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The human motor system is robust, adaptive and very flexible. The underlying principles

of human motion provide inspiration for robotics. Pointing at different targets is a

common robotics task, where insights about human motion can be applied. Traditionally

in robotics, when a motion is generated it has to be validated so that the robot

configurations involved are appropriate. The human brain, in contrast, uses the motor

cortex to generate new motions reusing and combining existing knowledge before

executing the motion. We propose a method to generate and control pointing motions for

a robot using a biological inspired architecture implemented with spiking neural networks.

We outline a simplified model of the human motor cortex that generates motions using

motor primitives. The network learns a base motor primitive for pointing at a target in

the center, and four correction primitives to point at targets up, down, left and right from

the base primitive, respectively. The primitives are combined to reach different targets.

We evaluate the performance of the network with a humanoid robot pointing at different

targets marked on a plane. The network was able to combine one, two or three motor

primitives at the same time to control the robot in real-time to reach a specific target. We

work on extending this work from pointing to a given target to performing a grasping or

tool manipulation task. This has many applications for engineering and industry involving

real robots.

Keywords: neurorobotics, motion generation, spiking neural networks (SNN), pointing a target, motor primitives,

humanoid robot (HR), closed-loop

1. INTRODUCTION

The human motor system has been studied for a considerable period of time. Yet, robots lack
robust, flexible and adaptive controllers comparable to the human motor system (Pfeifer and
Bongard, 2006). One specific example is the capability to generate or pre-shape motions before
execution (Shenoy et al., 2013).

Recent studies provide insights into the mechanisms for motion generation in the motor cortex.
During reaching, activity in the motor cortex as a whole shows a brief but strong rotational
component (Churchland et al., 2012; Russo et al., 2018). Instead of encoding parameters of
movement in single neurons, the motor cortex as a whole can be understood as a dynamical system
that drives motion. An initial state is produced externally and the system naturally relaxes while
producing motor activity, which is then projected down the spinal cord to inter-neurons and
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motor-neurons (Churchland et al., 2012; Russo et al., 2018).
Neural activity in the motor cortex shows a strong and amplified
but stable response to initial activation (Hennequin et al., 2014).
There is no broad consensus on the role of the motor cortex
in voluntary movement. Nevertheless, neural correlates of many
different types of parameters of arm movements have been
found in the motor cortex (Kalaska, 2009). This behavior can be
replicated by artificial neurons with strong recurrent connections
balanced by strong inhibitory connections (Hennequin et al.,
2014). Activity in the resulting network closely resembles activity
in the motor cortex and can be used as an engine for complex
transient motions (Hennequin et al., 2014). For example, in
Ayaso (2001) an architecture detailing how to generate motor
commands for armmotions is proposed, which also includes how
learning and adaptation can be achieved by changing the gain.

A broadly accepted hypothesis is that the central nervous
system uses linear combinations of a small number of muscle
synergies to produce diverse motor outputs (Bizzi et al., 2008).
The activation of the synergies can change based on sensor
feedback to produce adaptive motions. The neuron activity
in the intermediate zone of the spinal cord resembles motor
primitives rather than individual muscles (Hart and Giszter,
2010). These neurons could act as building blocks for more
complex voluntary movements. Different approaches have used
the concepts of motor primitives to represent andmodel motions
(Schaal, 2006; Tieck et al., 2018b,c). The dynamic movement
primitives introduces a representation of movement as a spring-
damping system in which the goal state is an attractor that allows
for easily adaptable complex motor behaviors, both rhythmic and
discrete (Schaal, 2006).

A set of approaches implemented with spiking neural
networks (SNN) (Maass, 1997; Vreeken, 2003; Walter et al.,
2016), represent motion using motor primitives to model target
reaching (Tieck et al., 2018c, 2019) and different activation
modalities (Tieck et al., 2018b). An SNN that autonomously
learns to control a robotic arm through motor babbling and
STDP was proposed in Bouganis and Shanahan (2010). In
Chadderdon et al. (2012) an SNN is implemented that learns
to rotate a single joint to a target and the learning is based on
dopamine inspired reinforcement learning with a global reward
and punishment signal. In Tieck et al. (2018a) a combination of
reinforcement learning with a liquid state machine was used to
learn continuous muscle activation of a musculo-skeletal arm.

To control robots in a way closer to biology we can use SNNs
to implement models from neuroscience. Using the principles
outlined in our previous work on motor primitives (Tieck et al.,
2018b,c, 2019) and using the mechanisms for motion generation
from the motor cortex (Ayaso, 2001; Hennequin et al., 2014), we
can model pointing motions for a humanoid robot.

We propose an SNN that combines a simplified model
of the motor cortex to generate motions combining motor
primitives to control pointing motions with a humanoid robot
arm. Our approach for motion generation (pre-shaping) before
execution has three main components (see Figure 1): a motion
generation layer, a motor control layer with motor primitives
and a target representation layer. The motion generation layer
produces circular activity that creates the activation patterns

for the primitives. The motor control layer has one base
primitive for the pointing motion, and four correction primitives
that point to targets left, right, up and down from the base
motion target point. The target representation layer takes the
target position and based on the relative distance to the base
motion target point uses selective disinhibition to activate
the correction primitives. We evaluated our approach with
a humanoid robot, HoLLiE in Hermann et al. (2013), by
defining different targets on a plane and having the robot
point to them (see Supplementary Video 1).

2. APPROACH

Our SNN combines a simplified model of the motor cortex
to generate motions combining motor primitives to control
pointing motions with a humanoid robot arm. And here we
present the details. In the work presented in Tieck et al. (2018c,
2019) we show how to perform online combination of primitives
to achieve perception driven target reaching. In this work,
the SNN performs motion generation (pre-planning) before
execution using a bio inspired architecture.

We formalize the problem as follows: given an initial state
of the robot and a set of primitives, move it to a target point
on a plane. In classical robotics a system calculates the inverse
kinematics (IK) and then validates the configuration to finally
generate a motion trajectory. In contrast, our approach can
do this without calculating the IK and without validating the
resulting configurations. We define motor primitives for the
arm as valid possible motions in the working space. The way
new motions are generated is by using a base primitive that
is activated, combined with a full or partial activation of the
correction primitives. By using motor primitives to represent
motions, we solve the trajectory generation in the “motor
primitive space.” The resulting motions are combination of the
primitives, which have no invalid configurations. In this work,
we do not consider obstacles.

A go-cue in one neuron initiates circular activity in the motor
generation layer that represents the motor cortex (Ayaso, 2001;
Kalaska, 2009; Russo et al., 2018). The activity of this layer is
used to activate the base and correction motor primitives (Tieck
et al., 2018b,c, 2019). Based on an error signal representing the
target, the correction primitives are disinhibited and combined
with the base (Richter et al., 2012; Sridharan and Knudsen,
2015). The resulting spike activation is decoded to motor
commands for the robot joints. The learned weights are the
distance based inhibitory connections in motion generation
layer, the connections to the base motor primitive, and the
connections to the correction primitives. The architecture with
the main components is presented in Figure 1. It has three main
components: a motion generation layer, a motor control layer
with motor primitives and a target representation layer.

The motion generation layer produces circular activity that
creates the activation patterns for the primitives. A population
generates neural activity over a certain period of time. The first
step is to normalize spike activation by changing the weights of
active neurons to get a similar amount of spikes from the whole
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FIGURE 1 | Architecture with main components: a motion generation layer that produces the activation patterns, a motor representation layer with motor primitives

with a base and four corrections primitives, and a target representation layer to perform selective disinhibition.

population. Then, to obtain heterogeneity we add an inhibitory
population with random connections.

The motor control layer provides the low level motor
representation using motor primitives. There is one base motion
primitive for pointing to the center, and four correction
primitives that point to targets left, right, up and down from
the base motion target point. The base primitive is activated
and, depending on the target representation signal, the correction
primitives are disinhibited.

The target representation layer takes the target position and,
based on the relative distance to the base motion target point,
uses selective disinhibition to activate the correction primitives.
The target signal is the relative position to the base primitive
final position, and it is used to regulate the activation of the
correction primitives.

2.1. Motion Generation, M1
In the motion generation layer MG there is a group of
two recurrent populations representing the motor cortex,
one is a 2D grid MGG and the other is an inhibitory
MGI to obtain heterogeneity (see Figure 2). This layer
generates circular neural activity over a period of time
(Churchland et al., 2012; Russo et al., 2018).

To initialize the motion generation layer there are two steps.
First, we stabilize the spike activation inMGG and second we add
the inhibitory connections from and toMGI . Then we go over all
neurons giving a go-cue to each one and we record how long the
activity propagates. The go-cue is a continuous input of spikes to
the respective neuron during 10 ms. For each motion we select
the “go-neuron” as the neuron that produces activity with similar
time to the desired motion.

MGG is square grid of 20 × 20 neurons with recurrent
connections (see Figure 2). There are two types of connections,

the directed excitatory to create the circular activity and the local
inhibitory to stabilize the activity. The excitatory connections
(blue connections in Figure 2) are static and have specific
directed connectivity depending on the quadrant the neurons
area to amplify the activity and force the rotational activation.
The distance based local inhibitory connections (black dotted
circular lines in Figure 2) stabilize the activity.

To normalize the spike activity ofMGG, the inhibitory weights
are changed to achieve a specific total activity MGG

norm with the
following learning procedure. We add a spike recorder to all
MGG neurons. A go-cue (pink dotted arrow in Figure 2) is given
as short burst of 10 ms of spikes into one single neuron at
a time. This initial neuron is chosen randomly every time, so
that there are no “dark” spots in MGG without spike activity.
Every 100 ms 1t (nest.sim(100 ms)) the simulation is stopped.
The total spikes of MGG in that δt are counted as MGG

spikes
. If

MGG
spikes

> MGG
norm, then increase the weights by 1w of the

inhibitory connections coming out of all active neurons. Else
if MGG

spikes
< MGG

norm, then decrease them. The 1w must be

small, so that a weight update does not kill the activity. In other
words, we want to regulate the global total activity of the MGG

population, if it is too high then propagate less, if it is too low then
propagate more.

After training, once the circular activity propagation of MGG

is stable, we add a small population MGI with random input
and output connections to and from the 2D grid MGG to obtain
heterogeneity. Both, input and output connections are static
and random. The output connections—from MGI to MGG—
are strong inhibitory (red connections in Figure 2), and the
input connections are excitatory (green connections in Figure 2).
To set the connections, we set fix numbers of input and
output connections, then we sample random neurons from both
populations and connect them.

Frontiers in Neurorobotics | www.frontiersin.org 3 September 2019 | Volume 13 | Article 77

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Tieck et al. Pointing Motion Combining Motor Primitives

FIGURE 2 | Motion generation layer with circular activation. A grid of neurons

is connected with directed static excitatory connections depending on the

quadrant. There are inhibitory plastic connections based on the distance. A

hidden layer connected with input excitatory and output inhibitory connections

to change the regular activity of the grid.

With MGI and MGG connected, we then go over all neurons
in MGG to asset the resulting activity. We give again a “go-cue”
as short burst of spikes for 10 ms into each single neuron “go-
neuron” (pink circle in Figure 2), and then measure how long
does the activity propagates. The time is measured either until
no more spikes occur, or interrupted after a maximum time
limit in simulation steps. The activity duration for each “go-
neuron” is stored in a table. Then we pick those with similar
time to the desired motions, and this will be the “go-neuron” for
the primitives.

2.2. Base and Correction Motor Primitives
The motor primitive layer MP is a layer for low level motor
representation using motor primitives (Tieck et al., 2018b,c,
2019) (see Figure 3). The primitives are combine to generate a
specific motion activated by the motion generation layer MG. In
MP there are populations, one for the base primitive and one for
each of the correction primitives. During execution of a motion,
the base primitive is activated, and depending on the target
representation signal, the correction primitives are activated.

To generate pointing motions in a certain working space, we
define the following motion representation. We define first a
base primitive MPB (see Figure 3), which is a motion to point at
the center of the working space. Then we define four correction
primitives MPC to point at points to the left, right, up and down
of the center (see Figure 3). This four points define an ellipsoid
as the boundary of the working space in the plane.

For each primitive, a different population is connected toMG.
Each primitive has two motor neurons per joint in the robot.
Each output spike causes small change in the corresponding

FIGURE 3 | Motor primitives layer. The base primitive is detailed for three

joints, the same structure applies to the correction primitives. There are four

correction primitives—left, right, up, and down. All primitives receive activation

input from the motion generation layer.

robot joint, it is defined as a fixed gain factor that regulates the
speed. There is a detailed view of the primitive population for
the base motion in Figure 3. The training is done one by one to
resemble the exemplary motion. We use supervised learning to
minimize the error and adapt the weights and produce a specific
motion (Tieck et al., 2018b).

2.3. Target Representation
The target representation layer is connected to the correction
primitives with inhibitory synapses as shown in Figure 4. The
correction primitives are inhibited by default, and they are
disinhibited according to required adaptation provided by this
layer. This mechanism is called selective disinhibition and it is
used for attention mechanisms, decisions and mechanisms for
target selection (Richter et al., 2012; Sridharan and Knudsen,
2015). For example, if no correction to the right is necessary,
then the right primitive remains fully inhibited. In Kawato
(1999) and Wolpert et al. (1998), they see the cerebellum
as an internal model that can predict how the end result
of a known motion will be like. This prediction can be
compared to a desired target to make the respective corrections
before execution.

In our approach we use a relative target representation, with
the target’s relative position to the base primitive final position.
That signal is used to regulate the activation of the of the neurons
in this layer, by decreasing the input current proportionally
this layer activates the correction primitives using selective
disinhibition. This signal translates to the amount or percentage
of activation, between 0 and 1, of the respective correction
primitives, with 1 being full inhibition and 0 full activation. This
adaptation or pre-shaping happens before executing the motion.
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FIGURE 4 | Target representation. This layer projects with strong inhibitory

connections to the correction primitives The target is represented as a relative

error signal to the target of the base primitive. This signal is used to disinhibit

the primitives, and adapt the resulting motion. The output from the base

primitive and the active correction primitives is combined to produce the

motion commands for the robot.

3. RESULTS

In most modern and more complex robotic applications motions
have to be dynamically generated according to flexible targets
or constraints. A major component of many robot tasks is the
reaching of specific, often dynamic targets. While this is usually
followed by some form of manipulation of an object, the pure act
of reaching a specified goal state with a robot manipulator can
be understood as a pointing motion. Due to this, we use pointing
toward different goal-points on a board plane (see Figure 5) to
evaluate how well the robot generates adaptive motions.

3.1. Experiment Setup
Initially, base motor primitives have to be learned. A base motion
of pointing toward a central target is manually created, but
could easily be generated with motion capture or teached-in. The
network is then trained to produce this specific pointing motion
when all correction primitives are fully inhibited. Afterwards, the
base motion is manually adapted toward 4 specified points in
the target area, each with a distance of 25 cm from the center
to the left, right, top and bottom (red points in Figure 5). The
correction primitives in the network are trained to produce the
difference from the base motion toward these adapted motions,
so that as a whole the network produces them when their the
corresponding correction primitive is uninhibited.

This allows the network to create different motions by
partially inhibiting the corrections primitives. The quality of
the generated motions is measured based on the network’s
ability to point at different targets. The reference points are
used as a coordinate system, with positive x-axis representing
the inverse inhibition of the right primitive and the negative
axis the left primitive, respectively. In the same way, the y-axis
represents the up and down primitives. This allows a mapping
from every point on the board to specific inhibitions of the
correction neurons. A motion is generated with these inhibitions
set manually and the final position of the end-effector of the robot

FIGURE 5 | Basic experiment setup. The robot is in a starting position in front

of the board plane and will produce a motion toward a target point (green x).

Red points show the targets for the base and correction primitives that are

already learned.

is then compared with the intended goal. The distance between
actual and target position is used as a measure of error in the
following experiments.

3.2. Humanoid Robot HoLLiE
HoLLiE, Hermann et al. (2013) is a mobile service robot with
two functional arms and humanoid hands (see Figure 5). The
robot was developed at the FZI Research Center for Information
Technology for different tasks, such as accompanying visitors and
mobile manipulation (see1).With a range of different sensors and
a highly articulated body HoLLiE can handle everyday objects,
interact with humans inmultiple ways and therefore be employed
in various service robotic scenarios. For these characteristics
HoLLiE was chosen to achieve human-like pointing motions, as
the arms are mounted on an upper body in a similar kinematics
to a human arm.

3.3. Implementation Details
Motions are generated by an SNN using the PyNN API
implemented in NEST, Diesmann and Gewaltig (2001) running
on a laptop computer. We use Robot Operating System (ROS)2 as
a communication layer to connect NEST with the robot.

The SNN was simulated in steps of 100 ms and the spikes in
this time frame were accumulated before being sent to the robot.
This frequency is enough to generate smooth real-time robot
movements, and a complete pointing motion takes about 10s.
The generated spikes in the output of the motor-neurons were
directly decoded into changes in joint values for the robot. The
neuron activity is decoded by changing joint position by a fixed
value for each spike. The resulting joint values were than used as
goals for the joint trajectory controller in ROS.

During training of MGG, the weights of one iteration are
stored in a dictionary data-structure where all the required
weight updates are performed. Only after all updates have been
calculated, the “set weights” function in NEST is called, as

1https://www.fzi.de/en/research/projekt-details/hollie/
2http://www.ros.org/
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constant weight changes are greatly reduce the simulation time
for little gain. Using this, the total training time could be reduced
to about 1 h on a single processor.

The network is implemented with basic leaky integrate and
fire neurons LIF. The layerMG is built as a population organized
in a grid of 20 × 20 neurons MGG and an inhibitory population

FIGURE 6 | Spike plots for the motion generation population, time is in milliseconds. (A) Before learning. (B) After learning.

FIGURE 7 | (A) Different points evaluated in the experiments. (B) Error values over target area and error values for learned base points (red). Outside of the circular

area encapsulated by the base points, the error increases significantly.

FIGURE 8 | Frame sample of the experiments. This shows the robot pointing at different types of targets on the board in Figure 7A.
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of 20 neurons MGI . For each of the 5 motor primitives MP (one
base and four correction) 2 neurons are used per joint, with three
active joints being used for the evaluated motions, for a total
of 30 neurons. The total SNN contains 450 neurons and about
20,000 synapses.

3.4. Experiment
The first thing we evaluated was how does the learning in
the network work, specially in the motion generation layer. In
Figure 6 we recorded the spike activity of all the neurons before
and after learning. Without learning, you can see on the left
how the go-cue propagates in the neurons and then saturates,
producing chaotic activation. After learning, you can see on the
right how the activation of the population is periodic (circular)
and is stable.

FIGURE 9 | Error by distance to center for reaching all the base points (red in

Figure 7A).

FIGURE 10 | Error by distance to center for different correction primitives

(black in Figure 7A). Right is the most accurately learned primitive, down the

least accurate one.

Throughout the experiments different types of targets were
attempted to be reached based on the board displayed in
Figure 7. The distance from the target in millimeters is used as
an error for evaluation. The base motion is the center red dot.
The correction primitives are the red dots on the circle. If we
only use one of the correction primitives at a time, we obtain
black dots. A combination of multiple correction primitives are
the green dots. The blue dots are outside of the working space,
but still in the primitive space. The yellow dots on the right are
extrapolations. The frame sample in Figure 8 shows the robot
pointing at different types of targets on the board.

Red points represent the targets for the manually designed
base motions that can be reached by fully inhibiting all or all
but one correction primitives. Figure 9 shows the errors for
the different base motions. It can be seen, that they are not
hit completely accurately, which results from the relatively high
impact single spike inaccuracies have on the end position.

The black points represent motions using only a single,
partially inhibited correction primitive. Figure 10 shows that
there is no additional error created by partially inhibiting
the primitives, other than the already existing inaccuracy
in the learned motions themselves. Green points display
motions combining two correction primitives, but with a total
distance from the base motion not greater than one full
correction primitive.

While Figure 11 can not show as easily how the in these
targets results purely from the base primitives, with the exception
of one point directly on the circular test area all motions
produced a smaller error than the most incorrect base motion.
This again suggests, that no additional error is added through the
combination of two correction primitives. The light blue points
are also created by combining two correction primitives, in this
case, though, their distance to the base is greater than one the
distance of one primitive.

These results (Figure 12) show errors that do not seem to
simply happen from inaccuracies in the learned motions. The

FIGURE 11 | Error by distance to center for points in the different quarters

(green in Figure 7A). For comparison, the error of the most inaccurate

correction primitive is noted.
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FIGURE 12 | Error by distance to center for points in the different quarters

(blue in Figure 7A). For comparison, the error of the most inaccurate

correction primitive is noted.

upper right point using both primitives fully, for example,
generates an error of 14 millimeters, while the sum of the errors
of both used correction primitives is only 12 mm.

All marked points are well within the workspace of the
robot. But yellow points are not reachable with the defined
primitives, meaning an activation of 1 (100) of any combination
of the motions will not go outside of the bounds defined by
the primitives (red dots). Moreover, outside of the circular area
used in the previous experiment the method of combining
primitives loses precision, as a consequence. Finally, the yellow
points are actually unreachable by combining primitives with
total activation. An extrapolation from the right primitive would
be necessary. To accomplish this, the right primitive is not only
uninhibited, but additional spikes are added to generate more
activity. So, there is a correlation of the error with the positions
of the learned base motions. As Figure 13 shows, while direction
of the adaptation is correlated, the error is greatly increased and a
precise correction does not occur. The total errors over the target
area can be seen in Figure 7B. In a circular area between the base
motions, the error can be reduced to inaccuracies in learning,
while outside of this area additional errors can be measured.

4. DISCUSSION

Based on the results and the evaluation form the experiments
we can highlight certain aspects. If the target distance is of one
correction primitive or less, then there is no significant added
error through adaptation. If there is a higher distance, then the
error increases. The error gets a relatively high impact from single
spikes and a reduction by using larger populations and different
encoding techniques would allow for more precision. This is a
low level control problem, and we currently work on a spike
based controller for ROS to achieve smooth control.

We successfully implemented and tested an SNN for voluntary
adaptive motions using an architecture based on recent theories

FIGURE 13 | Error by distance to center for motions using more than one full

primitive (yellow in Figure 7A). Points after 1.0 show a greatly increased error.

about motion generation in the central nervous system. The
network was able to pre-shape motions and generate new
trajectories before the execution by combining primitives using
selective disinhibition. The SNN was able to control a real
humanoid robot in real-time in a closed-loop scenario. This
approach can be used with different robot arms, and is not
dependent on a specific kinematic structure.

In the future we want to benchmark the technical aspects,
and increase the precision and speed of the motions. With the
recent advances in backpropagation-like learning rules for SNN
as in Kaiser et al. (2019), we can learn different motion types for
different tasks in same network, and start them with different
go-cues. We also want to integrate event-based vision to this
system to get the target and drive the adaptation as in Kaiser et al.
(2016), and to explore learning by demonstration as in Kaiser
et al. (2018). We work on extending this work form pointing to
a given target to perform there a grasping or tool manipulation
task. This has many applications for engineering and industry
with real robots.
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