
Congenital cataract is a major cause of visual impair-
ment and childhood blindness [1]. Nonsyndromic congenital 
cataracts have an estimated frequency of 1–6 per 10,000 live 
births, with 1/3 of cases having a positive family history [2]. 
Among these families, an autosomal dominant genotype is 
the most prevalent [3]. To date, at least 19 genes have been 
reported to be linked with different modes of nonsyndromic 
autosomal dominant congenital cataract. These genes encode 
for numerous crystallins: alpha A crystallin (CRYAA) [4], 
alpha B crystallin (CRYAB) [5], beta A1/A3 crystallin 
(CRYBA1/A3) [6], beta A4 crystallin (CRYBA4) [7], beta B1 
crystallin (CRYBB1) [8], beta B2 crystallin (CRYBB2) [9], 
gamma C crystallin (CRYGC) [10], gamma D crystallin 
(CRYGD) [11], gamma Scrystallin (CRYGS) [12], alpha 3 gap 
junction protein (GJA3) [13], alpha 8 gap junction protein 
(GJA8) [14], major intrinsic protein (MIP) [15], beaded 
structural filament protein-2 (BFSP2) [16], paired box gene 
6 (PAX6) [17], paired-like homeodomain 3 (PITX3) [18], heat 
shock transcription factor 4 (HSF4) [19], v-maf avian muscu-
loaponeurotic fibrosarcoma oncogene homolog (MAF) [20], 

charged multivesicular body protein 4B (CHMP4B) [21], and 
EPH receptor A2 (EPHA2) [22].

BFSPs are lens-specific proteins belonging to the inter-
mediate filament (IF) protein family. BFSP1 (filesin) and 
BFSP2 (phakinin) are the principal components of beaded 
filaments, which are unique cytoskeletal lens structures 
[23]. The distinctive sequence characteristics of filesin and 
phakinin make it difficult to classify them into any present 
group of cytoplasmic IFs. Although the biological functions 
of filesin and phakinin are not clear, evidence indicates that 
they play an important role in maintaining lens transparency 
during fetal development and fiber cell differentiation [23,24]. 
Three different mutations of BFSP2 are known to comprise 
autosomal dominant inherited cataract (E233∆; R287W; 
G109A) [16,25,26]. Currently, only one study has reported 
recessive inheritance associated with BFSP1 mutation [27].

A five-generation Chinese family with individuals 
affected with bilateral congenital cataract was studied. Micro-
satellite markers and linkage analysis were excluded candi-
date genes at 1p, 1q, 2q, 3q21–25, 3q27, 10q, 11q, 11p, 12q, 
13q, 16q, 17q, 20q, 21q, and 22q. Whole-exome sequencing 
was applied to determine mutations and a BFSP1 mutation 
(c.1042G>A) was found in two affected family members. 
Sequencing showed that this mutation was observed in all 
affected members of this family, but not in unaffected family 
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members or in 200 ethnically matched controls. Here, for the 
first time, we report that BFSP1 mutation is associated with 
autosomal dominant inherited cataract.

METHODS

Subjects and sample collection: Data on a five-generation 
Chinese family, consisting of 48 individuals, were collected 
at the Eye Hospital of China Medical University (China 
Medical University, Shenyang, China). Two hundred unre-
lated subjects without eye diseases were also recruited from 
the Eye Hospital of China Medical University as normal 
controls. The family history revealed 15 affected members 
in total (Figure 1). All available members underwent detailed 
ophthalmic examination, including visual acuity (Snellen 
chart), slit-lamp examination, and fundus and retinoscopy 
examination after pupil dilation. Clinical details were 
recorded using a standard questionnaire. Blood specimens 
were obtained from 20 available members (10 affected, 4 
unaffected, 6 spouses). This study adhered to the provisions 
of the Declaration of Helsinki and was approved by the Ethics 
Review Board of China Medical University.

Genotyping and linkage analysis: Blood samples (5–10 ml) of 
20 available members were collected and genomic DNA was 
extracted with a TIANamp DNA Blood Mini Kit (Tiangen 
Ltd., Beijing, China). Two or three microsatellite markers 
of each candidate gene were chosen based on details from 
the Marshfield map of the NCBI database. Ultimately, 50 
microsatellite markers were analyzed for 19 known candi-
date genes. Microsatellites were amplified by polymerase 
chain reaction with a PCR-cycler (Biorad, Herculas, CA). 
Primers were designed with Primer 3. Amplifications were 
performed in 20 μl reactions containing 100 ng of genomic 
DNA, 0.1 μmol of each forward and reverse primer, 0.1 mM 
of deoxyribonucleotide, 1X PCR buffer, 0.1 mM MgSO4, and 

0.5 U Taq DNA Polymerase (Life Technologies Corporation, 
Carlsbad, CA). The thermocycler program was as follows: 
initial denaturation at 94 °C for 30 s followed by 35 cycles of 
denaturation at 94 °C for 30 s, annealing at 54–60 °C for 30 s, 
and extension at 72 °C for 1 min. PCR products were pooled, 
mixed with loading dye containing internal size standards, 
denatured at 99 °C for 15 min and electrophoresed on 8% 
denaturing polyacrylamide gels. Finally, genotypes for each 
individual are documented. Two-point linkage analysis was 
performed by MLINK from the LINKAGE (Version 5.1) 
program package. Autosomal dominant inheritance with 
penetrance of 0.9999 and a disease gene frequency of 0.0001 
were assumed. Recombination frequencies were considered 
to be equal between males and females for all markers.

Whole-exome sequencing: Because there was no evidence 
of linkage in any known loci after analysis, whole-exome 
sequencing was undertaken on two genomic DNA samples 
(IV6 and V8). Three micrograms of genomic DNA were 
sheared with Covaris S2 (Covaris; Woburn, MA) to achieve 
fragments with a mean size of 300 bp. Exome enrichment 
was conducted with TruSeq Exome Enrichment Kit, which is 
designed to target 62 Mb genome regions, including 20,794 
targeted genes. Appropriate amounts of enrichment samples 
were pooled and sequenced on a HiSeq2000 instrument (Illu-
mina; San Diego, CA). Sequencing data were aligned to the 
human genome reference (hg19) sequence using the Burrows 
Wheeler Alignment tool (BWA 0.5.9) [28] with default 
parameters. PCR duplicates were excluded with the Samtools 
package [16], while regional realignment and quality score 
recalibration were determined with the Genome Analysis 
Toolkit (GaTK v1.3) [27]. Variants were filtered with single 
nucleotide polymorphism database (dbSNPs) and the 1000 
Genome database.

Figure 1. Pedigree of a five-generation Chinese family with autosomal dominant congenital cataract is shown. The proband is indicated by 
a black arrow. Except for the proband, all affected individuals had undergone cataract surgery within the first decade.
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Mutation analysis: BFSP1, the candidate gene, which is 
located at 20p12.1 (GenBank ref. no. NM_001195), was 
analyzed with Sanger sequencing. Primers were designed 
according to the mutation following whole-exome sequencing 
analysis to amplify the mutated base and flanking sequences 
of exon 7 (forward primer: 5′-CAC TTC CTT TAT GTC 
CTC ATC CA-3′; reverse primer: 5′-GTA GCC TAG CCC 
CCT AGT CG-3′). Amplifications were performed in 20 μl 
reactions as described above. The thermal cycler program 
protocol was as follows: initial denaturation at 94 °C for 
30 s followed by 35 cycles of denaturing at 94 °C for 30 s, 
annealing at 55 °C for 30 s, and extension at 72 °C for 1 
min. PCR products were purified with a gel extraction kit 
(TaKaRa, Japan) and sequenced with an ABI 3730×l DNA 
analyzer (Applied Biosystems). All family members and 200 
unrelated normal subjects were screened.

Bioinformatics analysis: The amino acid sequences of 
BFSP1 from different species (humans, mice, rats, cows, 
and chickens) were obtained from the NCBI GenBank, and 
conservation analysis was performed with the webpage 
Uniprot. The impact and physicochemical characteristics of 
mutation were predicted with PolyPhen 2.

RESULTS

Clinical evaluation: All the affected family members had 
bilateral cataract. Opacities were visible in early childhood, 
which had a great influence on visual acuity. The proband, 
a 32-year-old woman, was diagnosed with bilateral cataract 
and presented with nuclear opacity (Figure 2). Except for the 
proband, all of the affected individuals underwent cataract 
surgery within the first decade; the proband had undergone 
iridectomy in childhood. There was no evidence of other 
systemic or ocular defects.

Mutation analysis: There was no evidence of linkage at any 
known loci following linkage analysis, so whole-exome 
sequencing was used. On average, 85% of the exomal regions 
of genomic DNA samples (IV6 and V8) were covered with a 
sequencing depth of more than 61×. After all the candidate 
genes were screened, a novel mutation at exon 7 of BFSP1 
(c.1042G>A) was found (Figure 3). The mutation was not 
found in any unaffected member or among 200 unrelated 
normal subjects.

Bioinformatics analysis: The results indicated a heterozy-
gous G→A transversion at c.1042 in exon 7 of BFSP1 in all 
affected family members that resulted in the substitution of a 
wild-type aspartate (Asp) to an asparagine (Asn, p.D348N). 
After alignment of the BFSP1, the protein sequence revealed 
that the Asp at the 348th amino acid position was highly 
conserved among many species (Figure 4). Moreover, the 

Figure 2. Slit-lamp photograph of 
the lens of an affected individual 
(IV6) with nuclear cataract. The 
individual underwent iridectomy 
in childhood in both eyes.

Figure 3. Sequence chromatogram 
from an affected individual shows 
the heterozygous c.1042G>A 
missense mutation in beaded struc-
tural filament protein-1 (BFSP1). 
The arrow indicates the mutation 
spot in the sequence of the affected 
individual. 
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functional effects of the D348N mutation were predicted 
by PolyPhen 2. The results indicated that the mutation may 
possibly be damaging, with a score of 0.980.

DISCUSSION

Here, we report for the first time that a BFSP1 mutation is 
associated with autosomal dominant congenital cataract in 
humans. In this study, a novel mutation (c.1042G>A) at exon 
7 of BFSP1 was detected in a Chinese family. The muta-
tion created a substitution of an Asp to an Asn (p.D348N). 
This sequence change cosegregated with a nuclear-cataract 
phenotype in the family and was not observed in 200 unre-
lated normal individuals. In the literature, there is currently 
only one BFSP1 mutation study (c.736–1384_c.957–66 del) 
involving an autosomal recessive cataract family [27]. In that 
study, homozygous affected members of an Indian family 
presented with cotton-like cortical opacities in the anterior 
cortex. The difference in cataract phenotype between this 
family and the Indian family may demonstrate that genes or 
environmental factors modify the expression of the primary 
mutation associated within cataracts [23]. Considering the 
development of early onset age-related nuclear cataract in the 
Ramachandran et al. study, the c.1042G>A mutation discov-
ered here may play a more important role in maintaining lens 
transparency and physiological function.

Filesin and phakinin are intermediate filaments and form 
beaded filament protein, which is exclusively expressed in 
lens fiber cells. Like other IFs, filesin consists of a central 
α-helical rod flanked by nonhelical head and tail domains. 
Studies from BFSP1 and BFSP2 knockout mice suggest that 
the beaded filament is required to maintain cell morphology 
and three-dimensional membrane architecture [23,24].

There are three types of BFSP2 mutation reported as the 
genetic base of inherited cataract. A deletion mutation in exon 
3 (E233Δ) causes autosomal dominant congenital cataract 
[26] and other families with the mutation (R287W; G1019A) 
showed childhood cataract [16,25]. Another mutation, 
E233Δ, was reported in a Chinese family and was associated 

with childhood cataract and myopia [24]. However, in the 
present study there was no evidence of myopia in affected 
members. Despite phenotypic differences in the BFSP1 and 
BFSP2 mutations, the present results further confirm that 
beaded filaments are essential for lens transparency and lens 
homeostasis.

According to the GenBank (Q12934), the mutation 
(c.1042G>A) highlighted in the present study family is local-
ized to the tail region of filesin, which along with phakinin, 
has an important effect on beaded filament formation. The 
mutation found by Ramachandran et al. is also predicted to 
result in the loss of the tail region of the protein. Moreover, 
a study of BFSP1 gene knockout mice [23] found that the 
lenses of knockout mice scatter more light than those of the 
wild type. Alignment of the BFSP1 protein sequence among 
different species revealed that the Asp residue at position 
348 is highly conserved. Furthermore, PolyPhen 2 analysis 
indicated that D348N may possibly be damaging. In addition, 
with the substitution of Asp for Asn in the protein sequence, 
Asp-Leu-Thr becomes Asn-Leu-Thr, forming a potential 
N-glycosylation site (N-X-S/T, where X is any amino acid 
except for proline). As such, filesin may be glycosylated, 
hindering BFSP1 beaded filament assembly, ultimately 
leading to cataract. Because wild-type human filesin has 
not been crystallized and there is no homologous sequence 
of filesin, a three-dimensional model to predict effects on 
protein function cannot be made with Swissmodel software. 
However, taken together with previous research, the results 
of the present study add to the suspected pathogenicity of the 
BFSP1 mutation in human autosomal dominant congenital 
cataract.

Whole-exome sequencing was used in this study. 
Compared with genome-wide scans or other genetic methods, 
there are definite advantages to whole-exome sequencing, 
including its high output, ease of use, and cost effectiveness 
[28]. In this study, after sequencing data were aligned to the 
human genome reference (hg19) sequence, the suspect BFSP1 
mutation (c.1042G>A) associated with congenital cataract was 
analyzed first because a study indicated that BFSP1 mutation 
is associated with autosomal recessive congenital cataract; 
this strategy of mutation screening proved time-saving and 
effective.

In conclusion, the novel missense BFSP1 (c.1042G>A) 
mutation in a Chinese family is associated with isolated 
autosomal dominant inherited cataract. The present study 
also further highlighted the congenital cataract genotype 
and phenotype in humans. This is the first report of a BFSP1 
mutation associated with autosomal dominant inherited 

Figure 4. The multiple-sequence alignment of BFSP1 from different 
species is shown. The Asp348 residue (highlighted with red boxes) 
is located within a highly conserved region.
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cataract and underscores the important role BFSP1 has in 
maintaining lens opacity.
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