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Abstract
Hepatic cytochrome P450 levels are down-regulated during inflammatory disease states,

which can cause changes in downstream drug metabolism and hepatotoxicity. Long-term,

we seek sufficient new insight into P450-regulating mechanisms to correctly anticipate how

an individual’s P450 expressions will respond when health and/or therapeutic interventions

change. To date, improving explanatory mechanistic insight relies on knowledge gleaned

from in vitro, in vivo, and clinical experiments augmented by case reports. We are working

to improve that reality by developing means to undertake scientifically useful virtual experi-

ments. So doing requires translating an accepted theory of immune system influence on

P450 regulation into a computational model, and then challenging the model via in silico

experiments. We build upon two existing agent-based models—an in silico hepatocyte cul-

ture and an in silico liver—capable of exploring and challenging concrete mechanistic

hypotheses. We instantiate an in silico version of this hypothesis: in response to lipopoly-

saccharide, Kupffer cells down-regulate hepatic P450 levels via inflammatory cytokines,

thus leading to a reduction in metabolic capacity. We achieve multiple in vitro and in vivo

validation targets gathered from five wet-lab experiments, including a lipopolysaccharide-

cytokine dose-response curve, time-course P450 down-regulation, and changes in several

different measures of drug clearance spanning three drugs: acetaminophen, antipyrine,

and chlorzoxazone. Along the way to achieving validation targets, various aspects of each

model are falsified and subsequently refined. This iterative process of falsification-refine-

ment-validation leads to biomimetic yet parsimonious mechanisms, which can provide

explanatory insight into how, where, and when various features are generated. We argue

that as models such as these are incrementally improved through multiple rounds of mecha-

nistic falsification and validation, we will generate virtual systems that embody deeper credi-

ble, actionable, explanatory insight into immune system-drug metabolism interactions

within individuals.
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Introduction
Hepatic cytochrome P450 (P450) is the major family of drug-metabolizing enzymes in the
liver. Changes in P450 levels are common among many disease states, giving rise to the concern
that a patient may experience an imbalance in drug exposure when the disease alters P450 lev-
els and downstream drug metabolism. Though a small subset of P450s are induced by inflam-
mation, most inflammatory states down-regulate hepatic P450, reducing drug clearance and
elevating plasma drug levels, thus increasing the risk of adverse effects—especially for low ther-
apeutic index drugs [1,2]. P450 down-regulation can also protect against toxicity caused by
reactive metabolites [2,3]. For example, pretreatment with an inflammatory stimulus protects
against acetaminophen-induced hepatotoxicity [4].

Inflammatory-induced P450 down-regulation is mediated by proinflammatory cytokines,
including interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α), that specifically reg-
ulate different yet overlapping subsets of P450s in both humans and rats [5,6]. Many of these
cytokines are derived from Kupffer cells. While some cytokines down-regulate P450 in primary
hepatocytes cultures, others are dependent upon the presence of Kupffer cells [7]. Kupffer cells
can be activated by bacterial endotoxin (lipopolysachharide, LPS). An LPS stimulus causes
Kupffer cells to release proinflammatory cytokines, triggering P450 down-regulation. For more
information, we refer the reader to four reviews on immune-mediated P450 down-regulation
[1–3,8].

Long-term, we seek sufficient new insight into P450-regulating mechanisms to correctly
anticipate how an individual’s P450 expressions will respond when health and/or therapeutic
interventions change. To date, improving explanatory mechanistic insight relies on knowledge
gleaned from in vitro, in vivo, and clinical experiments augmented by case reports. We are
working to improve that reality by developing means to undertake scientifically useful virtual
experiments [9,10]. To be scientifically useful, the computational models employed must dem-
onstrate credibility, in part by meeting demanding representational requirements. For example,
not only must the simulated phenomena be quantitatively similar to available wet-lab data, but
the software mechanisms—the actual events occurring during execution—should also be
demonstrably biomimetic. Making key aspects of both model and experiment increasingly
analogous to past or future real-world counterparts further enhances credibility. Advances in
agent-based modeling and simulation (M&S) methods have now made it feasible to begin
achieving such requirements [11]. We report further progress.

A prerequisite for achieving our objective is to translate a currently accepted theory of
immune system influence on P450 regulation (such as that cited above) into a computational
model, and then challenge the model via in silico experiments to generate phenomena that are
measurably similar to preselected data reported in the literature. An agent-based model’s
mechanisms will be a concretized hypothesis: these components interacting in these spaces, fol-
lowing these rules, under these constraints will, upon execution, produce material system
changes, which when measured will be within (for example) ± 10% of the corresponding wet-
lab values. When the initial hypothesis fails—and it almost always does—we posit explanations,
revise both hypothesis and model, and repeat the challenge. In this report, we begin with two
existing agent-based models—an in silico hepatocyte culture (ISHC) [12] and an in silico liver
(ISL) [13,14]—that have already achieved many validation targets related to drug metabolism
and hepatotoxicity. We then repurpose both models to support the additional use case of
exploring mechanisms related to immune system involvement in the liver. Specifically, we
instantiate and challenge the following mechanistic hypothesis in the ISHC and ISL: in
response to LPS, Kupffer cells down-regulate hepatic P450 levels via inflammatory cytokines,
thus leading to a reduction in metabolic capacity.
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Knowledge about interactions among hepatic P450-regulating mechanisms and immune
system components comes from both in vitro and in vivo experiments. An essential, demand-
ing requirement herein is thus that the same mechanism components must be utilized in mod-
els simulating in vitro and in vivo environments. We report quantitative validation evidence
supporting an in vitro (ISHC) and in vivo model (ISL). By employing modularization and inte-
gration techniques [12], we enable reuse of components and mechanisms between ISHC and
ISL. We conceptually deconstruct the above hypothesis into three “stages” and achieve degrees
of validation for each stage: 1) Kupffer cells produce cytokines upon LPS stimulus, 2) cytokines
down-regulate hepatic P450 levels, and 3) P450 down-regulation reduces drug clearance. We
achieve multiple in vitro and in vivo validation targets gathered from five wet-lab experiments,
including a LPS-cytokine dose-response curve, time-course P450 down-regulation, and
changes in several different measures of drug clearance spanning three drugs: acetaminophen
(APAP), antipyrine (ANT), and chlorzoxazone (CZN). During the validation process, we fal-
sify several mechanistic details and other ISHC and ISL components, to which we respond by
iteratively refining model aspects until validation targets are achieved. This iterative process of
falsification-refinement-validation ensures that model components are increasingly biomi-
metic yet parsimonious. Such models are perpetual works in progress. We argue that as these
models are incrementally improved through multiple future rounds of mechanistic challenge
and validation against an expanding set of measured attributes, we will generate virtual systems
that embody deeper credible, actionable, explanatory insight into immune system-drug metab-
olism interactions within individuals.

Methods
To avoid ambiguity between in silico components and their referent biological counterpart, we
use small caps when referring to the former, e.g. HEPATOCYTE. Parameter names are italicized.
Analogs were written in Java, utilizing the MASONmulti-agent simulation toolkit [15]. In sil-
ico experiments were run using 2 or 16 node virtual machines on Google Compute Engine,
running 64-bit Debian 7. For longer simulations, Monte Carlo trials were run in parallel.

Synthetic and agent-based modeling
Exploring the causal mechanisms underlying P450 down-regulation can be facilitated using
synthetic M&S methods. Synthetic M&S is a developing method that fundamentally differs
from conventional equation-based models (i.e. physiologically based pharmacokinetic/phar-
macodynamic models) in several ways. In synthetic M&S, autonomous software objects repre-
senting components such as drugs, enzymes, cells, and tissues are plugged together to form a
coherent whole. The resulting multi-scale model is called a biomimetic analog. Analog compo-
nents have several mechanisms—composed of rules, equations, and/or other operating princi-
ples—that specify how to interact with other components. At the software level, analog
components are dynamic data structures, containing state information that changes as the sim-
ulation evolves; analog mechanisms are sets of governing logic that manipulate component
state information.

An analog is an experimental apparatus that can be used to challenge mechanistic hypothe-
ses about referent phenomena. When an analog is executed, its components and mechanisms
are instantiated—represented by a concrete instance—in silico [16]. The analog produces phe-
nomena, some of which are intended to mimic those of its referent system. If analog phenom-
ena are acceptably similar to wet-lab and/or clinical validation data, we support the following
hypothesis: events that transpired in silico may have biological counterparts. Thus, a validated
analog stands as a challengeable theory about mechanistic events that may have occurred in
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the referent system. Alternative analog mechanisms can be tested in parallel. As we continue to
refine and expand surviving analog components and mechanisms to mimic an ever-increasing
set of validation data, we grow increasingly confident that the analog behaves analogously to
the referent under specified conditions.

The main objective for synthetic M&S is to build better working hypotheses about the
mechanisms of interest. Thus, an important requirement is that analogs are suitable for virtual
experimentation and, therefore, hypothesis testing. An experiment on an analog is an in silico
experiment, precisely analogous to a wet-lab or clinical experiment. As such, analogs include
components and mechanisms that map to concrete, relevant aspects of a wet-lab or clinical
experiment, including biological components (e.g. hepatocytes), wet-lab and/or clinical envi-
ronments (e.g. in vitro, in vivo), experimental procedures (e.g. intravenous drug injection), and
measurements (e.g. plasma concentration profile). Thus, a virtual experiment using an analog
such as the ISL is not simply a model of (say) “drug metabolism” or some other particular bio-
logical process. Rather, an instantiated ISL is a concrete software analog of (say) a whole rat
intravenously injected with 20 mg/kg acetaminophen and measured at 15 min intervals via
external jugular cannulation. An advantage of such virtual experimentation is that variations of
a single analog can be used to mimic a wide range of experimental protocols, treatments, dis-
ease states, and measurements [10]. When new use cases require including new aspects of the
referent experiment (e.g. an alternative hypothesized mechanism, a new in silico measurement,
a different experimental protocol, or an altered disease state), it is straightforward to add that
level of detail.

There are several differences between synthetic M&S and traditional inductive methods,
which arise largely from differences in model use case and goals. Whereas synthetic M&S focus
on challenging concrete mechanisms, inductive approaches (e.g. equation-based, continuous
mathematics models) typically employ equations that describe patterns in data and are used to
make precise predictions about future patterns in data. For these uses, conventional methods
are unsurpassed. Conventional models can also be used to challenge mechanistic hypotheses
(for example, by changing parameters that map to different routes of administration); however,
it is more difficult to challenge a series of alternative mechanisms, possibly at different levels of
granularity. While it is straightforward for synthetic analogs to change mechanistic detail or
challenge multiple mechanisms in parallel, conventional equation-based models often require
significant model re-engineering—or a completely new model—when adding new variables,
changing granularity, or switching use cases. Validation targets herein span multiple wet-lab
platforms (in vitro and in vivo) and measurements types (e.g. three different measures of drug
clearance); thus, synthetic approaches are more appropriate for purposes herein. Other key fea-
tures of the similarities and differences between synthetic M&S and conventional inductive
models have been detailed elsewhere [11,16,17].

Note that it would be straightforward to employ traditional modeling approaches (e.g. phar-
macokinetic/pharmacodynamic modeling) to describe the biological processes involved in the
immune-mediated P450 down-regulation pathway. Given sufficient P450 isozyme-specific val-
idation data, such models may be useful, for example, in precisely predicting levels of P450
down-regulation following inflammatory stimulus. However, the ability to explore, challenge,
and refine mechanistic hypotheses related to P450 down-regulation is better suited for syn-
thetic analogs. Further, other pharmacologically relevant phenomena are difficult or problem-
atic to describe using traditional multi-compartment models—e.g. liver zonation (i.e. lobule
location-dependent effects) or leukocyte recruitment and localization—but are straightforward
to reproduce using spatially explicit synthetic analogs. Since long-term objectives include
exploring mechanisms of such attributes, synthetic analogs are the more appropriate choice.
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Agent-based modeling is one model type that can be used to achieve the above synthetic
M&S goals. An agent-based model contains agents, which are software objects capable of
scheduling their own events [11]. Each agent senses, interacts with, and is a part of a virtual
environment. They each follow a set of governing rules or operating principles, the logic of
which is specified by the modeler. In biological M&S, agents typically map to (represent) bio-
logical components (e.g. cells), and their operating principles map to cellular interactions and
processes. We refer the reader to [11] for an in-depth review of the role of synthetic M&S utiliz-
ing agent-based modeling in pharmaceutical research.

Iterative refinement protocol
A core principle of biomimetic M&S is to develop software models that provide increasingly
credible mechanistic explanations of their referent complex biological processes. Such increases
require the strategic use of parsimony. Abstract models will be falsified when challenged
against specific validation data. When a model fails, the appropriate response is to refine it:
either by increasing complexity (e.g. by adding parameters or switching to finer-grained com-
ponents) or testing alternative mechanisms and/or structures before repeating the challenge. In
support of this core principle, our model development process is governed by an iterative
refinement protocol (IRP), a scientific method for falsifying, refining, and validating multi-
scale biomimetic analogs. Described in Fig 1A, the IRP focuses on model falsification and sub-
sequent refinement, following a strict parsimony guideline. The goal of stepping through an
IRP cycle is to formulate a mechanistic hypothesis by meeting a set of validation targets. When
prespecified similarity criteria are attained for a targeted attribute, we have achieved a validation
target. Similarity criteria can range from qualitative (e.g. event X occurs before event Y) to
quantitative (e.g. in silico points fall within ± 1 standard deviation of the corresponding wet-
lab value). An analog mechanism is falsified when it cannot achieve a given validation target,
either because the target phenomenon cannot be generated or we fail to find parameter set val-
ues that satisfy all similarity criteria.

When a mechanism is falsified, we specify a revision—a new hypothesis—which usually
involves adding and/or revising analog components and/or mechanisms, perhaps at a finer
level of granularity. To be scientifically meaningful, refinements should be parsimonious: we
seek the simplest analog that still (“just barely”) achieves validation targets. If an analog mecha-
nism is too simple for a given set of validation targets, it will be falsified, and iterative refine-
ment will lead to a new mechanism. However, for an analog that is too complex (over-
mechanized, analogous to an equation-based model being overparameterized), we waste
computational resources, and it becomes difficult to identify where and why a future mecha-
nism is falsified, rendering reengineering problematic.

ISL and ISHC use cases
Both the ISL and ISHC are biomimetic analogs used to challenge mechanistic hypotheses
related to drug metabolism and hepatotoxicity. As primarily exploratory devices, their focus
shifts away from precise prediction of pharmacological values—for which traditional continu-
ous mathematics and/or statistical methods are unsurpassed—and instead toward developing
flexible methods to simulate mechanistic scenarios. It is easy to add mechanistic details that
improve apparent realism of an ABM (e.g. [18]). However, to retain scientific usefulness, we
strive to keep analog mechanisms parsimonious.

The ISL simulates drug clearance and hepatotoxicity experiments in an in vivo setting. It is
a highly flexible platform that can mimic many experimental use cases. One use case configura-
tion maps to a portion of an in situ isolated, perfused rat liver, in which simulations mimic the
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multiple indicator dilution method to measure hepatic outflow profile [19]. This iteration of
the ISL includes a whole-rat configuration that can simulate either oral or intravenous drug
administration. Measurements on the ISL range from measures of metabolism (e.g. hepatic
outflow profile, extraction ratio, and intrinsic clearance) to necrosis (e.g. the time and location
of cell death events). The current use case expands the ISL to include analogs of immune sys-
tem components and mechanisms; experiments are conducted to test the entire P450 down-
regulation pathway from LPS stimulus to decreased clearance. In particular, ISL simulations

Fig 1. Analogmethods and structure. A. An iterative protocol for refining biomimetic analogs.B. Key features of ISHC structure. The ISHC contains
two grids: CELL SPACE and MEDIA SPACE (only portions of each grid are shown). SOLUTES can move laterally within a grid, or between CELL SPACE and MEDIA

SPACE, subject to the parameters pExitMedia and pExitCell. Select HEPATOCYTE and KUPFFER CELL components are shown.C. Key features of ISL structure.
There are two major components: BODY and LOBULE. SOLUTES are injected into BODY, where they distribute to the PORTAL VEIN (PV) of the LOBULE. SOLUTES

percolate through a network of SINUSOID SEGMENTS (SS) toward the CENTRAL VEIN (CV), from which they return to BODY. SOLUTES can also move radially within
a SINUSOID SEGMENT through various SPACES. Select HEPATOCYTE and KUPFFER CELL components are shown.

doi:10.1371/journal.pone.0155855.g001
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here mimic several wet-lab validation experiments in which rats are pretreated with LPS before
administering drug (see Results for experiment details) [20–22]. Measurements include
changes in drug clearance and P450 amounts.

The ISHC simulates drug clearance and hepatotoxicity experiments in an in vitro setting. A
simulation maps to a portion of a monolayer culture of isolated rat hepatocytes and/or Kupffer
cells. While much simpler than the ISL, the ISHC is useful for mimicking small parts of the
immune-mediated P450 down-regulation pathway. In particular, the current ISHC use cases
mimic wet-lab experiments in which cultured hepatocytes produce cytokine in response to LPS
[23] and cultured Kupffer cells down-regulate P450 in response to cytokine (see Results for
experiment details) [24]. Measurements include a LPS-cytokine dose-response curve and time-
course enzyme levels.

Selection of drugs and similarity criteria
We selected validation data for three drugs (APAP, ANT, and CZN) having different physio-
chemical properties and spanning a ~4-fold range in half-life in rats. Additional drugs can be
added to the validation dataset to further improve model confidence; we selected three to dem-
onstrate P450 down-regulation mechanisms. Indeed, earlier versions of the ISHC and ISL have
been used for different use cases spanning additional drugs: see [12,25]. When introducing
new analog drug objects into the simulation, we would first refer to literature reports of fraction
metabolized. For the three chosen drugs, fraction metabolized in rats is nearly 100% [26–28].
We would next consider what fraction of metabolic clearance is due to P450 isoforms—where
our attention is focused. For ANT and CZN, that is nearly 100% [27,28]; it is only a minor
pathway (though important to toxicity) for APAP, dominated by cytochromes P450 2E1 and
1A2 [26,29]. Given fraction metabolized via specific enzymes, we refine the ISL and ISHC to
include enzyme- and cytokine-specific functions (see “Mechanism granularity and flexibility”).

The choice of similarity criteria is governed by model use case. For example, a model
intended to be used for precise prediction requires more stringent similarity criteria than a
model used to explore explanatory mechanisms. When possible, similarity criteria were chosen
to reflect variability in wet-lab measurements. Thus, a good starting point for moderately strin-
gent similarity criteria is that in silico values fall within ± 1 standard deviation of the corre-
sponding wet-lab values. When standard deviation is not given or cannot be determined from
the validation data, an alternative is to specify an arbitrary percentage range. In these cases, we
stipulated a range of ± 25%, which we found to be reflective of most related, reported standard
deviation values. As an exception, we chose a range of ± 10% for ANT half-life to better reflect
the smaller standard deviations of half-lives measures for other drugs. For validation targets
that include many values (e.g. time-course data), we stipulate that at least 50% of in silico values
must fall within the prespecified range. So doing prevents present but statistically insignificant
abnormalities in a plot’s microstructure from prohibiting model development in early stages of
validation and reduces the risk of overfitting to one particular dataset. For an example of such
irregularities in microstructure, validation data from [20] at 80 min shows a statistically insig-
nificant nonlinear dip in the semi-logarithmic drug disappearance curve for APAP, which is
not found in similar studies (e.g. [30,31]).

ISL and ISHC components
Upon execution, time advances through simulation cycles. Agents are scheduled to execute
once each simulation cycle, with the exception of some events that are separately scheduled.
Components common to both the ISL and ISHC include SOLUTES, ENZYMES, and CELLS. SOLUTES
are mobile objects that map to a group of small molecules. They percolate through SPACES,
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influenced by various flow parameters (see Table 1). SOLUTES can have any number of proper-
ties that are specified offline as part of the parameter list (see Table 2). For example, only “bind-
able SOLUTES” (SOLUTES for which the Boolean parameter bindable is true) may bind to ENZYMES.
Each SOLUTE is assigned a type that controls how other objects may interact with it. Herein, SOL-
UTE types include LPS, CYTOKINE, DRUG (APAP, ANT, or CZN), and METABOLITE (APAP-METABOLITE, ANT-
METABOLITE, or CZN-METABOLITE); only the three DRUG types are bindable. For current use cases,
only a single CYTOKINE type was necessary; thus, CYTOKINE maps to the set of all cytokines that
may cause hepatic P450 down-regulation. However, when required in future use cases, CYTO-
KINE may be replaced with objects that map to specific cytokines (e.g. INTERLEUKIN-1), each with
unique parameter values. There are no restrictions on the type or amount of information that
can be “attached” to each SOLUTE; additional properties are added based on use case and as addi-
tional validation targets are achieved.

ENZYMES are objects within CELLS that can bind and metabolize SOLUTES. Note an ENZYME is an
object named for convenience. It does not represent actual metabolic enzymes. Rather, an
ENZYME maps to a portion of material within a cell that can influence metabolism of the SOLUTE’S

counterparts within a simulation cycle. So doing is a necessary consequence of adherence to
our strong parsimony guideline, which includes using single object types as placeholders for
what in the future may be a set of distinctly different objects. Like SOLUTES, ENZYMES have a num-
ber of properties, including ENZYME type. In the ISHC, there is a single type of ENZYME that inter-
acts with all bindable SOLUTES. In this iteration of the ISL, there are four ENZYME types: APAP-
ENZYME, ANT-ENZYME, CZN-ENZYME, and NONSPECIFIC. Different ENZYME types have type-specific
properties, including a list of which SOLUTE types can bind to that ENZYME type (see Table 3). Dif-
ferent CELL types can also contain (“express”) different ENZYME types (expanded upon below).
For simplicity, we specified ENZYME types according to the corresponding DRUG. For example,
APAP-ENZYMES exclusively bind and metabolize APAP objects. NONSPECIFIC can bind all bindable
SOLUTES, but cannot metabolize them. While finer-grain knowledge of which P450 isoforms
metabolize APAP, ANT, and CZN in both rats and humans is available [29,32–35], as implied
above, parsimony dictates that we do not include that level of granularity until validation tar-
gets cannot be achieved without doing so. Similarly, [21] measured levels of CYP3A2 and
CYP2C11 separately; however, relative changes after LPS pretreatment were extremely similar
for both isozymes. Thus, including two distinct ENZYME types for ANT experiments was
unnecessary.

CELLS are agent objects that maintain state information and can contain ENZYMES and SOL-

UTES. The three CELL types used in simulations here are HEPATOCYTES, ENDOTHELIAL CELLS (ISL
only), and KUPFFER CELLS. HEPATOCYTES contain enzymes. ENDOTHELIAL CELLS contain only NON-

SPECIFICS. KUPFFER CELLS do not contain ENZYMES. Each type of CELL contains various physiomi-
metic mechanism modules [12] that are executed once per simulation cycle in pseudo-random
(simply random hereafter) order. When executed, mechanism modules act upon CELL contents
(SOLUTES and ENZYMES) and other CELL state information (see “ISL and ISHC mechanisms” for
details).

ISL and ISHC structure
Full details of ISL structure are provided elsewhere [13,14]. For this work, we plugged the cited
LOBULE object into a simple BODY compartment (Fig 1C). Together, they map to a rat. BODY

maps to plasma plus all other drug-accessible tissues; LOBULE maps to the rat liver. Injected SOL-

UTES (i.e. LPS and/or DRUG) are added to BODY during the simulation, and BODY transfers a frac-
tion of its SOLUTES to the PORTAL VEIN of the LOBULE each simulation cycle. In silico
measurements of SOLUTE are sampled from BODY. LOBULE is a directed graph—or sinusoid
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Table 1. ISL and ISHC parameters descriptions and values for validating experiments.

Parameter name Type/Range ISHC value(s) ISL value(s) Description

Simulation control parameters

cycleLimit positive
integer

{2880; 1440} variable Number of simulation cycles after which simulation stops.

monteCarloTrials positive
integer

16 16 Number of Monte Carlo trials to execute.

Dosing parameters

doseTime (SOLUTE

type)
positive
integer

{1 (LPS); 1
(CYTOKINE)}

{1 (DRUG); 1 (LPS),
86401 (DRUG)}

Simulation cycle at which to administer SOLUTE dose. Multiple doses are
separated by commas.

dosage positive
integer

{variable;
2000}

{62500; 125000} Number of SOLUTE objects to administer each dose.

BINDING HANDLER parameters

pBind [0.0, 1.0] N/A 0.25 Base probability for an unbound SOLUTE to bind to an unbound ENZYME.

bindCycles positive
integer

N/A 10 Number of a simulation cycles a bound SOLUTE remains bound to an
ENZYME.

bindExponent positive, real N/A see Table 3 Exponent that controls the degree to which increasing the number of
bound ENZYMES decreases the probability of a binding event.

bindable Boolean see Table 2 see Table 2 If TRUE, this SOLUTE may bind to an ENZYME.

acceptedSolutes list see Table 3 see Table 3 List of SOLUTE types that can bind to this ENZYME.

METABOLISM HANDLER parameters

pMetabolize [0.0, 1.0] N/A see Table 2 Probability that a bound SOLUTE is metabolized by its bound ENZYME.

metabolic Boolean see Table 3 see Table 3 If TRUE, this ENZYME may metabolize bound SOLUTES.

metabolicProduct list see Table 2 see Table 2 List of METABOLITES (if any) to produce upon metabolism.

INFLAMMATION HANDLER parameters

inflammatoryThreshold non-negative
integer

{1; N/A} 3 Threshold number of INFLAMMATORY STIMULI above which a CYTOKINE may be
produced.

cytokineThreshold non-negative
integer

{2; N/A} 2 Threshold number of CYTOKINES above which no more CYTOKINES may be
produced.

cytokineExponent positive, real {3.0; N/A} 3.0 Exponent that controls the degree to which increasing INFLAMMATORY

STIMULI increases pCytokine.

inflammatory Boolean see Table 2 see Table 2 If TRUE, this SOLUTE may cause KUPFFER CELLS to produce CYTOKINES.

DOWN-REGULATION HANDLER parameters

pRemove [0.0, 1.0] {N/A; 0.05} see Table 3 Probability that a CYTOKINE removes an ENZYME.

delay non-negative
integer

{N/A; 30} 600 Number of simulation cycles to delay before an ENZYME scheduled for
removal is actually removed.

pReplenish [0.0, 1.0] {N/A; 0.007} 0.0001 Probability that an ENZYME is created when there are no CYTOKINES, the
removal queue is empty, and there are fewer than the starting number of
ENZYME.

downRegulated Boolean see Table 3 see Table 3 If TRUE, this ENZYME may be down-regulated by CYTOKINES.

DEGRADATION HANDLER parameters

pDegrade [0.0, 1.0] see Table 2 see Table 2 Probability that an unbound SOLUTE is degraded.

CELL parameters

enzymesPerCellMin non-negative
integer

4 4 The minimum number of ENZYME of each type to create in each CELL at the
start of the simulation.

enzymesPerCellMax non-negative
integer

8 8 The maximum number of ENZYME of each type to create in each CELL at
the start of the simulation.

ecDensity [0.0, 1.0] N/A 0.66 Probability that a grid point in ENDOTHELIAL SPACE contains an ENDOTHELIAL

CELL.

kcDensity [0.0, 1.0] {1.0; 0.0} 0.33 Probability that a grid point in CELL SPACE (ISHC) or ENDOTHELIAL SPACE (ISL)
contains a Kupffer Cell.

hepDensity [0.0, 1.0] {0.0; 1.0} 0.9 Probability that a grid point in CELL SPACE (ISHC) or HEPATOCYTE SPACE (ISL)
contains a HEPATOCYTE.

(Continued)
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network—of interconnected nodes and edges. Each node is a SINUSOID SEGMENT, which maps to
a portion of sinusoid. Edges map to direction of blood flow, from the portal vein to the central
vein. Once transferred from BODY to PORTAL VEIN, SOLUTES percolate through SINUSOID SEGMENTS

and the edges connecting them. Surviving SOLUTES reach CENTRAL VEIN and return to BODY. SINU-
SOID SEGMENTS contain an innermost CORE, an outermost BILE CANAL, and concentric, cylindrical
SPACES. Cellular SPACES contain grid points that can contain at most one CELL. Acellular SPACES

can only contain SOLUTES. Moving radially outward from CORE, SOLUTES may enter BLOOD-CELL
INTERFACE (acellular), ENDOTHELIAL SPACE (contains ENDOTHELIAL CELLS and KUPFFER CELLS), SPACE
OF DISSE (acellular), HEPATOCYTE SPACE (contains HEPATOCYTES), and BILE CANAL (acellular).

ISHC structure is composed of two stacked, rectangular grids (Fig 1B), each mapping to dif-
ferent in vitro spaces [12]. CELL SPACE maps to the monolayer of cells; each grid point contains
at most one CELL (HEPATOCYTE or KUPFFER CELL). MEDIA SPACE maps to culture media. Both SPACES

may contain SOLUTES, which can move between SPACES or laterally within a SPACE. To account for
the much greater volume in culture media compared to the cell monolayer, between-grid
movement is asymmetrical: a SOLUTE can only move “up” from CELL SPACE to MEDIA SPACE with
probability pExitCell; a SOLUTE moving “down” uses the parameter pExitMedia, which is typi-
cally much smaller than pExitCell. Injected SOLUTES are randomly assigned to MEDIA SPACE and
CELL SPACE grid points. SOLUTE measurements are sampled from the entire system.

Table 1. (Continued)

Parameter name Type/Range ISHC value(s) ISL value(s) Description

expressingCellTypes list see Table 3 see Table 3 List of which CELL types contain this ENZYME type.

SOLUTE flow parameters

sampleRatio [0.0, 1.0] N/A 0.00115 Base fraction of SOLUTES in BODY that are transferred to PORTAL VEIN each
simulation cycle.

sampleRatioFactor positive, real N/A see Table 2 The fraction of SOLUTES in BODY that are transferred to PORTAL VEIN each
simulation cycle is multiplied by this factor.

Vd,change positive, real N/A see Table 2 The fraction of SOLUTES in BODY that are transferred to PORTAL VEIN each
simulation cycle is reduced by this factor in LPS experiments. Further,
the original amount of administered SOLUTES in reduced by this factor in
LPS experiments.

forwardBias [0.0,1.0] N/A 0.2 Weight given to forward movement of a SOLUTE object, modifying the
otherwise "Brownian" motion.

flowRate positive
integer

N/A 2 Number of grid points SOLUTE in the CORE is moved forward each
simulation cycle.

lateralBias [0.0, 1.0] N/A 0.6 Weight given to lateral movement of a SOLUTE object, modifying the
otherwise "Brownian" motion.

pExitMedia [0.0, 1.0] see Table 2 N/A Probability that a SOLUTE can move from MEDIA SPACE to CELL SPACE.

pExitCell [0.0, 1.0] see Table 2 N/A Probability that a SOLUTE can move from CELL SPACE to MEDIA SPACE.

When ISHC parameter values differ between dose-response experiments (used to generate Fig 2A) and time-course experiments (used to generate Fig

2B), the different values are shown in brackets separated by semicolons: e.g. {dose-response value; time-course value}. Similarly, when ISL parameter

values differ between control and LPS experiments, the different values are shown in brackets separated by semicolons: e.g. {control value; LPS value}.

“N/A” values denote that the parameter is either not included in that simulation (e.g. an ISHC-specific parameter in an ISL simulation) or is not relevant in

that simulation (e.g. METABOLISM HANDLER parameters in ISHC simulations without DRUG). If a value states “see Table 2,” that parameter differs based on

SOLUTE type; see Table 2 for SOLUTE-specific values. Similarly, if a value states “see Table 3,” that parameter differs based on ENZYME type; see Table 3 for

ENZYME-specific values. The ISL values for cycleLimit are variable: for control experiments, the values are 6000 (for APAP), 18000 (for ANT), and 7200 (for

CZN); for LPS experiments, the values are 92400 (for APAP), 104400 (for ANT), and 93600 (for CZN). The ISHC dose-response values for dosage are also

variable: the dose-response curve was measured at 0, 70, 700, 7000, and 700000 LPS objects.

doi:10.1371/journal.pone.0155855.t001
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ISL and ISHCmechanisms
Logic governing ISL and ISHC mechanism modules is outlined below, and flowcharts of mech-
anism logic are illustrated in S1 Fig. There are five mechanism modules used by CELLS in both
the ISL and ISHC for current use cases. Mechanism names include the suffix HANDLER to
emphasize the fact that they are modules that directly act upon model components and their
state information. In fact, outside of the function of the mechanism modules, SOLUTES do noth-
ing other than percolate through SPACES, and ENZYMES do nothing other than exist within CELLS.
Each mechanism is probabilistic in nature. When an event occurs with probability p, a random
draw from the standard uniform distribution, U[0,1), determines whether the event occurs. If
the random draw is less than p, the event occurs. Event execution is handled using a scheduler
that conducts the timing and ordering of events.

BINDING HANDLER maps to both specific and nonspecific binding processes in the cell. This
mechanism module is present in all HEPATOCYTES and ENDOTHELIAL CELLS. When the mechanism
is executed, each unbound SOLUTE inside the CELL has a chance to bind to an unbound ENZYME.
With probability pBind, a SOLUTE binds to an unbound ENZYME. While a SOLUTE is bound, it can-
not leave that CELL, bind to another ENZYME, or be removed via degradation; however, it can be

Table 2. SOLUTE-specific parameter values for validating experiments.

SOLUTE type bindable inflammatory pMetabolize metabolicProduct pDegrade sampleRatioFactor Vd,change

ISL simulations

APAP TRUE FALSE [0.35, 0.95] APAP-METABOLITE N/A 1.0 N/A

ANT TRUE FALSE [0.35, 0.95] ANT-METABOLITE N/A 0.26 N/A

CZN TRUE FALSE [0.35, 0.95] CZN-METABOLITE N/A 0.52 1.69

LPS FALSE TRUE N/A N/A 0.0005 N/A N/A

CYTOKINE FALSE FALSE N/A N/A 0.002 N/A N/A

APAP-METABOLITE FALSE FALSE N/A N/A N/A N/A N/A

ANT-METABOLITE FALSE FALSE N/A N/A N/A N/A N/A

CZN-METABOLITE FALSE FALSE N/A N/A N/A N/A N/A

SOLUTE type bindable inflammatory pMetabolize metabolicProduct pDegrade pExitCell pExitMedia
ISHC simulations

LPS FALSE TRUE N/A N/A N/A 1 {0.5; 0.1}

CYTOKINE FALSE FALSE N/A N/A {0.01; 0.002} {0.01; 0.2} 0.02

When ISHC parameter values differ between dose-response experiments (used to generate Fig 2A) and time-course experiments (used to generate Fig

2B), the different values are shown in brackets separated by semicolons: e.g. {dose-response value; time-course value}. “N/A” values denote that the

parameter is not relevant in that simulation (e.g. METABOLISM HANDLER parameters in ISHC simulations without DRUG). Note ISL pMetabolize values are given

as a range; CELLS nearest the PORTAL VEIN exhibit the minimum value, CELLS nearest the CENTRAL VEIN exhibit the maximum value, and the value is linearly

interpolated for CELLS in between.

doi:10.1371/journal.pone.0155855.t002

Table 3. ENZYME-specific parameter values for validating experiments.

ENZYME type expressingCellTypes acceptedSolutes metabolic downRegulated pRemove bindExponent

APAP-ENZYME HEPATOCYTE APAP TRUE TRUE 0.01 1.0

ANT-ENZYME HEPATOCYTE ANT TRUE TRUE 0.025 2.0

CZN-ENZYME HEPATOCYTE CZN TRUE TRUE 0.02 1.5

NONSPECIFIC KUPFFER CELL, ENDOTHELIAL CELL APAP, ANT, CZN FALSE FALSE N/A 1.0

“N/A” values denote that the parameter is not relevant in that simulation (e.g. METABOLISM HANDLER parameters in CELLS without metabolizing

ENZYMES).

doi:10.1371/journal.pone.0155855.t003
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metabolized (see below). While an ENZYME is bound, it cannot be removed (e.g. via down-regu-
lation) or bind another SOLUTE. Upon binding, the SOLUTE is scheduled to be released (unbound)
from the ENZYME after bindCycles simulation cycles.

METABOLISM HANDLER maps to metabolism via P450 enzymes; it is unique to HEPATOCYTES.
When executed, there is a chance for each bound SOLUTE to be metabolized with probability
pMetabolize. When a SOLUTE is metabolized, two events occur. 1) The ENZYME that metabolized
the SOLUTE is no longer bound and is thus free to bind and metabolize again. 2) The metabolized
SOLUTE is removed from the system and replaced with its appropriate METABOLITE. The SOLUTE’S

state information specifies which METABOLITE type is produced. If the SOLUTE specifies multiple
METABOLITE types, one is randomly selected. If the SOLUTE does not specify a METABOLITE product,
it is simply removed from the system and is not replaced.

A different value of pMetabolize is specified for each SOLUTE type, allowing for different
types of SOLUTES to be metabolized at different rates. In simulations here, a particular SOLUTE

type has only one corresponding ENZYME type that can metabolize it. However, some use cases
may require multiple ENZYME types that can metabolize a particular SOLUTE type. In such cases, a
different value of pMetabolize can be specified for each pairwise combination of SOLUTE and
ENZYME types. Thus, metabolism can be differentially controlled by individual SOLUTE and
ENZYME types.

INFLAMMATION HANDLER maps to cytokine production in response to an inflammatory stimu-
lus like LPS; it is unique to KUPFFER CELLS. When executed, the mechanism has a chance to pro-
duce a CYTOKINE; if so, the CYTOKINE is added to the KUPFFER CELL. To determine whether to
produce a CYTOKINE, it first counts how many INFLAMMATORY STIMULI are in the KUPFFER CELL. An
INFLAMMATORY STIMULUS is any SOLUTE for which the Boolean property inflammatory is true. The
only INFLAMMATORY STIMULUS is LPS. If the number of INFLAMMATORY STIMULI exceeds the value of
the parameter inflammatoryThreshold, there is a chance to produce a CYTOKINE. With probabil-
ity pCytokine, a CYTOKINE is produced. The value of pCytokine is variable, determined by several
factors:

pCyotkine ¼ 1� exp �#ɪɴꜰʟᴀᴍᴍᴀᴛᴏʀʏ ꜱᴛɪᴍᴜʟɪ� inflammatoryThreshold
cytokineExponent

� �

Thus, cytokineExponent controls the degree to which increasing stimulus causes CYTOKINE for-
mation. Lastly, to prevent excess CYTOKINE formation in the presence of significant INFLAMMA-

TORY STIMULUS, CYTOKINE cannot be created if there are already more than cytokineThreshold
CYTOKINES in the CELL.

The above equation is an example of a biomimetic rule. We lack sufficient detailed knowl-
edge to describe exactly how a Kupffer cell in a particular lobule location determines whether
to produce cytokine. The equation is a placeholder for yet to be specified fine-grain mecha-
nisms. A risk of relying on such rules is committing inscription error, the logical fallacy of
assuming the conclusion and programming in (consciously or not) aspects of the result we
expect to see [36]. Cognizant of inscription error, we were careful not to explicitly encode a sig-
moidal dose-response into INFLAMMATION HANDLER. We chose the above equation to mimic a
Poisson distribution in which the probability of at least one binding event occurring within a
simulation cycle depends on the extent to which the number of inflammatory stimuli exceeds a
threshold value. The ability to generate a sigmoidal dose-response curve arises from a complex
interplay among multiple analog mechanisms, facilitated by flexibility in the parameters
inflammatoryThreshold and cytokineExponent.

DOWN-REGULATION HANDLER maps to P450 down-regulation processes in response to a cyto-
kine signal; it is unique to HEPATOCYTES. This mechanism is more complex and can follow one
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of two pathways: when executed, it has a chance to either 1) remove an ENZYME (in response to
sufficient CYTOKINE) or 2) create an ENZYME (when CYTOKINE is not present). ENZYME removal
maps to P450 down-regulation; ENZYME creation maps to the gradual return to basal P450 lev-
els. Importantly, each HEPATOCYTE contains a separate instance of DOWN-REGULATION HANDLER for
each down-regulatable ENZYME type (call it T) it contains. In the descriptions that follow, each
instance operates only on ENZYMES of type T. The instances operate independently.

When CYTOKINE is present in the HEPATOCYTE, an ENZYME has a chance to be removed. For
each CYTOKINE, the probability to do so is pRemove. However, the ENZYME is not removed imme-
diately; instead, ENZYME removal is scheduled to occur after delay simulation cycles. Until then,
the ENZYME is marked for removal but is not actually removed. The more CYTOKINES are present,
the more chances there are to schedule ENZYME removal; however, to prevent abrupt changes in
the number of ENZYMES, at most one ENZYME may be scheduled for removal each simulation
cycle. Further, if additional ENZYMES are scheduled for removal before the previously scheduled
ENZYME is actually removed, their delay is added to the tail end of the currently remaining delay.
Thus, when CYTOKINE levels are sufficiently high, there is a growing “queue” of scheduled
ENZYME removal events. Including the delay parameter and removal queue was necessary to pre-
vent rapid ENZYME down-regulation over the course of very few simulation cycles.

Alternatively, ENZYMES may be created when there are no more CYTOKINES in the HEPATOCYTE

and after the removal queue has cleared. Further, this pathway can only occur when the num-
ber of ENZYMES is less than the number at the start of the simulation. Thus, ENZYMES can gradu-
ally return to their original (basal) levels. If the three conditions are met—no CYTOKINES, empty
queue, less than basal ENZYME—an ENZYME may be created with probability pReplenish.

We designed DOWN-REGULATION HANDLER to be sufficiently general so that, when needed, we
can include specific subtypes of CYTOKINES (or other SOLUTES) that can specifically and differen-
tially down-regulate different sets of ENZYME types. Currently, each ENZYME type can have a dif-
ferent value for pRemove. In the future, as mechanisms for individual CYTOKINE types are teased
out, pRemove can be specific to a particular pair of ENZYME and CYTOKINE type. In other words,
parameters like pRemove can take on pairwise values: e.g. pRemovei,j, where i is a specific
ENZYME type and j is a specific CYTOKINE type.

The final mechanism, DEGRADATION HANDLER, maps to non-P450 degradation of compounds;
it is in all CELLS. The mechanism is simple: when executed, each unbound SOLUTE can, with prob-
ability pDegrade, be “degraded” (removed from the system). There is no limit to the number of
SOLUTES that can be degraded each simulation cycle via this mechanism. SOLUTES that do not
specify a value for pDegrade cannot be degraded.

Mappings between ISL/ISHC mechanism parameters (like pMetabolize) and kinetic, ther-
modynamic, and/or pharmacological properties exist, but need not be one-to-one. Quantitative
mappings can be made via methods including linear regression, artificial neural network, or
fuzzy clustering algorithms. Indeed, these methods have each been shown to successfully pre-
dict ISL parameter values for several drugs, which, when plugged into an ISL and tested, pro-
duce simulated hepatic outflow profiles that closely match wet-lab data [37].

ENZYME mechanism falsification and generalization
The ENZYME ontology and related binding and metabolism mechanisms were falsified by the
observation that even a dramatic reduction in the number of ENZYMES does not significantly
affect SOLUTE clearance. The explanation is that the probabilities of binding events—and there-
fore metabolism events—is neither a function of the number of ENZYMES nor the number of SOL-
UTES that are already bound (provided there is at least one unbound ENZYME). There are two
exceptional cases: 1) the case in which all ENZYMES are bound and 2) the subset of this case in
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which there are zero ENZYMES. In both exceptional cases, the probability of a binding event
drops to zero (S2A Fig). These cases were found to be rare or nonexistent except under extreme
parameter settings. Thus, within typical parameter settings, effective binding probability is
unaffected by changes in the number of ENZYME (S2C Fig). The result is that a change, such as
simulating P450 down-regulation, has no significant effect on SOLUTE clearance, thereby falsify-
ing those earlier mechanisms. Hereafter, whenever necessary to avoid ambiguity between
ENZYMES used earlier and those described below, we refer to the former as generation 1 ENZYME

(G1-ENZYME) and refer to the latter as generation 2 ENZYME (G2-ENZYME).
Achieving validation targets like those drawn from P450 down-regulation required a finer-

grained, more generalized ENZYME ontology and mechanisms for binding and metabolism. We
implemented the following refinements.

ENZYME-specific properties
Whereas all G1-ENZYMES were controlled by the same set of parameters, G2-ENZYMES are
dynamic data structures that have ENZYME-specific parameters and maintain ENZYME-spe-
cific state information. Among important parameters is ENZYME type, which allows other
components to recognize and interact differently with different types of ENZYME. Each
G2-ENZYME is assigned a type (e.g. “Phase 1”), which maps to some set of xenobiotic-metab-
olizing enzymes. This allows different model components to recognize and interact with
ENZYMES differently based on type. G2-ENZYMES can also have type-specific properties. For
example, each ENZYME type contains a list of which SOLUTE types can bind ENZYMES of that
type. Other parameters include Booleans controlling whether that ENZYME can metabolize
SOLUTE (as opposed to binding only), is induced by DRUG, is down-regulated by CYTOKINE,
etc.

Each CELL contains G2-ENZYMES of each type required by the current use case. Different CELL
types within a simulation can contain (or “express”) a different—possibly overlapping—set of
ENZYME types, which are specified offline via a parameter file (see Table 3). In ISL simulations
here, HEPATOCYTES contain all four ENZYME types (APAP-ENZYME, ANT-ENZYME, CZN-ENZYME, and
NONSPECIFIC), and ENDOTHELIAL CELLS contain only NONSPECIFIC.

Parameter-controlled binding probability
G2-ENZYMES can bind and metabolize SOLUTES similarly to G1-ENZYMES; however, binding need
not be controlled by a single constant parameter, pBind. Rather, the number of unbound
ENZYMES of a given type in a given CELL determines the probability of a binding event. The prob-
ability function used is controlled by a whole-model parameter, bindingMode. Currently, there
are two binding modes: stepwise and variable (illustrated in S2 Fig). Stepwise mode is intended
to recapitulate the previous G1-ENZYME mechanism behaviors, used primarily for verification
purposes. Using the stepwise mode:

Pðbinding eventÞ ¼ pBind unbound > 0

0 unbound ¼ 0

(

where #unbound is the total number of unbound ENZYMES. Thus, the binding probability is
either zero (when all ENZYMES are bound) or pBind (when at least one ENZYME is unbound)
(S2C Fig). Using the variable mode:

P binding eventð Þ ¼ pBind � � bound � total
totalinitial

� �bindExponent

#

#
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where bound is the total number of bound ENZYMES, total is the total number of ENZYMES (bound
or unbound), and totalinitial is the total number of ENZYMES at the start of the simulation. Thus,
the binding probability decreases as more ENZYMES bind (moving down the line) and/or as
ENZYMES are removed from the system (shifting the curve downward) (S2D Fig). The parameter
bindExponent controls the nonlinearity of this effect (S2B Fig). The probability reaches zero
when all ENZYMES are bound (i.e. the number of bound ENZYMES reaches the current total num-
ber of ENZYMES). Further, the y-intercept (the probability of binding when there are no bound
ENZYMES) is scaled by total normalized by totalinitial. Thus, changes in the total number of
ENZYMES are two-fold (S2D Fig): it changes both the probability of binding and the maximum
number of SOLUTES that can be bound to the ENZYME (x-intercept). Because all metabolism
events are preceded by a binding event, changes in binding probability will directly affect
metabolism and clearance.

G2-ENZYMES are designed to be inherently tunable [38]. If a future use case requires addition
of non-P450 enzymes or further delineation into (say) specific P450 isoforms, the G2-ENZYME

structure can still be used. On the other hand, if a future use case does not require this level of
granularity, the G1-ENZYME mechanisms can be restored by specifying only two ENZYME types
(ENZYME and NONSPECIFIC) and setting the binding probability function to stepwise mode. In this
way, the phenotype space of the G2-ENZYME mechanism subsumes that of the G1-ENZYMES

mechanism; that is, the new mechanism is a generalization of the earlier mechanism.

Mechanism granularity and flexibility
It is well established that a particular drug may be metabolized by several enzymes, each of
which may be differentially down-regulated (or perhaps up-regulated or unaffected) by dif-
ferent cytokines. Given that a G2-ENZYME object does not map to a particular P450 isoform,
why should we compare ENZYME measurements to wet-lab data using a single, specific P450
isoform? A similar question can be asked of CYTOKINES. The answer is two-fold. Firstly, the
chosen validation data is not sufficiently detailed to extract differential effects of multiple
specific P450 isoforms or specific cytokines. Following our strong parsimony guideline, ana-
log mechanisms should not include that level of isoform- or cytokine-specific detail unless
and until doing so is needed to achieve validation targets. For example, the validation data do
not measure the regulation of more than one or two P450 isoforms. ([21] measures two iso-
forms, but they are down-regulated almost the same amount.) Thus, current use cases only
require simulation and measurement of a single metabolizing ENZYME type per drug. Sec-
ondly, the current use case is to develop flexible methods for simulating immune-mediated
P450 down-regulation. Future use cases may include validating against differential isoform-
and/or cytokine-specific data. In these cases, the ISL and ISHC have built-in capabilities to
further delineate ENZYMES and CYTOKINES using only changes in parameter values. Their differ-
ential effects on inflammation and P450 down-regulation can subsequently be specified
using CYTOKINE-specific parameters (e.g. inflammatoryThreshold) and pairwise CYTOKINE-
ENZYME parameters (e.g. pRemove), respectively.

Modularity and integration
Wemodularized the analog components and mechanisms using methods outlined in [12].
Modularization facilitates reusing and integrating components among different models. For
example, immune system components (namely KUPFFER CELL) were initially developed as part
of the ISHC. Since components were modularized, they were easily shared with the ISL with
minimal code refactoring.
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Selecting parameter values
Where applicable, we began with parameter values used to achieve validation targets in previ-
ous ISL and ISHC publications (e.g. [12,13]). For parameters introduced in this work, we
began with modest values: e.g. 0.5 for probabilistic parameters like pRemove with range [0,1], 1
for threshold parameters like inflammatoryStimuli based on number of objects, and 1.0 for
weighting parameters like cytokineExponent. From there, parameter value options are evalu-
ated iteratively, following Steps 5–7 of the IRP (see Fig 1A). Simultaneous, small changes (e.g.
5–10%) in several parameter values can offset each other and may produce no detectable
change in a measured phenomenon. Thus, conventional linear sensitivity studies are less infor-
mative and meaningful than complete location changes in analog parameter space. When
needed, we use batch parameter space sampling (as in [39,40]) to identify small subsets of
parameter values that are most influential for particular attributes. We also often rely on heu-
ristics and trial-and-error to arrive at validating parameterizations. For the exploratory studies
herein, we only present one validating parameter set for each experiment (see Table 1). Narra-
tive explanations for parameter value choices are provided at the end of each experiment in
Results.

Results
A full list of parameters descriptions and their values used for validation experiments is pro-
vided in Table 1. Some parameters are specific to the SOLUTE or ENZYME types used in each simu-
lation; these parameter values are provided in Tables 2 and 3, respectively. Validation targets
and associated validation data are summarized in Table 4.

ISHC experiments
We first aimed to achieve a degree of validation for the first part of the pathway: an LPS stimu-
lus causes Kupffer cell-mediated cytokine release. The validation data, derived from [23], is a
dose-response curve between LPS dose and TNF-α response using an in vitro Kupffer cell

Table 4. Validation targets achieved for immune-mediated P450 down-regulation attributes.

Targeted attribute Validation data Similarity criteria

Kupffer cells produce
cytokine upon LPS stimulus
in vitro (Fig 2A).

Dose-response curve between LPS
dose and TNF-α response using an
in vitro Kupffer cell culture [23].

In silico values fall within ± 1
standard deviation of wet-lab
values.

Cytokines down-regulate
hepatic P450 levels in vitro
(Fig 2B).

Time-course drop in P450 levels after
IL-1 stimulus using an in vitro
hepatocyte culture [24].

In silico values fall within ± 1
standard deviation of wet-lab
values.

LPS reduces APAP
clearance in rats (Figs 3–5).

1) Disappearance curves and 2) half-
life values with/without LPS
pretreatment in rats [20].

1) >50% in silico values fall
within ± 25% of wet-lab values. 2)
In silico values fall within ± 1
standard deviation of wet-lab
values.

LPS reduces ANT
clearance (Figs 3–5) and
CYP3A2/2C11 levels (Fig
2C) in rats.

1) Disappearance curves, 2) relative
CYP3A2/2C11 levels, 3) half-life
values, and 4) relative systemic
clearance with/without LPS
pretreatment in rats [21].

1) >50% in silico values fall
within ± 25% of wet-lab values. 2)
In silico values fall within ± 1
standard deviation of wet-lab
values.

LPS reduces CZN
clearance (Figs 3–5) and
CYP2E1 levels (Fig 2C) in
rats.

1) Disappearance curves, 2) CYP2E1
levels, 3) half-life values, and 4)
relative intrinsic clearance with/
without LPS pretreatment in rats [22].

1) >50% in silico values fall
within ± 25% of wet-lab values.
2–4) In silico values fall within ± 1
standard deviation of wet-lab
values.

doi:10.1371/journal.pone.0155855.t004
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culture. TNF-α was measured after 48-hr LPS treatment using LPS concentrations of 0, 0.1, 1,
10, and 1,000 ng/ml. To simulate this in vitro Kupffer cell culture, we instantiated an ISHC
with the only CELLS being KUPFFER CELLS (i.e. kcDensity = 1.0 and hepDensity = 0.0). We specified
the analog-to-referent mapping of 700 LPS objects to 1 ng/ml LPS, and 1 simulation cycle to 1
min. We arrived at this LPS mapping after several iterations, as it provided a consistent sigmoi-
dal dose-response curve over a wide range of parameter values. The time mapping was the
same as previous ISHC experiments [12]; it is intentionally coarse-grain, as current use cases
do not require mimicking temporally fine-grain phenomena.

To mimic the dose-response curve between 0 and 1,000 ng/ml LPS, a DOSE ranging from 0 to
700,000 LPS objects was injected at the start of the simulation. The total number of CYTOKINES
was measured after 2,880 simulation cycles (maps to 48 hr). The resulting values were used to
construct a dose-response curve, normalized by the maximum obtained number of CYTOKINES.
We prespecified that the analog dose-response curve would be acceptably similar to the refer-
ent if each in silico point falls within ± 1 standard deviation of the corresponding wet-lab
value. In accordance with the IRP, we sampled ISHC parameter space until similarity criteria
were achieved. The resulting validated dose-response curve is shown in Fig 2A.

When selecting parameter values and the LPS analog-to-referent mapping for this experi-
ment, the resulting dose-response curve followed a sigmoidal shape for all tested parameter val-
ues. Thus, we first arrived at a robust choice for the LPS analog-to-referent mapping. The LPS
mapping was chosen as a balance between granularity and computational efficiency. It is rea-
sonable to strike that balance because both ISL and ISHC are analogies, not one-to-one models
of their referents. When the mapping was too large (e.g. 1000 LPS objects maps to 1 ng/ml LPS),
large DOSES (over one million LPS objects) significantly increased computational costs. When the
mapping was too small (e.g. 100 LPS objects maps to 1 ng/ml LPS), the smallest non-zero DOSE

Fig 2. Validation targets for LPS treatment, before or without drug administration. A. Dose-response curve
between LPS stimulus and normalized cytokine response. Values were measured after 48 hr (2,880 simulation
cycles). Error bars: wet-lab standard deviation. In silico points are averages of 16 Monte Carlo trials. Wet-lab
values are from [23]. B. Time-course levels of enzymes, normalized by the starting value. Error bars: wet-lab
standard deviation. In silico points are averages of 16 Monte Carlo trials. Wet-lab values are from [24]. C.Wet-lab
and in silico P450 levels relative to control values. Wet-lab values are relative measures of CYP3A2 (ANT) or
CYP2E1 (CZN). In silico values are relative measures of the respective ENZYME type. Error bars: standard
deviation. Wet-lab values are from [20] (APAP), [21] (ANT), and [22] (CZN). Note [20] did not provide P450 data
for APAP, but we included in silico values for comparison.

doi:10.1371/journal.pone.0155855.g002

Virtual Experiments Challenge P450 Regulation Mechanisms

PLOSONE | DOI:10.1371/journal.pone.0155855 May 26, 2016 17 / 26



(mapping to 0.1 ng/ml LPS) consisted of only 10 LPS objects (in the presence of 625 grid points
in CELL SPACE), which was deemed too coarse-grain to provide meaningful insight. We arrived
at the mapping of 700 LPS objects to 1 ng/ml LPS after several iterations, then proceeded to test
selected parameter values. The challenge in specifying parameter values was to control the
microstructure of the resulting sigmoidal curve (e.g. the slope of the inflection point). In this
case, inflammatoryThreshold was a sensitive parameter; it effectively controlled the DOSE at
which the CYTOKINE response begins to sharply increase. The value of pDegrade for CYTOKINE

was also sensitive; when too small (e.g. 0.001), the slope of the inflection point was too shallow;
when too large (e.g. 0.1), the inflection point would shift too far to the right.

We then aimed to achieve a degree of validation for the second part of the pathway: an
increase in cytokines results in hepatic P450 down-regulation. The targeted attribute was
data from an in vitro hepatocyte culture: specifically, time-course P450 levels after IL-1 stim-
ulus [24]. We mimicked the in vitro hepatocyte culture by instantiating an ISHC with only
HEPATOCYTES (i.e. kcDensity = 0.0 and hepDensity = 1.0). A DOSE of 2,000 CYTOKINES was
injected at the start of the simulation. The total number of G1-ENZYMES was measured at
intervals mapping to corresponding wet-lab points (0, 12, and 24 hr), plotted against time,
and normalized by the starting number of G1-ENZYMES. Similarity criteria stipulated that each
in silico time measurement fall within ± 1 standard deviation of the corresponding wet-lab
value. Fig 2B illustrates the time-course plot after identifying parameter values that achieved
validation.

Despite DOWN-REGULATION HANDLER being a finer grain mechanism, specifying parameter val-
ues for Fig 2B was straightforward. Parameter value choices were influenced by the following
deduction: given enough time, the simulation would eventually return to basal levels of ENZYME.
This is because the CYTOKINE signal would eventually die due to DEGRADATION HANDLER, and
ENZYMES will eventually be replenished (provided pReplenish is greater than zero). That scenario
is consistent with what one would expect physiologically. Thus, a moderate value for delay
(mapping to 30 minutes) and small value for pReplenish (0.007) produced the relatively slow
time-course P450 down-regulation as found in the wet-lab validation data.

Single-DRUG ISL experiments
The next three sets of validation targets were designed to achieve degrees of validation for the
entire coarse-grain pathway: an LPS stimulus results in hepatic P450 down-regulation and
downstream changes in measures of drug clearance. We drew validation targets from three
wet-lab experiments, each of which followed a similar experimental protocol but used a differ-
ent drug and measure of drug clearance. Each experiment pretreated rats with LPS (experimen-
tal) or saline (control) for 24 hr before injecting a drug. Clearance was measured at
prespecified time points following drug injection. Enzyme measures were taken after the 24-hr
pretreatment. All experiments measured disappearance curves from blood (APAP) or plasma
(ANT, CZN) for their respective drug. In addition, [20] provide APAP half-life values; [21]
measure ANT half-life and systemic clearance (CLsys) and CYP3A2/CYP2C11 levels; [22] mea-
sure CZN half-life and create a scatterplot of CZN intrinsic clearance versus CYP2E1 levels.
Similarity criteria were prespecified as follows. For drug disappearance curves, at least 50% of
in silico values must fall within ± 25% of the corresponding wet-lab value. For enzyme mea-
surements, in silico values must fall within ± 1 standard deviation of the wet-lab value. For all
clearance measures except ANT half-life, the in silico value must fall within ± 1 standard devia-
tion of the corresponding wet-lab value. Standard deviation for ANT half-life was neither given
nor able to be determined from the data given, so we specified the similarity criteria that in sil-
ico values fall within ± 10% of the corresponding wet-lab value.

Virtual Experiments Challenge P450 Regulation Mechanisms

PLOSONE | DOI:10.1371/journal.pone.0155855 May 26, 2016 18 / 26



Simulating whole rat experiments required switching from experimenting on an ISHC to an
ISL. We first instantiated an ISL for each of the six experiments: two treatment groups (control
and LPS) for each of three drugs. For ISL simulations, we specified the analog-to-referent map-
ping of 1 simulation cycle to 1 sec, consistent with previous ISL experiments [37]. This consti-
tutes a 60-fold finer temporal resolution than the ISHC mapping of 1 simulation cycle to 1
min. Thus, the ISL is intended to be a temporally finer-grained analog, as required to capture
hepatic transit times on the order of seconds. (Note we did not need analog-to-referent map-
pings for drug or enzyme concentrations because measurements were normalized.) At the start
of each simulation in the LPS group, an initial DOSE of 125,000 LPS objects was injected into
BODY. After 86,400 simulation cycles (maps to 24 hr), a second DOSE of 125,000 DRUG objects
(APAP, ANT, or CZN) was injected into BODY. At this point we also measured the total number of
ENZYMES of the type corresponding to the injected DRUG. At time points corresponding to the
respective wet-lab data, we measured the number of DRUG objects in BODY.

For control group simulations, we bypassed the 86,400-simulation cycle phase. So doing
spared computational costs without altering simulation results, because without LPS there are
no ISL mechanisms that could alter ENZYME levels or affect DRUG clearance; further, these simu-
lations do not require “priming” from initialization. Thus, there was only a single DOSE of
125,000 DRUG objects at the start of each control group simulation. After DRUG injection, control
and LPS group experiments operated identically.

Various parameter value combinations were evaluated for each experiment until validation
targets were achieved. We imposed several constraints when selecting those parameters.
Namely, we ensured that whole-model parameter values (which are neither SOLUTE- nor
ENZYME-specific) could not change among the six experiments. Furthermore, DRUG and ENZYME

properties could not change between control and LPS experiments of the same DRUG type. The
reasoning behind these constraints was to mimic experimenting on the same (or similar) rats.
For experiments involving a particular DRUG (say APAP), the DRUG-specific parameter values of
other DRUGS (i.e. ANT and CZN) were still included in the parameter set, but their DOSE was set to
zero. Similarly, all three ENZYME types are included in APAP simulations, though ANT-ENZYMES

and CZN-ENZYMES do not affect APAP results. Thus, the only parameter values that actually
changed between simulation experiments were in silico experiment design parameters (i.e.
those having no biological counterpart): those specifying DOSE (i.e. whether or not to inject LPS;
which DRUG to inject), experiment duration (i.e. how many simulation cycles), and measure-
ments (i.e. when to take measurements). As a consequence of the above constraints, validation
is properly limited to those cases in which each experiment achieved validation targets using a
common set of in silico experiment design parameters.

Meeting the above set of strict validation targets required several rounds of iterative refine-
ment. The most significant refinement was the need to generalize ENZYME mechanisms, outlined
in Methods. While ISHC experiments achieved validation targets using G1-ENZYMES and associ-
ated mechanisms, achieving ISL validation targets required G2-ENZYMES. Additional refine-
ments are detailed in Discussion.

The following figures recapitulate the selected wet-lab data using in silico results from vali-
dating experiments. Fig 3 shows the disappearance curves with wet-lab data overlaid. Sixty per-
cent of values fall within acceptable similarity (± 25% of the wet-lab value) for APAP data;
100% of values fall within acceptable similarity for ANT and CZN data. Fig 2C shows the rela-
tive change in P450 levels after 24 hr LPS pretreatment. While [20] did not provide P450 data
(and thus no validation targets can be drawn for APAP experiments), in silico values for ANT and
CZN experiments fall within the prespecified similarity criteria of ± 1 standard deviation of the
wet-lab value. In fact, they fall within a more stringent ± 0.5 standard deviation similarity crite-
ria. Fig 4 shows the half-lives for control experiments, relative half-lives for LPS experiments,
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and relative clearance measures (half-life, systemic clearance, and intrinsic clearance for APAP,
ANT, and CZN, respectively) alongside validation data. All values fall within acceptable simi-
larity (± 1 standard deviation of the wet-lab value). Lastly, Fig 5 shows scatterplots of relative
enzyme versus clearance measures, with validation data overlaid.

Whereas ISHC experiments focused on small parts of the P450 down-regulation pathway—
and thus selecting parameter values required focus on the one or two relevant mechanisms—
the process for ISL experiments required attention to all mechanisms. For example, changes in
INFLAMMATION HANDLER parameter values affect CYTOKINE levels, which directly affects down-
stream DOWN-REGULATION HANDLER behavior even if its parameters do not change. We first
focused on INFLAMMATION HANDLER because it contains no SOLUTE- or ENZYME-specific parame-
ters. Most notably, inflammatoryThreshold was chosen higher than the ISHC value (see
Table 1); this was necessary to avoid excessive CYTOKINE levels. DOWN-REGULATION HANDLER

required significant parameter changes compared to the ISHC. The DOWN-REGULATION HANDLER

Fig 3. Wet-lab and in silico normalized drug disappearance curves. A. APAP [20]; B. ANT [21]; C. CZN [22]. Red/blue circles: in silico averages of 16
Monte Carlo trials. Gray circles: wet-lab averages. Red/blue lines: additional in silico values between wet-lab time points. The initial spike in drug
corresponds to the administered DOSE. All drug values are normalized by the control value at the first time point. Error bars: ± 25% of the wet-lab value (the
similarity criteria).

doi:10.1371/journal.pone.0155855.g003

Fig 4. Wet-lab and in silico measures of drug clearance. A.Wet-lab and in silico half-life measures without LPS pretreatment (control). B.Wet-lab
and in silico half-life given 24 hr LPS pretreatment, relative to control.C.Wet-lab and in silico clearance measures given 24 hr LPS pretreatment, relative
to control. Error bars: standard deviation. Wet-lab values are from [20] (APAP), [21] (ANT), and [22] (CZN).

doi:10.1371/journal.pone.0155855.g004
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parameters are all sensitive to time: an ENZYME removal or replenish event may be scheduled
each simulation cycle. Thus, it is not surprising that the ISL—with a 60-fold finer grain tempo-
ral mapping than the ISHC—required smaller values for pRemove and pReplenish and a larger
value for delay compared to the ISHC. The simulation must eventually return to basal levels of
ENZYME if left running indefinitely. However, if down-regulation were too sensitive (e.g. pRe-
move too high or CYTOKINE’S pDegrade too low), ENZYME levels could reach zero for long periods
of time before replenishing. Thus, selection of parameter values often revolved around achiev-
ing sustained, but not excessive, levels of P450 down-regulation.

Multi-DRUG ISL experiments
Lastly, we repeated both control and LPS experiments for a new use case in which all three
DRUGS are co-administered. Wet-lab validation data for such co-administration experiments in
the context of P450 down-regulation are unavailable. However, in silico multi-DRUG experi-
ments represent an important use case for several reasons. 1) Multi-DRUG simulations stand as
challengeable predictions of hypothetical wet-lab co-administration experiment results. Given
new wet-lab co-administration data that falsifies these predictions, we can then hypothesize
model refinements in accordance with the IRP. Refinements may include analog mechanisms
of drug-drug interactions; however, details of the path to revision would depend on the nature
of the results. 2) We demonstrate a proof-of-concept that the ISL can be made robust to
changes in analog DRUG, and thus able to support co-simulation of any number of DRUG types.
Extensibility to multiple DRUG types is essential to support future simulations designed to better
understand and anticipate drug-drug interactions. 3) We demonstrate that all three DRUG types
can simultaneously achieve validation targets using a single ISL parameter set. Simultaneous
validation is significant because, if achieved, we can then conclude that the DRUG- and ENZYME-
specific parameterizations are sufficient to span the mechanistic changes needed to generate
patterns in drug clearance and P450 down-regulation. In other words, values for whole-model
parameters that are neither DRUG- nor ENZYME-specific (e.g. hepDensity) need not be specified
independently for each DRUG type. 4) Most importantly, failure to achieve simultaneous valida-
tion could be taken as evidence that hypotheses and several aspects of the ISL are falsified.

Fig 5. Scatterplots between enzymemeasurements and clearance measurements for both control and LPS experiments. A. APAP [20]; B. ANT
[21]; C. CZN [22]. Gray circles: wet-lab data points (when provided). Red/blue circles: in silico data points. Error bars: in silico standard deviation,
extending from the mean of 16 Monte Carlo trials. Blue box: area of acceptable similarity (± 1 standard deviation of wet-lab value). Since [20] did not
provide enzyme data, there is no associated validation target (A). Only [22] provided values for individual wet-lab trials (C).

doi:10.1371/journal.pone.0155855.g005
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Notably, for this work, multi-DRUG experiments were not intended to explore or mimic
drug-drug interactions. However, we also did not expect identical results between single- and
multi-DRUG simulations because the presence of additional DRUG objects (even without the
inclusion of explicit drug-drug interactions) may still indirectly affect ISL mechanisms. For
example, the flow of SOLUTES depends on the total number of SOLUTE objects, so multi-DRUG
experiments with a larger total number of SOLUTES may lead to subtle changes in the cascading
of events. We expect more pronounced differences between single- and multi-DRUG experi-
ments when individual cytokines and P450 isoforms are made explicit and/or when we explic-
itly add mechanisms that handle drug-drug interactions.

While the three wet-lab validation studies administered different amounts of LPS stimulus,
we assumed an equipotent stimulus. We do not expect this equipotent assumption to be biolog-
ically realistic; however, in the absence of P450 down-regulation wet-lab data spanning both
single and multiple drug experiments, we needed to make some assumption to simulate multi-
drug experiments. Thus, BODY was injected with 125,000 LPS objects, similar to single-DRUG
experiments. The second DOSE comprised 125,000 (for LPS experiments) or 62,500 (for control
experiments) objects of each DRUG type (APAP, ANT, and CZN). Thereafter, single- and multi-DRUG
experiments operated identically.

The validation target for the multi-DRUG experiments was to simultaneously achieve all vali-
dation targets for the single-DRUG experiments. Besides the in silico experiment design parame-
ters (those controlling DOSE, experiment duration, and measurements), parameter values were
not changed between single- and multi-DRUG experiments. Notably, all multi-DRUG validation
targets were achieved without changing parameterizations that achieved the single-drug valida-
tion targets. Figs 2C and 4 include values for the multi-DRUG experiments alongside single-DRUG
results and wet-lab validation data.

Discussion
We execute a series of virtual experiments that together achieve several quantitative validation
targets involving immune system interactions in drug metabolism. The described mechanisms
—those that finally achieved validation targets—are supportive of the mechanistic hypothesis
that in response to LPS, Kupffer cells down-regulate P450 via inflammatory cytokines, thus
leading to a reduction in metabolic capacity. Given the synthetic nature of the analogs, we can
continue to iteratively refine them to test additional and/or alternative mechanistic hypotheses,
validating an increasingly large set of targeted attributes along the way.

Trajectory of model falsification and refinement
Falsification is the primary source of knowledge generation, integral to the scientific method
itself [41]. Unfortunately, published computational models tend to describe a finished product
without detailing—or even mentioning—the many rounds of falsification and revision along
the way. Describing this trajectory of iterative falsification and refinement requires detailed
annotations of simulation experiments (including unsuccessful ones) and paying special atten-
tion to how, when, and why a mechanism fails to achieve given validation targets. Having that
information is essential to the scientific process because it is falsification that provides new
knowledge: specifically, the current (falsified) mechanisms are flawed—they are not a good
analogy of the referent biological mechanisms [42]. Following falsification, analog mechanisms
(the hypothesis) can be refined. Focusing on falsification as a scientifically productive endeavor
helps one adhere to parsimony, as it curbs the tendency to commit inscription error and/or to
succumb to the urge to incorporate “everything we know” into a model.
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We describe the trajectory of three demonstrative falsification and refinement efforts
encountered with the P450 down-regulation validation targets, and commentate on any mech-
anistic insight gained from this new knowledge. 1) We described earlier the G1-ENZYME mecha-
nism falsification and the need for the finer-grain, generalized G2-ENZYME (see “Enzyme
mechanism falsification and generalization”). Validation required three changes: 1) ENZYME

concentration-dependent binding probability 2) ENZYME type-specific properties, and 3) the
inclusion of various ENZYME types within a single simulation. Taken together, these changes
suggest that differential properties of multiple groups of enzymes influence drug clearance
events during inflammatory states. While this dependence might be expected, we anticipate
providing additional insight when ISL experiments move toward explicitly modeling individual
P450 isoforms.

2) The large drop in CZN clearance (drops to 29.2% of control value), coupled with a
moderate drop in CZN enzyme levels (drops to 57.8% of control value), could not initially be
reproduced in silico. Using original mechanisms, relative decreases in clearance values were
always too weak compared to corresponding decreases in the number of ENZYMES. After falsi-
fication, we noted that the wet-lab validation experiment recorded a 1.69-fold increase in
CZN volume of distribution after the addition of LPS. Thus, we posited a revision hypothesis
that validation could be achieved by adding a coarse-grain mechanism for changes in volume
of distribution. Recall that a fraction of SOLUTES in BODY are transferred to LOBULE each simula-
tion cycle. This fraction is equal to sampleRatio (a whole-model parameter between 0 and 1)
multiplied by sampleRatioFactor (a SOLUTE-specific parameter). We implemented the follow-
ing coarse-grain change. In LPS experiments, the size of the initial DOSE and the value of sam-
pleRatioFactor for CZN are reduced by a factor of Vd,change, where Vd,change is the wet-lab fold
change in volume of distribution. After implementing this revision, we achieved the original
validation targets. Thus, accounting for changes in volume of distribution is necessary to
mimic P450 down-regulation phenomena for some drugs. As new, finer-grained validation
targets are considered, ISL experiments can flesh out mechanistic details driving changes in
volume of distribution.

3) Initially, INFLAMMATION HANDLER did not include cytokineThreshold, a parameter that
“turns off” CYTOKINE production if there is enough CYTOKINE in the CELL. However, this exclusion
resulted in unchecked CYTOKINE formation (and thus a non-sigmoidal dose-response curve)
when the amount of INFLAMMATORY STIMULUS was sufficiently high. Since our validation experi-
ments included large amounts of CYTOKINE (up to 700,000 objects), that mechanism was falsi-
fied. We implemented the cytokineThreshold parameter, with which we found sets of
parameter values that achieved validation targets. This cytokine threshold mechanism is
coarse-grain. It may map to more complex cytokine-suppression mechanisms including feed-
back inhibition and suppressor of cytokine signaling proteins [43]. Given sufficient validation
data, we can add finer grain mechanistic features by introducing new SOLUTE types (e.g. those
that map to suppressor of cytokine signaling proteins) and behaviors in place of the existing
cytokine threshold mechanism.

Current model falsification
Reporting validation results without demonstrating subsequent falsification would provide an
incomplete picture of the IRP. We describe current model falsification to address both the limi-
tations and future direction of the ISHC and ISL. The current models are limited to the major-
ity of P450s that are down-regulated by an inflammatory state; however, a small subset of
P450s are actually induced [1]. Clearance data for drugs primarily metabolized by this subset is
expected to falsify existing mechanisms. Given that scenario, we can iteratively refine
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mechanisms to simultaneously allow both inflammatory-induced P450 down-regulation and
induction.

The analogs are also falsified by additional immune system mechanisms other than P450
down-regulation. For example, inflammatory states cause leukocyte recruitment and localiza-
tion via chemokines secreted from sites of necrosis [44,45]. Achieving validation targets drawn
from these phenomena would require in silico mechanisms for leukocyte circulation, recruit-
ment, and extravasation, as well as their downstream effects on hepatotoxicity. As we continue
expanding the set of targeted attributes to include more diverse yet still interconnected phe-
nomena, we expect IRP cycles to continue improving explanatory mechanistic insight into
immune system involvement in drug metabolism and toxicity.

Supporting Information
S1 Fig. Flowcharts of mechanism logic. U[0,1) represents a random probability draw from
the standard uniform distribution.
(TIF)

S2 Fig. Binding probabilities used by BINDING HANDLER. E1 –E4 represent four ENZYMES. S1 –S5
represent five SOLUTES. A. Binding probability using stepwise binding mode. B. Binding proba-
bility using variable binding mode. C. P450 up- or down-regulation causes the binding curve
to shift right or left, respectively, which has no effect on binding probability in the yellow
region (typical range of number of bound ENZYMES).D. P450 up- or down-regulation causes the
binding curve to shift right or left, respectively, which affects binding probability within the yel-
low region.
(TIF)
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