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REVIEW

Using Circadian Rhythm Patterns of Continuous 
Core Body Temperature to Improve Fertility and 
Pregnancy Planning
Wade W. Webster* and Benjamin Smarr†

Objective: Review relationships among circadian clocks, core body temperature (CBT), and fertility in 
women.
Methods: Scoping literature review.
Results: Circadian clocks are a ubiquitous adaptation to the most predictable environmental events – the 
daily cycles of light and dark. Core body temperature (CBT) also follows a circadian rhythm. Additionally, 
CBT is tightly controlled by a combination of neuronal circuits that begin in the hypothalamus and involve 
many other portions of the brain as well as a wide range of peripheral mechanisms. In women with normal 
reproductive function, the diurnal temperature pattern for CBT is strongly influenced by the menstrual 
cycle of reproductive hormones, primarily estradiol and progesterone, which modulate the activity of 
hypothalamic neural circuits involved in body temperature control, resulting in an infradian CBT rhythm. 
Conclusions: Analysis of CBT via continuous recording reveals patterns in the interactions of circadian 
and infradian CBT rhythms capable of accurately predicting the fertility window and hormonal patterns 
suggesting oligo-ovulation and subfertility. New wearable technologies can facilitate employment of 
hormone-associated changes in CBT for pregnancy planning and offer clinical insight to infertility and 
menopause.

Keywords: circadian; menstrual rhythm; core temperature; estrogen; fertility; hypothalamus; progesterone; 
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Introduction
Continuous core body temperature (CCBT) is an informa-
tion-rich signal with circadian, infradian, and ultradian 
rhythms superimposed by dynamic events [1]. Circadian 
rhythms are self-sustained endogenous rhythms that have 
approximately 24-hour periods, while infradian rhythms 
are endogenous rhythms with longer than 24-hour peri-
ods; the menstrual cycle is the best known example. In 
contrast, ultradian rhythms are endogenous cycles with 
a period shorter than a day. Measurement and analysis 
of CCBT can provide insight into reproductive health 
through and beyond menopause. Work carried out more 
than 20 years ago provided detailed information regard-
ing circadian changes in CCBT that occur across the men-
strual cycle in women [2, 3]. It was shown that the effects 
of hormones on circadian patterns and rhythms were so 
robust that the pattern was easily quantifiable in ambula-

tory women who were not subjected to controlled light-
ing, sleep/wake patterns, or activity [2]. This analysis also 
indicated that assessment of CCBT would be useful for 
prediction of a “fertility window” for women attempting 
to become pregnant.

This paper reviews biologic pathways that establish 
and influence CCBT with a focus on effects of hormones 
related to the female reproductive cycle. It also reviews 
use of CCBT to predict fertility and technologies that have 
been developed to facilitate its monitoring.

The Biology of Circadian Rhythms
Circadian clocks are found in the vast majority of life 
forms on Earth and appear to be a ubiquitous adapta-
tion to allow anticipation of predictable environmental 
changes in sun exposure [4]. Prominent daily rhythms in 
behavior, physiology, biochemistry, and gene expression 
are all reflections of organisms’ ability to “keep and tell 
time” [4] to align with environmental rhythms of day and 
night. It has been suggested that such clocks may pro-
vide advantages with respect to many activities, includ-
ing avoidance of predation and finding mates and food 
[5, 6]. 
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Cellular Clocks
Circadian oscillators are present in individual cells and 
are generated by a set of genes forming a transcriptional 
autoregulatory feedback loop. In mammals, these “clock 
genes” include Clock, Bmal1, Per1, Per2, Cry1, and Cry2. 
Other candidate genes have also been identified and 
have been shown to play additional roles in the circa-
dian gene network [7]. Cellular clocks dictate rhythms 
of approximately 24 hours for many physiological pro-
cesses including metabolism, division, and death [8, 9]. 
Every circadian clock has the following three character-
istics: 1) they oscillate with a period that is close to, but 
not exactly, 24 hours in duration, so that the clock must 
be “reset” every day; 2) while chemical reactions run 
faster as they get hotter, the molecular machinery driv-
ing circadian oscillations is buffered against this change 
so that the clocks run at roughly the same rate across 
a wide range of environmental temperatures (note this 
does not preclude using daily temperature changes as a 
timing cue); and 3) the rhythm will entrain to a rhythmic 
signal capable of entraining circadian clocks referred to 
as a zeitgeber [10]. 

Neural Circuitry of the Mammalian Biological Clock
Early work on mammalian rhythms indicated that the 
hypothalamic suprachiasmatic nucleus (SCN) was the 
dominant circadian pacemaker [11]. This nucleus is com-
posed of approximately 20,000 neurons, each of which is 
thought to contain a cell autonomous circadian oscillator 
[7, 12]. When dispersed in culture, individual SCN neurons 
can maintain cell-autonomous circadian cycles of sponta-
neous firing. However, these autonomous rhythms vary 
substantially from cell to cell. When SCN circuit connec-
tivity is preserved in slice preparations, neuronal firing is 
tightly synchronized [12]. 

The circadian oscillators in the SCN differ from those 
in other organs in two important ways. First, they receive 
light input from the eye via retinal ganglion cells that 
send axons into the retinal–hypothalamic tract. This 
input is the primary zeitgeber for the circadian pattern 
of neuronal activity in the SCN [13, 14]. The second char-
acteristic of SCN neurons which differentiates them from 
other cellular oscillators is that their firing pattern, when 
normal interconnections are intact, is temperature insen-
sitive [15] (though this appears dependent on network-
level buffering – see [16]). Other peripheral oscillators are 
sensitive to the phase-shifting effects of temperature and 
can be entrained strongly by low amplitude temperature 
cycles [15, 17]. 

Influence of the SCN on Peripheral Circadian Rhythms
The light-entrained SCN sends signals to light-insensitive 
peripheral clocks and synchronizes rhythms across organ 
systems. Results from multiple studies have shown that 
both humoral and non-humoral pathways are impor-
tant for SCN synchronization [18, 19]. Though less well 
studied, there are also feedback loops linking peripheral 
organs back to the SCN [1, 20–26]). Overall, organization 
of the circadian system requires autonomic innervation of 

peripheral tissues, endocrine signaling, temperature sens-
ing, and local signals [7].

Circadian Rhythms and Core Body Temperature (CBT)
The circadian rhythm of CBT is a well-documented physi-
ological phenomenon [27]. One of the hallmarks of the 
body’s circadian processes, including cycles in CBT, is that 
they are not generally disturbed by large temperature 
changes [9]. This is due to homeostatic control over CBT 
exerted by a hierarchically organized set of neuronal mech-
anisms located in the hypothalamus [27]. The anterior 
hypothalamic and preoptic areas are the primary sources 
of neural modulation of CBT. These portions of the hypo-
thalamus receive input from both central and peripheral 
thermoreceptors and from the SCN [27, 28]. Two compo-
nents are essential for their operation: 1) peripheral oscil-
lators in organs other than the brain sensitive to subtle 
variations in temperature within the physiologic range; 
and 2) the SCN itself must be resistant to subtle tempera-
ture changes or it would be susceptible to feedback that 
could interfere with entrainment [15]. The insensitivity of 
the SCN to variations in temperature was demonstrated in 
studies carried out by Brown et al who also showed that 
changes in ambient temperature can shift the phase of 
rhythms in other parts of the brain [17]. The actions of this 
system result in human diurnal temperature rhythms that 
typically have a variation of only 1°C (36–37°C) despite 
large ambient temperature variations [29]. This tight 
homeostatic regulation is achieved via SCN-driven feed-
back mechanisms controlling heat production (e.g., via 
brown adipose tissue and shivering thermogenesis) and 
loss (e.g., via vasoconstriction and dilation, sweating, and 
resulting evaporation and cooling) [28]. 

The above-described mechanisms result in a circadian 
pattern in which CBT falls late in the activity phase and 
starts to rise before the onset of the daily activity phase 
that is highly dependent on both internal zeitgebers, 
external zeitgebers, and genome-dependent chronotype. 
Along with the timing of food intake, social interaction, 
and locomotor activity, internal temperature is one of the 
most important internal zeitgebers (second-order signals) 
capable of synchronizing different body clocks [30]. CBT 
pattern is a reliable signal when compared to melatonin 
and cortisol production [31]. When measured continu-
ously, the core temperature pattern is an accurate bio-
marker for circadian phase [32].

Individual Variation in CBT
Endogenous circadian rhythmicity in humans tends to 
cycle across a period of 24.2 hours with little day-to-day 
variation [33]. The timing of the circadian system, how-
ever, varies considerably across individuals. Chronotype, 
or diurnal preference, refers to behavioral manifestations 
of the endogenous circadian system that govern preferred 
timing of sleep and waking [34, 35]. Variations in normal 
patterns of circadian rhythms are linked to disease devel-
opment and chronotypes have received attention across a 
wide range of illnesses [35]. Chronotypes have a genetic 
basis and genome-wide association studies have identified 
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multiple genes consistently associated with individual cir-
cadian rhythms [35, 36]. 

Environmental Influence on CBT
Environmental factors also influence individual circadian 
rhythms. Frequent flying, working in repeatedly chang-
ing shifts, and exposure to irregular light-dark conditions 
are examples of factors that can alter circadian rhythms 
including that for CBT [37, 38].

Biologic Clocks and Reproduction
Reproductive function is a prime example of physiologic 
coordination and is under strict circadian control [39, 40]. 
In women with normal reproductive function, the diur-
nal temperature pattern for CBT is strongly influenced by 
the menstrual cycle of reproductive hormones, primarily 
estradiol and progesterone. The superimposed effect of 
reproductive hormone on circadian rhythm that reflects 
the infradian CBT pattern of the female reproductive cycle 
illustrated in Figure 1. In the preovulatory portion of the 
follicular phase there is a downward shift of the tempera-
ture mesor associated with an increase in estradiol. This 
is followed by the upward shift of the temperature mesor 
as well as a phase shift in temperature related to the rise 
in progesterone in the luteal phase that may be ratio 
dependent with respect to its effect on thermoregulation 
[2, 3, 41, 42]. 

There is clear evidence of synchronization between 
the infradian menstrual cycle and the circadian rhythm 
in reproduction in women. For example, the luteinizing 
hormone (LH) surge generally occurs immediately prior to 
the start of the day, while the onset of parturition gener-
ally occurs around 2 am to 6 am as a result of the circadian 

secretion of the pineal hormone – melatonin [41–44]. 
Regular, normal length (21–35 days) menstrual cycles are 
considered a vital sign representing women’s wellness 
[45, 46]. Irregularities in cycle length, such as inadequate 
luteal phase, are thought to be related to infertility and, 
potentially, early term miscarriage [47]. Thyroid disease 
and hyperprolactinemia are causes of infertility that are 
associated with an inadequate luteal phase [45]. Irregular 
menstrual cycles, a hallmark of polycystic ovary syndrome, 
have been associated with higher androgen and lower sex 
hormone binding globulin levels. This abnormal hormo-
nal environment may also increase the risk of specific his-
tologic subtypes of ovarian cancer [48].

Disruption of circadian rhythms due to night shift work 
or jet lag has been associated with an increased frequency 
of irregular, extended menstrual cycles, alterations in 
serum LH and follicle-stimulating hormone (FSH) levels, 
and overall reduced fecundity [49–51]. Polymorphisms in 
genes that control circadian rhythm have also been asso-
ciated with the rate of pregnancy loss and risk for miscar-
riage [52]. 

Continuous Assessment of CBT (CCBT) and 
Utility of Menstrual Rhythm Temperature 
Patterns
The sinusoidal oscillations in CCBT can be mathemati-
cally described on the basis of amplitude, mesor, and 
period. Using CBT, Cagnacci et al, characterized the fol-
licular phase by a 0.3 °C lower mesor, a 40% increase in 
the amplitude and a 90-minute advance in the daily nadir 
compared to the luteal phase [53]. Signal processing anal-
ysis of CCBT data has been demonstrated to be effective 
for detecting and predicting physiologic events of fertility, 

Figure 1: Continuous core body temperature (CCBT) collected during the menstrual cycle reveal an infradian rhythm 
and pattern. The fine purple line represents a cosinor fit of continuous core body temperature influenced by the 
combined effect of estrogen and progesterone. Arrows indicate the predominate influence of estrogen in the peri-
ovulatory period of the follicular phase and the predominate influence of progesterone in the luteal phase. Analysis 
of the change in phase, amplitude and mesor of CCBT predict and identify the window of fertility and day of ovulation 
and mensus.
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including ovulation, pregnancy, parturition, and sponta-
neous abortions [54–57]. 

As noted in the Introduction, the predictive value of 
the information contained in the infradian pattern of 
body temperature in women was clearly demonstrated by 
results from studies reported by Coyne et al 20 years ago 
[2]. These investigators carried out a detailed investigation 
of circadian changes in body temperature occurring across 
the menstrual cycle in women. Sensors were ingested to 
accurately monitor CBT once per minute. After calcula-
tion of the mesors for circadian temperatures during dif-
ferent parts of the menstrual cycle, it was observed that 
the circadian mesor for core body temperature is highest 
in the luteal phase and lowest in the preovulatory phase. 
The amplitude of circadian temperature was significantly 
reduced in the luteal phase compared to all times in the 
menstrual cycle. The effects of hormones on the circadian 
pattern and rhythm for body temperatures were readily 
apparent and easily quantifiable in ambulatory women 
who were not subjected to controlled lighting, sleep/wake 
patterns, or activity. Coyne et al noted that their obser-
vations supported documenting the preovulatory rise in 
estrogens via a decline in CBT, which would in turn pro-
vide an opportunity to investigate phenomena that might 
be occurring during this critical time in the cycle [2]. 

Detection of Pregnancy
Pregnancy was shown to cause a change in the pattern 
of body temperature rhythms in 1948 [58], and has since 
then been remarkably unvisited. Smarr used CCBT fre-
quency analysis for pregnancy detection in mice within 
14 hours of pairing, providing the earliest, non-disruptive 
detection of successful impregnation [59]. This approach 
was also able to detect apparent pregnancies that did not 
come to term, which would otherwise not be identified by 
standard handling or observation, providing a potential 
source of dams for the study of implantation failure, pseu-
dopregnancy, and miscarriage. Such pregnancies could 
be separated from those that came to term by frequency 
analysis of CCBT in the first 12 hours after the day pairing 
with high accuracy. These findings support the conclusion 
that the continuous high temporal resolution of CCBT can 
provide a uniquely rapid, accurate, and non-disruptive 
means of detecting pregnancies and pregnancy outcomes 
in experimental animals [59]. 

Prediction of Fertility
The biphasic basal body temperature (BBT) rhythm dur-
ing the menstrual cycle reaches its lowest point in a given 
cycle around the woman’s fertile window, just prior to 
ovulation, which is correlated with a pre-ovulatory peak 
in estrogens level illustrated in Figure 1 [60]. Changes in 
the level of estrogens, as well as progesterone, influence 
body temperature via a direct action on thermosensitive 
neurons of the preoptic anterior hypothalamus [61, 62]. 
Estrogens lead to inhibition of mechanisms that act to 
retain heat and stimulation of those that promote heat 
loss. Thus, elevations in estrogens result in a reduction 
in body temperature [63, 64]. Progesterone has oppos-
ing effect and the rise in this hormone post-ovulation 

increases body temperature [64, 65]. The thermogenic 
effect of progesterone to raise core temperature has been 
utilized to document ovulation and luteal phase length 
[66, 67].

Silent anovulation is a significant underreported prob-
lem. It is defined as sporadic anovulation in women with 
regular menses and has a prevalence up to 37% in com-
munity-based cohorts [67]. This is especially relevant for 
clinical care as the current methods used for monitoring 
menstrual cycles are widely believed to be inconvenient 
and cumbersome. The prevalence of silent anovulation 
in more than one-third of clinically normal menstrual 
cycles represents a major knowledge gap for improving 
understanding of women’s reproductive physiology [67]. 
Monophasic patterns that lack the thermogenic effect 
of progesterone suggest anovulation as opposed to the 
biphasic pattern that confirms ovulation [66]. It is increas-
ingly evident that silent anovulation within clinically 
normal menstrual cycles is relevant for women’s health 
as well as for fertility. Prior et al have shown that sub-
clinical ovulatory disturbances are associated with annual 
increased spinal bone loss. [68]. Ovulatory disturbances 
are also related to women’s risks for later-life heart dis-
ease and likely also to breast and endometrial cancer risks 
[69–71]. 

New Approaches to CCBT May Facilitate 
Fertility Prediction
The ability to detect fertility has become increasingly 
important due to changing approaches to family plan-
ning. As women delay childbearing, couples may have an 
increased sense of urgency when starting a family. In addi-
tion, increased exposure to disruptive environmental ele-
ments, such as high calorie diets, increasing obesity and 
lack of exercise, prolonged periods of artificial lighting, 
shift work, trans-meridian travel, jet lag, and disordered 
sleep, all have the potential to impair fertility [13]. 

Basal body temperature (defined as once-a-day tempera-
ture measurement at same time of day) charting has been 
used extensively as a simple aid for predicting ovulation 
[72]. Standard practice is to measure BBT upon waking, 
but as this is a single time point and not the nadir of CBT, 
BBT data do not precisely capture changes in circadian 
temperature rhythms seen across the menstrual cycle. 
However, many currently available products and tracking 
tools require a considerable amount of user interaction to 
record frequent temperature readings, urine test results, 
and other observations. This can lead to frequent errors, 
user stress. and frustration [72, 73]. 

New wearable technologies are capable of recording 
core body temperature and wirelessly pair to smartphones 
allowing sophisticated analysis of continuous recording 
of body temperature [73, 74]. Other approaches have 
included shell or peripheral temperature measurement 
[72]. While there are no head-to-head comparisons of 
devices employing these different approaches, it has been 
suggested that assessment of skin temperature may not 
be an accurate predictor of ovulation [75]. For example, 
results obtained with a wrist temperature sensor indi-
cated sustained 3-day temperature shift in only 82% of 
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cycles and the lowest cycle temperature occurred in the 
fertile window 41% of the time. In addition, most tem-
poral shifts (87%) occurred on ovulation day or later [76].

Over the last several decades, BBT has been used to iden-
tify the biphasic temperature change that verifies ovula-
tion and that information has been applied to the next 
cycle assuming that each cycle is as regular as the first. 
Obviously, this does not account for individual variability 
in a woman’s menstrual cycle each month. Identifying 
the more subtle periovulatory infradian temperature 
nadir is fraught with the inaccuracy of a single once-a-day 
peripheral temperature measurement. More importantly, 
research does not support the use of the BBT nadir for 
predicting ovulation [77]. Additionally, BBT is not able to 
make use of the information found in higher-frequency 
measurements of body temperature now being discovered.

CCBT can provide accurate and precise prediction of 
ovulation in addition to identifying the highest probabil-
ity within the window of fertility [74]. Additionally, true 
CCBT is collected night and day to catch changes that 
may occur at any time in a 24-hour period [78], includ-
ing true mesor, and higher frequency components, as in 
ultradian rhythms. Temperatures obtained from an intra-
vaginal device identical in form to intravaginal rings cur-
rently sold on the market provides a safe, continuous and 
accurate CBT as well as real-time access to sophisticated 
algorithms that can process an alert or notification to a 
smartphone. The convenience of no longer tracking a 
potentially unreliable peripheral temperature at the same 
time of early morning hours is evident. 

Conclusions
Access to continuous CBT provides information not usu-
ally available to clinicians, but it is capable of predicting 
changes across menstrual cycles and classifying etiolo-
gies of infertility. CBT follows a distinct circadian rhythm 
and is also influenced by reproductive hormones which 
interact with hypothalamic neural circuits. Signal process-
ing analyses applied to a precise, accurate and continu-
ous CBT combined with new wearable technologies can 
accurately classify CBT changes for use in fertility aware-
ness, infertility, silent anovulation, and a number of other 
health-related applications. The more immediate benefit 
of CBT is to help better define the window of fertility for 
the purposes of avoiding or promoting conception.
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