulardataset. 7.7% asanmaximumerror rate
was resulted from calculating the sumof the absolute value of pairwise
differences in observed variant call for each individual gene across the
four variant callers. Above evidence demonstrated that the mutation
rates of cancer genes produced from these variant callers were gen-
erally consistent and not significantly different from each other. The
corresponding lists produced by the four variant callers are presented
in the Supplementary Data 4_Variant callers data.

Conversion of mutations rates from ICD-O-3 into ICD-10
The U.S. mutation rates of cancer genes were epidemiologically
weighted based on the ICD-O-3 classification system. In our analysis,
thesemutation rates were recalculated after reclassification of ICD-O-3
into ICD-10 classification system, to ensure the equal comparison of
CN and U.S. mutation rates of cancer genes on the same standard. As
such, the cancer incidence across all histological subtypes within that
tissue were summed and divided by the total cancer incidence to
determine the preliminary weight of each tissue site. Based upon the
preliminary weights, the percentage of tumors without corresponding
sequencing data were calculated as value Q. The final epidemiological
weights were calculated through rescaling, specifically by dividing the
preliminary weights of the tumors with sequencing data by (1 - value
Q). 66 cancer subtypes (18,584 cases) were clustered and re-allocated
across 23 tumor sites after reclassification of ICD-O-3 into ICD-10
(Supplementary Data 1_Sequencing data_Cases and subtypes). To test
the accuracy and consistency of the epidemiologically weighted
mutation rates of genes produced based ICD-O-3 and ICD-10, the panel
of these 382 cancer genes used for filtering in CN cohorts was utilized
to be compared between the two U.S. datasets derived from ICD-O-3
and ICD-10. No statistically significant differences (p =0.7964) were
observed between the ICD-10 and ICD-O-3 produced mutation rates
with respect to the 382 cancer genes (Supplementary Fig. 4a). Addi-
tionally, the mutation rates of the 382 cancer genes were highly and
positively correlated (Supplementary Fig. 4b), even after the removal
of TP53 (Supplementary Fig. 4c). The top50 of the 382 cancer genes
produced from both classification systems were visualized and
showed rather equivalent mutation rates (Supplementary Fig. 4d, e).

Mutation proportion estimates
Mutation proportion estimates were calculated as described in the
publication15. Briefly, them x nmatrix was constructed, detailing each
cancer gene (m) and the number of cancer types sequenced (n). The
entries within the matrix represent the conditional probability that
genemi ismutated in cancer type nj; importantly, a genewas tabulated
asmutated amaximumofone timeper sampledespite the existenceof
1 or more observed mutations. Within the present study, the number
of genes (m) is 382 and the number of cancer types (n) is 23. The
epidemiological cancer incidence rates were converted into a numer-
ical vector v representing their percentage contribution to the total
number of cancer cases. The final mutation proportion of each gene
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wascalculatedby taking the scalar product of the values in each rowm,
which details the conditional probability that a gene is mutated across
the n cancer types, and the values in vector v. Statistical analyses were
performed by generating two thousand Poisson distributed in silico
datasets for each combination of gene and cancer type with the mean
value as calculated from the genomic studies included. The pipeline
used for the initial mutation proportion estimate was applied to the in
silico datasets, and the 95% confidence intervals were determined
based on these calculations.

Tumor mutation signatures
Mutation signatures were produced by using the SignatureAnalyzer
program developed by the Getz laboratory82. The mutated nucleotide
sequence of each gene derived from genomic data were utilized to
determine the respective COSMIC SBS signature for a specific cancer
type. The Hugo Gene Symbol, Patient ID #, Chromosome, Mutation
Start Position, Reference Allele, Variant Allele, and Variant Type were
parsed from the patientmutation data and concatenated intomaf files
for each individual cancer type within the present study. Spectra files
for each cancer type were then generated with the signature-
analyzer.spectra.get_spectra_from_maf command using cosmic3 and
the hg19.2 bit reference genome assembly as the input arguments. The
signatureanalyzer.run_spectra command was then used to generate
the mutation signatures using cosmic3 and nruns=10 as the input
arguments. To verify that the mutational spectra derived from top 50
mutated genes of a cancer type meets the threshold for signature
identification, we queried the corresponding data derived from lung
adenocarcinoma from U.S. patients (LUAD_US) with smoking history.
The use of this input produced a mutational signature (SBS4) for
smoking, indicating that the spectra derived from the top 50 genes is
reasonable and reliable to discern relevant mutation signatures.

Statistics
Unpaired t test was used to compare the differences between two
independent datasets. F test to compare variances, if p <0.05,
unpaired t test with Welch’s correction would be used to compare
differences of means. The detailed statistics information of each sta-
tistical comparison (unpaired t test with/without Welch’s correction, p
value, t, df, Mean±SE, 95% confidence interval; F value, DFn, Dfd,
p-value) could be found in the corresponding figure legend. GraphPad
Prism 5 andMicrosoft Excel were used for all the statistical calculation
and figure production. An asterisk symbol * represents 0.01 < p <0.05,
** represents 0.001 < p <0.01, *** represents p <0.001, two-tailed, 95%
confidence interval. All measurements were taken from distinct sam-
ples and not measured repeatedly.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All thedata used in thiswork arepublicly available andnonewdatawere
generated in this study. The genetic mutational data are publicly avail-
able [https://www.cbioportal.org/], [https://dcc.icgc.org/], [http://www.
cgga.org.cn], [https://pubmed.ncbi.nlm.nih.gov/25171927/], [https://
pubmed.ncbi.nlm.nih.gov/32183952/], [http://gdac.broadinstitute.org].
The cancer epidemiological data of 2004~2016 are derived from the
“China Cancer Registry Annual Report” series83–95. The U.S. epidemio-
logicallyweighted cancermutation rates (basedon ICD-O-3 and ICD-10),
which integrated the data from SEER database and cBioPortal database
are derived from the Supplementary files of https://www.nature.com/
articles/s41467-021-26213-y15. All the output data in this study can be
found within the Supplementary Information and Supplementary Data.
The source data for all figures are provided with this paper as Source
Data Files. Source data are provided with this paper.

Code availability
The source code used to combine genomics and epidemiological data
and produce all these figures and table in the manuscript is available
and accessible in the Supplementary Software 1 and could also be
obtained from the public code repository Zenodo [https://doi.org/10.
5281/zenodo.7063609]96.
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