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SUMMARY

Protein folding in cells is regulated by networks of
chaperones, including the heat shock protein 70
(Hsp70) system, which consists of the Hsp40 cocha-
perone and a nucleotide exchange factor. Hsp40
mediates complex formation between Hsp70 and
client proteins prior to interaction with Hsp90. We
used mass spectrometry (MS) to monitor assemblies
formed between eukaryotic Hsp90/Hsp70/Hsp40,
Hop, p23, and a client protein, a fragment of the
glucocorticoid receptor (GR). We found that Hsp40
promotes interactions between the client and
Hsp70, and facilitates dimerization of monomeric
Hsp70. This dimerization is antiparallel, stabilized
by post-translational modifications (PTMs), and
maintained in the stable heterohexameric client-
loading complex Hsp902Hsp702HopGR identified
here. Addition of p23 to this client-loading complex
induces transfer of GR onto Hsp90 and leads to
expulsion of Hop and Hsp70. Based on these results,
we propose that Hsp70 antiparallel dimerization,
stabilized by PTMs, positions the client for transfer
from Hsp70 to Hsp90.

INTRODUCTION

Hsp70 and Hsp90 are essential and abundant molecular chaper-

ones in the eukaryotic cytosol and are involved in the folding and

maturation of a myriad of protein substrates, including many

cancer-causing proteins (Brychzy et al., 2003, Taipale et al.,

2010). The Hsp70/90 system requires a cohort of cochaperones

to provide specificity and regulation of the chaperone interac-

tions with their client proteins (Li et al., 2011, Picard et al.,

1990, Young et al., 2001). Hsp70 binds extended hydrophobic

peptide sequences and acts at an early stage to recognize
partially folded client proteins. Hsp90 is thought to interact

with near-native conformations of its substrates, and its clients

include protein kinases and steroid hormone receptors, the latter

being the most extensively studied (Jackson, 2013).

Hsp90 forms defined binary or ternary complexes with cocha-

perones to facilitate the maturation of client proteins (reviewed in

Prodromou, 2012). Structurally, it consists of a C-terminal dimer-

ization region, a middle domain, and an N-terminal nucleotide-

binding domain (NBD) connected by a charged linker that

provides the necessary flexibility for domain rearrangements

(Tsutsumi et al., 2012). Hsp90 binds at its C-terminal MEEVD

sequence to tetratricopeptide repeat (TPR) cochaperones,

including the ‘‘Hsc70/Hsp90 organizing protein’’ Hop (Young

et al., 1998).

In contrast to Hsp90, Hsp70 is predominantly monomeric, and

high-resolution structures of the full-length eukaryotic protein

have remained elusive. By analogy to the different ADP-bound

states of DnaK, the E. coli Hsp70 homolog, the picture that is

emerging shows independent movements of the N-terminal

NBD and C-terminal substrate-binding domain (SBD) (Bertelsen

et al., 2009, Swain et al., 2007). Thesemovements are thought to

be lost upon ATP binding when Hsp70 rearranges into a domain-

docked structure (Mapa et al., 2010). Together with a previous

NMR study (Zhuravleva et al., 2012), these structures define

the allosteric control mechanism between the NBD and SBD.

In previous studies, we established that Hsp70 was essentially

monomeric under our solution conditions (Ebong et al., 2011),

although dimerization has been reported previously in solution

and X-ray structures of DnaK (Qi et al., 2013). Recently, specific

mutations of DnaK were designed to disrupt the dimer interface

observed crystallographically and to probe its functional signifi-

cance (Sarbeng et al., 2015). Results showed that mutations on

the dimer interface compromise both chaperone activity and

Hsp40 interactions.

It is established that the Hsp40 cochaperones regulate ATP-

dependent substrate binding of Hsp70 (Laufen et al., 1999,

Mayer and Bukau, 2005) via interaction of the N-terminal J

domains of Hsp40 with an acidic groove located in the NBD of
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Hsp70 (Jiang et al., 2007). The C-terminal domain of Hsp40 from

yeast contains an EEVD peptide-binding site (Li et al., 2006) and

the dimerization domain (Li et al., 2003). Hsp40s are typically ex-

pressed at lower levels than Hsp70, consistent with their cata-

lytic function and crucial role in Hsp70 function (Young, 2010).

In addition, numerous reports have proposed an Hsp40-induced

oligomerization of humanHsp70 or DnaK (Benaroudj et al., 1995,

Cyr and Douglas, 1994, Hernández et al., 2002, Thompson et al.,

2012). Participation of the Hsp70/Hsp40 chaperone system is

also required to regulate client binding to Hsp90 (Pratt and

Toft, 1997) and to load Hsp90 with a client protein (Hernández

et al., 2002). Hop bridges the Hsp70 and Hsp90 chaperone

systems (Chen and Smith, 1998), and also inhibits the ATPase

activity of Hsp90, stabilizing the client-loading conformation

and facilitating the handover of clients (Richter et al., 2003,

Southworth and Agard, 2011).

For this study, we selected the transcription factor GR as the

client protein because it is well characterized, particularly with

respect to its associations with the Hsp90/Hsp70 systems (San-

chez, 2012). GR has to bind to Hsp90 as a prerequisite to attain a

high-affinity ligand-binding conformation prior to its import into

the nucleus (Dittmar et al., 1997, Picard et al., 1990, Smith,

1993). Here, we used a structure of its ligand-binding domain

(LBD) in complex with the agonist dexamethasone (Bledsoe

et al., 2002). During the course of this work, two cryo-electron

microscopy (cryo-EM) studies (Alvira et al., 2014, Kirschke

et al., 2014) revealed the formation of an Hsp90/Hsp70/Hop/

GR complex proposing unfolding/inactivation of GR by Hsp70

and refolding/reactivation of GR by Hsp90, and revealing the

location of GRwith respect to Hop, which is located on the oppo-

site side of the Hsp90. These complexes provide new insight into

the location of GR, but also raise the question of whether they are

primed for transfer of GR from Hsp70 to Hsp90.

In common with many chaperone systems, Hsp70/90-client

interactions have proven challenging to study with traditional

biophysical techniques due to their dynamic nature and compo-

sitional heterogeneity. For this reason, we applied mass spec-

trometry (MS) to probe the composition of stable complexes

formed on these reaction pathways. The use of MS to study pro-

tein complexes is gaining momentum (Heck, 2008, Hilton and

Benesch, 2012, Wyttenbach and Bowers, 2007). Pertinent to

such studies is the ability of MS to determine the masses and

hence the subunit stoichiometry of multi-protein complexes

that form simultaneously within dynamic and heterogeneous

assemblies (Benesch et al., 2006, Stengel et al., 2010). When

coupled with chemical crosslinking (XL) strategies (Schmidt

and Robinson, 2014), this approach is particularly powerful

because it allows not only the stoichiometry but also the interac-

tion interfaces to be defined (Schmidt et al., 2013).

By incubating subsets of proteins involved in the assembly of

Hsp90/Hsp70/Hop/GR complexes, and by varying the order of

addition and concentrations of the proteins and the level of nucle-

otides, we allow the Hsp90/Hsp70/Hsp40/GR complexes to

assemble in solution. We then define their composition and inter-

actions by recording mass spectra of the intact complexes. In

addition, by employing chemical XL,we identify the interfaces be-

tween the complex components. StartingwithHsp70, we explore

the extent of its oligomerization in solutionwith respect to its post-
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translational modification (PTM) status, and employ comparative

chemical XL to compare dimeric interfaces in ATP- and ADP-

bound states. Increasing the complexity to the Hsp70/Hsp40/

GRsystem,weshowthatwecandetect stableHsp70-client com-

plexes in the presence of catalytic quantities of Hsp40. We find

that the predominant client-loading complex formed with Hsp90

and Hop contains dimeric Hsp70 and Hsp90, as well as one

Hop and one GR. Chemical XL locates GR in close proximity to

Hsp90 and enables us to identify roles for Hsp40 and Hsp70 in

transferring clients to the Hsp90 cycle, and to propose a role for

Hsp70 dimerization in this client-loading complex.

RESULTS

PTMs Stabilize Hsp70 Dimers
To investigate interactions in Hsp70 and to probe the existence

of higher oligomeric states proposed previously (Aprile et al.,

2013, King et al., 1999), we examined by MS the propensity of

Hsp70 to form oligomers. We expressed and purified human

Hsp70 in two expression systems: Sf9 insect cells and E. coli.

We then compared the peak intensities of the oligomers in the

same spectrum using Hsp70 expressed in E. coli (Hsp70E. coli)

labeled with heavy isotopes (13C), separating it by mass from

Hsp70 expressed in Sf9 cells (Hsp70Sf9). A 1:1 mixture of the

two proteins at a high protein concentration (8 mM) under exper-

imental parameters designed to preserve non-covalent interac-

tions (Hernández and Robinson, 2007) reveals dimerization

(Figure 1A). Interestingly the mass spectrum shows that for the

Hsp70Sf9:Hsp70E. coli mixture, the Hsp70Sf9 dimer has higher in-

tensity than its E. coli-expressed counterpart, implying that the

Hsp70Sf9 dimer ismore stable thanHsp70E. coli (Figure 1B). Given

that the amino acid sequences of Hsp70Sf9 and Hsp70E. coli are

identical, but expression in E. coli does not allow for PTMs, we

hypothesized that this enhanced interaction was due to acetyla-

tion and phosphorylation, which often combine to stabilize sub-

unit interfaces (van Noort et al., 2012). We first investigated the

occurrence of acetylation in Hsp70Sf9 and identified seven lysine

acetylation sites, two of which had been reported previously

(Table S1). We then applied a phosphopeptide enrichment strat-

egy and found a phosphosite (T504) in Hsp70Sf9, at a known

phosphorylation hotspot (Beltrao et al., 2012). This site is not

phosphorylated in Hsp70E. coli and, together with the multiple

acetylation sites, provides a plausible rationale for the enhanced

stability of the Hsp70Sf9 dimer.

As this particular phosphosite is highly conserved in different

eukaryotic species (Beltrao et al., 2012), we probed its signifi-

cance for dimerization and incubated the Hsp70Sf9 dimer with

a phosphatase. We prepared two aliquots containing a 1:1 solu-

tion of Hsp70Sf9 and
13C -labeled Hsp70E. coli (onewith buffer and

one with phosphatase). Following overnight incubation without

phosphatase, Hsp70Sf9 retained a population of dimers (Figures

1B and 1C). Interestingly, a mixed heterodimer, Hsp70Sf9:

Hsp70E.coli, formed under these incubation conditions, consis-

tent with subunit exchange occurring within a 16 hr timescale.

By contrast, no Hsp70E. coli homodimer was observed, support-

ing enhanced dimerization of Hsp70Sf9. Peak splitting of

monomeric Hsp70 (Figures 1A and 1C) was attributed to apo

and nucleotide-bound forms of the proteins, implying loss of



Figure 1. PTMs Promote Dimerization of Hsp70

(A) Mass spectrum of an 8 mM solution containing a 1:1 ratio of 13C-labeled Hsp70E. coli and Hsp70Sf9 with natural abundance isotopes. At these concentrations,

both are predominantly monomeric, but a higher population of Hsp70 dimers is observed for the Sf9-expressed protein.

(B) Bar charts comparing the intensities of monomeric and dimeric Hsp70. Green, Sf9; blue, E. coli; purple, Sf9/E. coli. Monomers and dimers are labeled with

circles and stars, respectively.

(C) Mass spectrum recorded at high backing pressure to promote dimer formation (Hernández and Robinson, 2007) of a 1:1 ratio of 3 mM 13C- labeled Hsp70E. coli
and Hsp70Sf9 with natural abundance isotopes, incubated overnight in the absence of phosphatase (‘‘control,’’ top) or in the presence of phosphatase

(‘‘phosphatase treatment,’’ bottom). Both spectra were acquired under the same conditions. Note the absence of dimer under the phosphatase condition.

(D) XLs are highlighted on structures of Hsp70 subunits in ATP and ADP states. The ADP state was manually aligned with the human Hsp70 sequence. Inter-

subunit XLs are highlighted on antiparallel dimers of both states (shown schematically). In the ATP state, XLs K108-K561/569 (purple) orient twoHsp70 subunits in

an antiparallel dimer. The phosphosite T504 in Hsp70Sf9 (red) and the lysine-binding pockets are located both adjacent to and across the interface (gray and

yellow). Comparative XL of the two Hsp70 proteins (expressed in E. coli and Sf9) shows that the K108-K569/561 is 5-fold more intense in Hsp70Sf9 than in

Hsp70E. coli, consistent with the stronger interface in Hsp70Sf9 (purple). Less dimerization for the E. coli-expressed Hsp70 is consistent with the observed 3-fold

increase of the K569-561 intra-XL. Inter-subunit XLs (red) are consistent with the ATP state.

See also Figures S1–S4 and Tables S1, S2, and S3.
nucleotide and ATP turnover during the overnight incubation.

The second aliquot, to which phosphatase was added, showed

peak splitting due to the loss of nucleotide, but importantly, no

dimers were observed (Figures 1B and 1C). To confirm that the

Hsp70E. coli dimer was not affected by incubation with phospha-

tase, we repeated these experiments at a higher Hsp70E. coli con-

centration under which dimerization occurs. We found that the

dimer was stable for 48 hr with phosphatase present (Figures

S1A and S1B). We conclude that since the Hsp70Sf9:Hsp70E. coli
heterodimer andHsp70Sf9 homodimer are weakened by addition

of phosphatase, the phosphorylation site in Hsp70Sf9 not only
stabilizes the homodimer but also promotes formation of the

heterodimer.

Given the presence of PTMs and their potential role in stabiliz-

ing the dimer interface, we anticipated that the Hsp70Sf9 dimer

interface might be affected by changes in ionic interactions.

Therefore, we recorded mass spectra for solutions containing

2 mM Hsp70Sf9, 0.5 mM Hsp40, and 200 mM ATP with increasing

ionic strength from 50 to 300mMpotassium chloride (Figure S2).

The results show a decrease in the population of dimers at higher

ionic strength, consistent with ionic interactions maintaining the

dimer interface.
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To confirm the proposed role of T504 in enhancing the dimer

interface, we prepared a phosphomimic mutant, replacing

T504 in Hsp70E. coli with a glutamic acid residue to form a

T504E variant. A comparison of the mass spectra of the labeled

wild-type Hsp70E. coli with those of the Hsp70E. coli,T504E variant

shows an increase in the population of dimers for the phospho-

mimic when examined in a 1:1 ratio (Figure S1C). Together, these

results show that the Hsp70Sf9 dimer interface is strengthened

by ionic interactions and that a key phosphosite, supported by

multiple acetylation sites, contributes to its stability.

Chemical XL Defines an Antiparallel Hsp70 Dimer
We defined the interface of the Hsp70Sf9 dimer by XL with bis(-

sulfosuccinimidyl)suberate (BS3) first in the presence of excess

ATP. SDS-PAGE analysis confirmed the presence of monomers

and crosslinked dimers, showing that populations of dimers

formed under these conditions (Figure S3A). Gel bands assigned

to the monomer and dimer were then subjected to tryptic diges-

tion and liquid chromatography-tandem MS (LC-MS/MS) anal-

ysis. We found 170 potential XLs by a database search. We

manually validated 154 of these XLs, giving a false-discovery

rate (FDR) of 9.61% (Table S2).

We considered a number of high-resolution structures for gen-

eration of homology models, including one in which the SBD

binds to the hydrophobic linker (Chang et al., 2008) and the

Bos taurus Hsc70 structure (Jiang et al., 2005). We also consid-

ered a model generated from Geobacillus kaustophilus (Chang

et al., 2008, Wu et al., 2012). This model shows Hsp70 oligomer-

ization via the SBD of one Hsp70 molecule binding to the flexible

linker of a second Hsp70 (Figure S4A; Wu et al., 2012). To

investigate this dimerization mechanism, we generated a sub-

strate-binding-deficient variant of Hsp70E.coli (V438F), which

also includes the phosphomimic T504E andwas shown to be un-

able to bind substrates in DnaK and Hsp70 (Mayer et al., 2000,

Rohrer et al., 2014). However, the V438F/T504E mutant was

able to dimerize despite its substrate-binding deficiency, ruling

out the substrate-binding model for dimerization (Figure S4B).

The two high-resolution structures that best accommodate

our XLs are the ADP- and ATP-bound states of DnaK (PDB IDs

2KHO and 4B9Q, respectively (Bertelsen et al., 2009, Kityk

et al., 2012). We generated a homology model for the ATP state

using the structure 4B9Q as a template. For the ADP state, we

could not obtain a good homology model, and therefore we

manually aligned the human Hsp70 sequence with the solution

structure of E. coli DnaK (Bertelsen et al., 2009; Figure 1D). Of

the multiple intra-subunit XLs derived from the band assigned

to the monomer, two were of interest: K190-K507 and K190-

K512. Both of these XLs are accommodated better in the ADP

state (Bertelsen et al., 2009) than in the ATP state (Kityk et al.,

2012). We also observed two intra-XLs consistent with the ATP

conformation, but not the ADP state: K159-K512 and K246-

K271. The fact that both ATP and ADP conformations are satis-

fied by our XL restraints implies that ATP hydrolysis takes place,

giving rise to the two nucleotide-bound forms that readily inter-

convert in solution.

Two of the 11 Hsp70 XLs derived from the dimer band, K569-

K108 and K561-K108 (both identified with ADP, ATP, or ATPgS)

were particularly intriguing. These XLs cannot be assigned to
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intra-subunit XLs due to the distances required to link the NBD

with the lid of the SBD. These crosslinked regions define a dimer

interface that can be accommodated in either the ATP or ADP

state, and clearly define an antiparallel orientation via interac-

tions between the NBD and SBD of different subunits.

Given that XL provides an average ensemble populated in so-

lution, we need a direct readout of the differences between the

two distinct nucleotide-bound conformations of Hsp70 in the

dimer. Therefore, using a previously described comparative XL

strategy (Schmidt and Robinson, 2014, Schmidt et al., 2013),

we added BS3-d0 and BS3-d4 to ADP- and ATP-containing so-

lutions of Hsp70, respectively. After XL, a 1:1 molar ratio of the

two solutions was digested with trypsin prior to LC-MS/MS anal-

ysis. This allowed for a quantitative comparison of XLs under

different nucleotide conditions (Table S2). We found that in the

presence of ADP, the XL K190-K507 was enhanced, defining

close interactions in the ADP state. In excess ATP, however,

K159-K512 and K246-K271/251 were significantly increased

relative to XLs observed in the presence of ADP. These three

XLs can only be accommodated in the ATP state. Since it was

not possible to obtain XLs exclusive to one conformation

(docked or undocked) in the presence of excess ATP, ADP, or

ATPgS, and given the likely hydrolysis of ATP, we conclude

that the dimer exists in a dynamic equilibrium perturbed by nu-

cleotides but without a single defined conformer.

If we place the PTMs defined above within the context of the

antiparallel dimer, then we find that the phosphosite (T504) is

close to the hinge region between the SBD b-domain and the

SBD a-helical lid, in a lysine-rich pocket that orients it toward

the subunit interface for interactions with multiple lysine residues

(K561, K567, K568, and K569) in the ATP state (Figure 1D). This

network of lysine interactions in the ADP state, close to the phos-

phosite, could also stabilize the ADP conformation in the antipar-

allel dimer. The seven acetylation sites identified here also align

along the dimer interface in the ATP state, implying that they

combine with the phosphosite for signal propagation. These

hydrogen-bonding interactions provide a rationale for increased

dimerization of Hsp70Sf9 and the conservation of the phospho-

site (Beltrao et al., 2012), and the correspondence of the amino

acid residues involved in acetylation (http://www.uniprot.org) in

eukaryotes suggests their functional relevance in vivo.

Transient Interactions with Hsp40 Promote Hsp70
Dimerization
We investigated the effects of Hsp40 on the extent of dimer for-

mation in both Hsp70E. coli and Hsp70Sf9 using a 1:1 ratio of the

two Hsp70s and catalytic amounts of Hsp40 (Figure 2A). In the

presence of Hsp40, an increase in the population of the non-co-

valent dimer was observed for Hsp70Sf9 and even for Hsp70E.coli,

albeit at a lower intensity (Figures S5A and S5B). An Hsp70E. coli:

Hsp70Sf9 heterodimer was observed as above, consistent with

the greater propensity of Hsp70Sf9 (compared with Hsp70E. coli)

to form dimers.

To probe potential differences in the dimer interfaces of

Hsp70Sf9 and Hsp70E. coli, we employed the comparative XL

strategy described above in the presence of excess ATP and co-

chaperone Hsp40 to enhance dimer formation. To avoid subunit

exchange and to compare directly the strengths of the different

http://www.uniprot.org


Figure 2. Hsp40 Promotes Interactions with

Hsp70 and GR through Its J Domain

(A) Mass spectrum of a 1:1 ratio of 13C-labeled

Hsp70E. coli and Hsp70Sf9 with natural abundance

isotopes in the presence of Hsp40 and ATP. An

increase in the population of the Hsp70Sf9 dimer

and formation of a heterodimer are observed.

(B and C) The mass spectrum of GR in the pres-

ence of Hsp40 shows only a low population

of Hsp402GR (B), but a larger population of

Hsp70E. coli GR is formed when catalytic amounts

of Hsp40 are added (C). Hsp70E. coli contains a

His-tag.

(D) Chemical XL highlights the dynamics of the

Hsp40 dimer. Lysine residues in the region of 23–

37 in the J domains make multiple interactions

with the C-terminal and middle domains of Hsp40.

For this symmetrical dimer, we expect XLs to be

present on both subunits. For clarity, the two

subunits are shown with different XLs.

See also Figure S5 and Table S2.
interfaces, we employed BS3-d0 and Hsp70Sf9 for Hsp70E. coli

and BS3-d4, respectively, and crosslinked them individually.

Equal aliquots of the crosslinked proteins were pooled, digested,

and analyzed by LC-MS/MS. We identified 466 XLs after a

database search and validated 392 of these manually, giving

an FDR of 15.9% (Table S2). Rejecting XLs with peptides of

three or fewer amino acids results in 74 XLs (59 Hsp40-Hsp40,

12 Hsp70-Hsp70, and three Hsp40-Hsp70). Differences in

subunit interactions can then be related to the extent of dimer

formation by changes in the intensity ratio of the inter-

protein XLs.

When we compared the intensities of the light and heavy

crosslinked peptides, we found that two were noticeably

different for the Hsp70Sf9 and Hsp70E. coli dimers. The K569-

K108 (assigned to the inter-subunit XL above) intensity ratio

was 5.3:1.0 for the Hsp70Sf9 and Hsp70E. coli peptides, respec-

tively. This represents a 5-fold increase in the intensity of

the crosslinked Hsp70Sf9 dimer and is assigned to enhanced

interactions in the Hsp70Sf9 dimer interface. Interestingly, we

identified a second XL, also involving K569 but this time

crosslinked to K561, assigned to an intra-XL due to its close

proximity. This XL showed a difference in the intensity ratio in

the opposite direction, with an increase in Hsp70E. coli:Hsp70Sf9
to 3.4:1.0. Therefore, we conclude that a significant increase in

intensity in the XL K569-K561 results from reduced dimer forma-

tion in Hsp70E. coli, thereby promoting intra-molecular XL.

Hsp70 dimerization is significantly enhanced in the presence

of sub-stoichiometric quantities of Hsp40, and yet no Hsp40-

containing complexes were observed with low Hsp40 concen-

trations (Figure 2A). This supports the current view of a transient

catalytic interaction (Kampinga and Craig, 2010). To address

how this transient interaction with Hsp40 enhances dimerization,

we first determined the oligomeric state of Hsp40 and observed

a dimeric state (Figure S5C; Table S3). Given that Hsp70 and

Hsp40 are known to promote client interactions (Kampinga

and Craig, 2010), we reasoned that it might be necessary to

include a client to stabilize the interactions between them. Using

apo GR or apo MBP-GR (GR-fused maltose-binding protein to
enhance solubility), both monomeric (Figure S5D), we probed

client interactions with Hsp40. Interestingly Hsp40 with GR

showed onlyminimal binding in a 1:1 stoichiometry, independent

of the presence of nucleotides (Figure 2B). Incubating Hsp70

with GR in the presence of catalytic amounts Hsp40 and ATP re-

vealed the formation of an Hsp70GR complex (Figure 2C). Signif-

icantly, Hsp40 was not incorporated into the Hsp70 complex,

even in the presence of the client.

Dynamic Interactions between Hsp70 and Hsp40
Next, we probed interactions within and between Hsp40 and

Hsp70E. coli using XL in the presence of GR and nucleotides.

To eliminate stabilization by PTMs, we employed Hsp70E. coli.

We identified 57 intra-XLs, 42 of which were assigned to intra-

Hsp40 interactions. Aligning the XLs with the structural elements

of Hsp40 (Li et al., 2003; Table S4) places many of the interac-

tions between the J domains (K23, K24, K28, K32, and K37)

and the adjacent b-sheet region, which is linked by an unstruc-

tured 29 amino acid linker (Figure 2D). The very high level of

inter-XL observed for Hsp40 (Figure 2D) indicates its open, flex-

ible structure.

Seven inter-XLs define interactions between Hsp40 and

Hsp70E. coli. One XL is formed between the J domain and the

Hsp70 SBD (K32-K524). The SBD of Hsp70 is further aligned

via K512-K152 in Hsp40. An Hsp40 residue (K207) crosslinks

to two distal residues (K77 and K550) on Hsp70 in the NBD

and lid, respectively (Figure 3A). These XLs are not compatible

with a single Hsp70-Hsp40, but are consistent with one Hsp70

bridging an Hsp40 dimer, allowing interactions with the two

K207 residues in the Hsp40 dimer with both the lid and NBD of

Hsp70. This is in accord with previous results that locate

Hsp40 at the IEEVD motif of Hsp70 and between the Hsp40 J

domains and an acidic groove in the NBD of Hsp70 in the ATP

state (Qi et al., 2013; Figure 3A).

Given that Hsp40 stimulates the ATPase activity of Hsp70, and

the observation of the J domain close to the nucleotide-binding

site in Hsp70 (residues 24–246), we also considered Hsp70 in the

undocked ADP form. Four XLs can be accommodated with
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Figure 3. Proposed Dimerization Model of Hsp70 following

Interactions with Hsp40
(A) XL reveals seven critical inter-subunit interactions that allow alignment of

the Hsp70 dimer in an antiparallel ATP state with Hsp40 (missing C-terminal

residues of Hsp70 are indicated). Following stimulation of the ATPase activity

of Hsp70 through interactions with Hsp40 J domains, the predominant

conformation is likely the undocked ADP state.

(B) The same XLs as in (A) can be rationalized in this structure, with the

exception of Hsp70:40 XLs 567-314 and 248-348, which are better accom-

modated in the ATP state of Hsp70.

(C) Schematic of the J domains binding Hsp70 to bring the C-terminal IEEVD

motif of Hsp70 into close proximity to the binding site onHsp40, placing Hsp70

in a well-defined position across the Hsp40 dimer. The second Hsp40 J

domain can bind to a second Hsp70, positioning it in close proximity to the first

Hsp70 and triggering the formation of an antiparallel Hsp70 dimer. Hsp40

stimulates ATPase hydrolysis of Hsp70 and induces a conformational change

from the docked to the undocked form. Following Hsp70 dimerization, the

Hsp40 dimer dissociates from Hsp70.
Hsp70 molecules in the ADP conformation (Figure 3B). The fact

that a subset of XLs can be accommodated in docked and un-

docked states of Hsp70 is consistent with the equilibrium that

exists in solution. Moreover, the same inter-Hsp70 XLs defined
764 Cell Reports 11, 759–769, May 5, 2015 ª2015 The Authors
above confirm the antiparallel Hsp70 dimer in both docked and

undocked conformations (Table S2).

As a consequence of these interactions, movement is

restricted, with two Hsp70 subunits held in an antiparallel orien-

tation for dimerization. Overall, these data provide molecular

details of the interactions involved in bringing Hsp70 subunits

together, with the J domains of Hsp40 binding to the NBD

of Hsp70, stimulating ATPase activity and inducing conforma-

tional changes necessary to prime Hsp70 for substrate binding

(Figure 3C).

Antiparallel Dimers of Hsp70 Facilitate Client Transfer
to Hsp90
A key question prompted by the antiparallel arrangement

of Hsp70 subunits is whether they are an integral part of chap-

erone complexes involving Hsp90. To address this question,

we compared the effect of PTMs on Hsp70Sf9 versus Hsp70E. coli
on interactions with Hop andHsp90 in the absence of Hsp40.We

found that the predominant heterocomplex for Hsp70E. coli is

Hsp902Hop, with only a low incorporation of Hsp70 monomer,

and a second species at very low intensity containing an addi-

tional Hop, Hsp902Hsp70Hop2 (Figure 4A). It was not possible

to form complexes containing more Hsp70E. coli than Hop sub-

units. For Hsp70Sf9, there is clear evidence that two molecules

of Hsp70Sf9 were incorporated into the complex to form Hsp902-

Hsp702Hop, indicating that Hsp70Sf9 is likely incorporated as a

dimer with only one Hop (Figure 4B). The formation of this com-

plex is in accord with our earlier proposal that PTMs in Hsp70Sf9
promote dimerization. This holds true even in the absence of

Hsp40, in complexes with Hsp90 and Hop.

To determine whether Hsp70 dimerization plays a role in form-

ing the client-loading complex, we investigated interactions with

GR. We saw no evidence of direct binding of GR to Hsp902Hop,

and therefore formed the Hsp70GR complex in the presence of

Hsp40, as above, prior to incubation with the Hsp902Hop com-

plex. With catalytic quantities of Hsp40 and equimolar ratios of

Hsp90, Hop, Hsp70, and GR, we observed two new complexes,

Hsp902Hsp70HopGR and Hsp902Hsp702HopGR, with the com-

plex containing two Hsp70 molecules being predominant (Fig-

ure 4C). Less intense charge-state series were observed for

complexes without the full cohort of subunits and assigned to in-

termediates populated during the assembly process. Our results

confirm that pre-binding of GR to Hsp70 is favored over dimer-

ization of Hsp70 in the presence of Hsp40, and is a prerequisite

for binding GR to Hsp90. Since binding of monomeric Hsp70 to

Hsp902Hop is also favored, however, the observation that the

predominant GR-chaperone complex incorporates two Hsp70s

implies that dimerization of Hsp70 plays a major role in client

binding to the Hsp90 complex.

To test this hypothesis, we increased the concentration of

Hsp70 such that two Hsp70s were present per Hsp902. Under

these conditions, and after forming the Hsp70GR complex in

the presence of Hsp40, we found that Hsp902Hsp702HopGR

was formed almost exclusively (Figure 4D). No other sub-stoi-

chiometric complexes were formed under these conditions.

The observation of this highly stable complex, incorporating

two copies of Hsp70 with Hop and Hsp902 together with a client,

suggests that this is an important mechanistic step in priming the



Figure 4. Hsp70 Binds Hsp90, GR, and Hop

to Form a Highly Stable Heterohexamer

(A and B) Mass spectra of solutions containing

Hsp90 and Hop interacting with either Hsp70E. coli
(A) or Hsp70Sf9 (B), respectively. In the absence of

Hsp40, a larger population of the Hsp902-

HopHsp702 complex is formed for the Sf9 protein.

(C)With catalytic amounts of Hsp40 and onemolar

equivalent of Hsp70E. coli, a hexameric complex

containing client protein is formed.

(D) When the molar equivalence of Hsp70 is

increased, in line with the Hsp90 dimer, a stable

client-loading complex is formed. XLs define an

Hsp90-Hsp70 interface and additional XLs locate

Hop, Hsp70, and Hsp90. Only one XL was

observed for GR binding to Hsp90, attributed to its

protected position within the client-binding cleft

(central panel).

See also Figure S3 and Tables S2 and S3.
later stages of the cycle with a complex predisposed to transfer

the client from Hsp70 to Hsp90.

To define the location of subunits within the client-loading

complex, we performed XL experiments using BS3-d0 and

BS3-d4. To reduce complexity, we separated the crosslinked

complexes by SDS-PAGE prior to digestion and LC-MS/MS

analysis (Figure S3B). We identified 679 XLs from all protein

bands after a database search and validated 366 of these manu-

ally, giving an FDR of 46.1%. Rejecting XLs for peptides with

fewer than four amino acids yields 102 unique XLs. Disregarding

intra-XLs, this leaves 31 inter-XLs. In the absence of high-resolu-

tion structures for human Hsp90 and Hop, we generated homol-

ogy models using Swiss-Model (Table S4). Given that there are

no PDB entries for full-length Hop, we used a yeast template
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comprising the TPR2A- and TPR2B-bind-

ing sites, which are known to bind the

EEVD motif of Hsp70 and the MEEVD

motif of Hsp90, respectively (Scheufler

et al., 2000). We then assembled models

of the interacting subunits and used these

to display the XL restraints (Figure 4, main

panel).

Five XLs locate the N-terminal andmid-

dle domains of Hsp90 in close proximity

to the NBD (K326-K190, K416-K159,

K558-K271, and K536-K190) and SBD

(K416-K526) of Hsp70. One additional

XL between the C-terminal regions of

both proteins (K689-K559) defines the

vertical alignment. Strikingly, we ob-

served an additional XL between Hsp70

and Hsp90 (K271-K558) that cannot be

reconciled with only one Hsp70, and

can only be rationalized by antiparallel

subunit interactions of a second Hsp70.

Two XLs formed between Hop and

Hsp90 (K392-K689/771) support the

positioning of Hop with upward- and
downward-facing TPR2B- and TPR2A-binding motifs, respec-

tively, as suggested previously (Schmid et al., 2012), allowing

for simultaneous binding of Hsp90 and Hsp70. Therefore, these

14 XLs confirm earlier findings of an antiparallel Hsp70

dimerization.

In our study, only one XL was found to link Hsp90 and GR,

positioning the GR in close proximity to Hsp90. This XL (K401-

K777) connects an unstructured linker of Hsp90 to theC-terminal

residue of GR. However, given the location of the client (seques-

tered within a binding-site cleft formed from two copies of both

Hsp90 and Hsp70), access to XL reagents is likely to be

restricted. According to our results, GR is located in close prox-

imity to the SBD of Hsp70 and the middle domain of Hsp90. This

active-site ‘‘cleft’’ for client binding is positioned for interaction
–769, May 5, 2015 ª2015 The Authors 765



Figure 5. Joining of the Hsp70 and Hsp90 Cycles, and Addition of
p23 to the Client-Loading Complex

Hsp40 promotes client transfer to Hsp70, which exists in a monomer-dimer

equilibrium. One Hsp40 binds to GR, while the J domain of the second Hsp40

associates with an Hsp70 monomer. This stimulates ATPase activity and in-

duces a conformational change from the docked to the undocked state. Hsp90

binds to Hsp70 via Hop. Hsp40 binding one Hsp70 can then bind the second

Hsp70 to form the antiparallel dimer, which is stabilized by PTMs. The joining of

the two cycles is mediated by Hsp40 binding only transiently to catalyze the

Hsp70 dimerization. Formation of the stable heterohexameric client-binding

complex Hsp902Hsp702HopGR with antiparallel Hsp70 subunits primes the

client for transfer to Hsp90. Subsequent interactions with p23, Aha, or im-

munophilins promote GR maturation and transport to the nucleus. The mass

spectrum shows the effect of the addition of p23 to the client-loading complex.

An Hsp902GRp232 complex is formed as Hop and Hsp70 are released, thus

completing the transfer of GR to Hsp90. See also Tables S2 and S3.
with further cochaperones and for transfer of the client from

Hsp70 to Hsp90.

To test whether this cleft is predisposed for handover of GR,

we added stoichiometric amounts of the cochaperone p23 (Fig-

ure 5). Mass spectra revealed the formation of a new complex

assigned as Hsp902p232GR. Interestingly, no Hop or Hsp70

remained in this complex. Therefore, our experiments recon-

structed the ATP-driven transfer reaction of GR from Hsp70 to

Hsp90, facilitated by the client-loading complex and effected

by addition of the cochaperone p23.

DISCUSSION

We have shown that formation of the client-loading complex in-

volves prior binding of Hsp40 and the client to Hsp70, both of

which stimulate ATP hydrolysis to place monomeric Hsp70 in

the undocked client-binding conformation. Binding of GR to

Hsp40, and Hsp70 to the GR-bound Hsp40 dimer, positions
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GR and Hsp70 in close proximity, forming an Hsp70GR complex

devoid of Hsp40. XL reveals that the Hsp40 dimer contacts an

Hsp70 in two locations: (1) via its J domain with the acidic groove

between the Hsp70 SBD and NBDs, as shown previously

(Hennessy et al., 2005), and (2) close to K207 of the second

Hsp40 molecule with the IEEVD binding motif of Hsp70. Up to

two Hsp70 subunits can bind to an Hsp40 dimer in this way

(Figure 5).

The fact that the Hsp70/Hsp40 heterotetramer is not observed

and the cellular concentration of Hsp40 is significantly lower than

that of Hsp70 implies that this complex has limited stability or is

formed only transiently, as proposed previously (Young, 2010).

Although a catalytic role of Hsp40 is widely recognized, the

Hsp70 dimerization, binding across the two symmetric faces of

Hsp40, provides newmechanistic insight. The effect of this bind-

ing is to orient the two Hsp70 subunits in such a way that an anti-

parallel dimer is formed, as evidenced by XL experiments and in

agreement with a recent report of DnaJ, the bacterial homolog of

Hsp40, and RepE forming a DnaJ2RepE2 complex (Cuéllar et al.,

2013). In addition, antiparallel dimers of DnaK were shown to be

important for interaction with Hsp40 (Sarbeng et al., 2015). How-

ever, our XL results offer the first molecular details of antiparallel

Hsp70 dimerization catalyzed by Hsp40.

Enhanced dimerization of Hsp70 expressed in Sf9 cells

instead of E. coliwas unexpected and attributed to the presence

of key PTMs in Hsp70Sf9. This is supported by several experi-

ments in which (1) dimer interactions were abolished during

dephosphorylation, (2) increasing ionic strength disrupted

the dimer interface, (3) multiple acetylation sites aligned along

the interface, and (4) a phosphomimic mutant strengthened the

dimer interface.

Antiparallel Hsp70 dimers have been reported in X-ray struc-

tures of the related yeast protein Hsp110 (Liu and Hendrickson,

2007) and for the E. coli protein DnaK (Qi et al., 2013), although

rotation around the interface axis was required to satisfy our

XL constraints in these structures. It is also noteworthy that we

used a DnaK template in which the ATPase activity was abol-

ished and modifications to prevent self-association were intro-

duced. Therefore, the differences between our model and the

X-ray structure could arise from the heterogeneity of ATP/ADP-

bound states in solution or from the use of the full-length wild-

type Hsp70.

We also considered a model involving recognition of the inter-

domain linker by the SBD of a second Hsp70 (Figure S4A).

Employing a substrate-binding-deficient mutant, we found that

dimerization was not impaired, confirming that dimerization

does not occur through the flexible linker. The sensitivity to ionic

strength (Figure S2) and the fact that dimerization occurs for both

undocked and docked states excludes associations in which the

inter-domain linker is accessible.

We propose that Hsp70 plays a key role in the Hsp70/Hsp40/

GR chaperone system. The transient interactions of Hsp40 with

Hsp70 ‘‘prime’’ it for interaction either with a second subunit

(Figure 3C) or with GR (Figure 5). A recent study showing that

dimerization of Hsp70 is important for interactions with Hsp40

supports this proposal (Sarbeng et al., 2015). The absence of

Hsp702GR complexes implies that the substrate and interface-

binding sites are mutually exclusive. During the formation of



the final client-loading complex defined here, Hsp902Hsp702-

HopGR, the Hsp40 dimer orients the Hsp70GR complex onto

the second Hsp70 within the Hsp902Hsp70Hop complex. We

propose that it is this Hsp70 dimerization event, mediated by

Hsp40, ATP, Hsp90, and Hop, that provides the driving force

to join the two cycles (Figure 5).

The observation of an Hsp902Hsp702HopGR complex was

at first surprising given early reports that only one Hsp70 is

incorporated into the Hsp90/Hop complex (Dittmar et al., 1997,

Pratt and Dittmar, 1998). Nonetheless, recent reports of

Hsp902Hsp70HopGR complexes in EM studies and our own

data confirm that such a species can also form. The client-

loading complex is remarkably stable, and this stability likely

arises from the fact that the Hsp902Hsp702 heterotetramer is

stabilized not only by Hop but also by GR bridging, as revealed

by XL. The stability of this complex is likely necessary to protect

client proteins prior to their transfer to Hsp90, as supported by

recent EM studies (Kirschke et al., 2014), XL of Hsp90GR, and

disassembly of the complex when challenged with p23.

Considering that chaperone concentrations are increased in

various diseases, with Hsp70 being twice as high as Hsp90 (Kun-

drat and Regan, 2010), and an enhanced PTM status being

linked to cancer (Dutta et al., 2013), an antiparallel dimer be-

comes relevant. However, the transient nature of this Hsp70

dimer suggests that it plays a role in larger complexes. The

high stability of Hsp902Hsp702HopGR implies that it serves as

a holding place, since it is rapidly disassembled by interactions

with p23.

The joining of the two cycles through Hsp70 dimerization sug-

gests novel therapeutic approaches. Inhibition of Hsp90 inter-

actions plays a role in cancer therapy (Barrott and Haystead,

2013), and maintaining high levels of Hsp70/Hsp40 is thought

to protect against aggregation diseases such as Huntington’s

(Schaffar et al., 2004). Disrupting crucial interactions between

these two cycles could therefore maintain high levels of

Hsp70/Hsp40 while enabling inhibition of Hsp90. In this regard,

signal propagation between the key acetyl and phospho sites

could fine-tune the interface dynamics at the intracellular level.

Preventing PTMs of the critical amino acids in the Hsp70 dimer

interface could compromise formation of the client-loading

complex. As such, inhibiting the respective kinase or acetylase

could help regulate interactions within this vital interface,

and therefore constitutes a promising avenue for therapeutic

intervention.
EXPERIMENTAL PROCEDURES

Proteins

All protein sequences were human except for Hsp40, which was from yeast.

Proteins were overexpressed in E. coli with an N-terminal His-tag, except

when stated otherwise, and purified as previously described (Southworth

and Agard, 2011). 13C-labeled Hsp70E. coli and
15N-labeled Hsp70E. coli were

expressed in E. coli using M9 media. The GRLBD construct (residues 521–

777) contained a phenylalanine F602S mutation to enhance solubility. MBP-

GRwas usedwhere noted to improve the quality of MS spectra. GR constructs

were expressed and purified in the presence of dexamethasone followed by

extensive dialysis to remove the ligand. p23 was purified as previously

described (McLaughlin et al., 2006). Yeast Hsp40 and the GRLBD construct

are referred to as Hsp40 and GR, respectively.
Assembly of Hsp90-Client Complexes

Protein complexes were assembled in binding buffer (30 mM HEPES, 50 mM

KCl, 2 mM dithiothreitol, pH 7.5). Individual proteins were analyzed in

100 mM ammonium acetate (AmAc; pH7.5). Binary complexes were formed

at 1 mM final concentration unless otherwise stated. Nucleotides were added

to a final concentration of 200 mM.

Ternary complexes were formed in binding buffer. Hsp70 and GR were

added at equimolar concentrations of 1 mM to a solution containing 0.3 mM

Hsp40 and 200 mM ATP-Mg, followed by incubation at room temperature for

45 min. Hsp90/Hsp70/Hop/GR complexes were assembled by incubating

Hsp90, Hop, Hsp70, and GR, each at 1 mM with 0.3 mM Hsp40. For MS, the

buffer was exchanged to 100 mM AmAc, pH 7.5, using micro Bio-Spin

columns (Bio-Rad Laboratories) or Amicon 10 kDa MWCO (Millipore).

MS of Intact Complexes

Spectra were acquired on a QToF II mass spectrometer (Waters) modified for

high mass transmission (Sobott et al., 2002). Then, 2.5 ml of the solution was

introduced into the mass spectrometer using a gold-coated capillary needle

prepared in house (Hernández and Robinson, 2007). Spectra were acquired

in the positive ion mode and MS conditions were kept constant while concen-

tration effects were monitored. For instrument parameters, see the Supple-

mental Experimental Procedures. Spectra were processed with MassLynx

V4.1 with minimal smoothing and analyzed using Massign (Morgner and Rob-

inson, 2012) and Unidec (Marty et al., 2015) software.

Phosphatase Treatment of Hsp70

A 1:1 mixture of 3 mM 13C-labeled Hsp70E. coli and Hsp70Sf9 with natural abun-

dance isotopes was incubated with and without phosphatase (alkaline calf

intestine phosphatase on agarose beads; Sigma-Aldrich) in 100 mM AmAc

(pH 7.5), at 4�C for 16 hr. Phosphatase beads were removed by filtration.

Ionic Strength Titration

Hsp70Sf9 (2 mM) was incubated with 0.5 mM Hsp40 and 200 mM ATP/Mg2+ in

binding buffer supplemented with 50, 100, or 300mMKCl for 1 hr at room tem-

perature. The buffer was exchanged to 100 mM AmAc for MS analysis.

Tryptic Digestion

Proteins were digested with Trypsin in gel as previously described (Shev-

chenko et al., 1996).

Phosphopeptide Enrichment

Phosphopeptides were enriched using TiO2. Eluted peptides were dried in a

vacuum centrifuge and re-dissolved for LC-MS/MS analysis (Supplemental

Experimental Procedures).

Chemical XL

Protein complexes were crosslinked with BS3 in binding buffer. The protein

and crosslinker concentrations are listed in Table S2. For experimental details,

see the Supplemental Experimental Procedures.

LC-MS/MS and Database Search

Peptides were separated by nano-flow liquid chromatography and directly

eluted into an LTQ-Orbitrap XL hybrid mass spectrometer (Thermo Scientific).

Potential XLs and phosphorylated/acetylated peptides were identified by

searching the raw data against a database (see the Supplemental Experi-

mental Procedures for details).

Generation of Models

We arranged all protein structures/homology models in a possible quaternary

structure that satisfied the distance constraints of BS3: 11.4 Å; crosslinked

lysine side chains: 6.5 Å (twice); and z10 Å for conformational dynamics,

resulting in z35–40 Å as the maximal distance for two crosslinked residues.

Homology models for Hsp90, Hsp70, and Hop were generated using the

Swiss-Model Workspace (http://swissmodel.expasy.org/) with yeast and

E. coli templates (Table S4). For other proteins, we used available PDB files

(Table S4).
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