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Abstract

RASSF1A encodes a tumor suppressor that inhibits the RAS→RAF→MEK→ERK pathway and 

is one of the most frequently inactivated genes in human cancers. MUC1-C is an oncogenic 

effector of the cancer cell epigenome that is overexpressed in diverse carcinomas. We show here 

that MUC1-C represses RASSF1A expression in KRAS wild-type and mutant cancer cells. 

Mechanistically, MUC1-C occupies the RASSF1A promoter in a complex with the ZEB1 

transcriptional repressor. In turn, MUC1-C/ZEB1 complexes recruit DNA methyltransferase 3b 

(DNMT3b) to the CpG island in the RASSF1A promoter. Targeting MUC1-C, ZEB1 and 

DNMT3b thereby decreases methylation of the CpG island and derepresses RASSF1A 
transcription. We also show that targeting MUC1-C regulates KRAS signaling, as evidenced by 

RNA-seq analysis, and decreases MEK/ERK activation, which is of importance for RAS-mediated 

tumorigenicity. These findings define a previously unrecognized role for MUC1-C in suppression 

of RASSF1A and support targeting MUC1-C as an approach for inhibiting MEK→ERK 

signaling.
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Introduction

The RAS Association Domain Family 1A (RASSF1A) tumor suppressor gene (TSG) is 

localized to a region in chromosome 3 (3p21.3) that is deleted in human lung and certain 

other cancers (1, 2). RASSF1A expression is also repressed in diverse cancers by promoter 

hypermethylation (3, 4). Importantly, RASSF1A is one of the most frequently 

downregulated TSGs in human cancers (5–8). RASSF1A forms a complex with KRAS and 

regulates multiple downstream effectors, including suppression of the canonical 

RAF→MEK→ERK pathway (8–10). RASSF1A thereby relieves RAS→RAF-mediated 

suppression of the MST2 kinase (11, 12), linking RASSF1A to the HIPPO tumor suppressor 

pathway (13, 14). RASSF1A also promotes the formation of a complex between YAP and 

p73, resulting in the transcriptional activation of cell differentiation (15, 16). In addition, 

RASSF1A links KRAS to MOAP-1 and thereby activation of the proapoptotic BAX 

pathway (17, 18). Other studies have shown that RASSF1A depletion induces the epithelial-

mesenchymal transition (EMT) and the metastatic potential of lung cancer cells (19). 

RASSF1A deficiency thus enhances the development of KRAS-driven lung tumors in 

association with induction of a proinflammatory response (20). These findings have 

supported the importance of RASSF1A in integrating (i) regulation of the KRAS pathway, 

(ii) activation of proapoptotic signaling, and (iii) suppression of inflammation, EMT and 

tumorigenesis.

MUC1-C is an oncoprotein that associates with receptor tyrosine kinases (RTKs) at the cell 

membrane and promotes activation of their downstream signaling pathways (21–24). 

MUC1-C also localizes to the nucleus (25), where it interacts with transcription factors, such 

as β-catenin/TCF4 (26–28) and p53 (29), and regulates expression of their target genes (24). 

The role of nuclear MUC1-C extends to the epigenetic repression of TSGs by activating (i) 

DNA methyltransferase 1 (DNMT1) and DNMT3b, and thereby DNA methylation (30) and 

(ii) function of Polycomb Repressive Complex 1 (PRC1) (31) and PRC2 (32) with 

downregulation of TSG transcription (33). MUC1-C thereby represses expression of the 

Crumbs CRB3 polarity factor (34), which functions as a tumor suppressor by activating the 

HIPPO cascade of MST1/2 and LATS1/2 signaling (35, 36). In this way, MUC1-C activates 

YAP and YAP/β-catenin-mediated induction of WNT target genes, such as MYC (34). In 

contrast to RASSF1A, MUC1-C binds directly to the BAX BH3 domain with inhibition of 

BAX function (37) and is of importance to induction of EMT and the cancer stem cell (CSC) 

state (33, 38). These findings have collectively supported the notion that MUC1-C plays an 

opposing role to that of RASSF1A in the regulation of pathways linked to cancer 

progression.

The RASSF1A promoter contains a CpG island that is frequently hypermethylated in lung 

(4), breast (39) and diverse other carcinomas (40). MUC1-C has been linked to TSG 

repression (30); however, there is no known association between MUC1-C and 

hypermethylation of the RASSF1A promoter. In addressing this issue, the present studies 

demonstrate that MUC1-C forms a complex with ZEB1 on the RASSF1A promoter, recruits 

DNMT3b and suppresses RASSF1A transcription. The results support a model in which 

MUC1-C is necessary for RASSF1A promoter methylation, downregulation of RASSF1A 

expression and activation of MEK→ERK signaling.
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Results

MUC1-C suppresses RASSF1A expression

RASSF1A is repressed in diverse cancers (5–8). To investigate if MUC1-C is involved in 

RASSF1A regulation, we first studied the effects of silencing MUC1-C in BT-549 and 

MDA-MB-231 TNBC cells and, notably, found upregulation of RASSF1A mRNA and 

protein (Figs. 1A and 1B; Supplemental Fig. S1A). Similar results were obtained in KRAS 

mutant A549 and H460 NSCLC cells (Figs. 1C and 1D; Supplemental Fig. S1B), indicating 

that the effects of MUC1-C on RASSF1A are independent of KRAS status. These findings 

were not limited to TNBC and NSCLC cells in that downregulation of MUC1-C also 

induced RASSF1A expression in PC-3 prostate cancer cells (Figs. 1E and 1F). In concert 

with these results, enforced expression of MUC1-C in MUC1-null HEK293 cells was 

associated with suppression of RASSF1A mRNA and protein (Figs. 1G and H). These 

findings supported a role for MUC1-C in the repression of RASSF1A expression.

MUC1-C forms a complex with ZEB1 on the RASSF1A promoter

MUC1-C induces the ZEB1 transcriptional repressor in human cancer cells (41). In turn, 

MUC1-C binds to ZEB1 and promotes repression of ZEB1 target genes, such as miR-200c 
(41). The RASSF1A gene includes potential ZEB1 binding motifs upstream to the CpG 

island in the promoter region and in intron 1 (Fig. 2A). ChIP-qPCR studies of chromatin 

from BT-549 (Fig. 2B) and A549 (Fig. 2C) cells demonstrated that (i) MUC1-C and ZEB1 

occupy the RASSF1A promoter region, and (ii) silencing MUC1-C decreases ZEB1 

occupancy (Figs. 2D and 2E). We also found that MUC1-C and ZEB1 are detectable on 

RASSF1A intron 1 (Fig. 2F) and that MUC1-C silencing decreases the occupancy of ZEB1 

in this region (Fig. 2G). Similar results were obtained in PC-3 cells (Supplemental Figs. S2A 

and S2B), consistent with a role for MUC1-C in enhancing ZEB1 binding to its target genes.

MUC1-C suppresses RASSF1A activation by a ZEB1-mediated mechanism

As shown for MUC1-C, stable silencing of ZEB1 in BT-549 cells was associated with 

upregulation of RASSF1A mRNA and protein (Figs. 3A and B). We also found that 

silencing MUC1-C or ZEB1 was associated with comparable increases in RASSF1A 

expression (Fig. 3C). ZEB1 silencing in A549 cells similarly resulted in RASSF1A 

induction (Figs. 3D and 3E). In the HEK293 cell model, MUC1-C-induced repression of 

RASSF1A was attenuated by silencing ZEB1, confirming involvement of the MUC1-

C→ZEB1 pathway in suppressing RASSF1A expression (Figs. 3F and 3G). In concert with 

these findings, overexpression of MUC1-C in MCF-10A breast epithelial cells was 

associated with induction of ZEB1 and repression of RASSF1A (Supplemental Fig. S3).

To further assess these effects of MUC1-C and ZEB1, BT-549 cells were transfected to 

express a RASSF1A promoter-luciferase reporter (pRASSF1A-Luc) containing the ZEB1 

binding site (Fig. 4A). pRASSF1A-Luc activity was induced by silencing MUC1-C (Fig. 

4B) or ZEB1 (Fig. 4C). Similar studies in A549 cells confirmed these effects of MUC1-C 

(Fig. 4D) and ZEB1 (Fig. 4E) on pRASSF1A-Luc activation, supporting the premise that 

MUC1-C represses the RASSF1A promoter by a ZEB1-mediated mechanism.
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MUC1-C/ZEB1 recruit DNMT3b to the RASSF1A promoter

Methylation of RASSF1A promoter has been identified as one mechanism responsible for 

suppression of RASSF1A expression (3, 4). Carcinoma cells under study here were therefore 

treated with decitabine (DEC; 5-aza-2’-deoxycytidine) to assess whether DNA methylation 

contributes to RASSF1A repression. As anticipated, we found upregulation of RASSF1A in 

response to DEC treatment (Supplemental Figs. S4A–S4C). These and the above findings 

that the MUC1-C→ZEB1 pathway represses RASSF1A activation thus invoked the 

possibility that MUC1-C/ZEB1 complexes contribute to RASSF1A promoter methylation. 

MUC1-C drives DNMT3b expression and changes in DNA methylation patterns in cancer 

cells (30). In addition, ZEB1 has been associated with recruitment of DNMT3b (42, 43), 

supporting a potential model in which MUC1-C/ZEB1 complexes associate with DNMT3b 

on the RASSF1A promoter. Indeed, ChIP studies demonstrated that, like MUC1-C and 

ZEB1, DNMT3b occupies the RASSF1A promoter (Fig. 5A). In re-ChIP experiments, we 

also found that MUC1-C and ZEB1 form complexes with DNMT3b on the RASSF1A 
promoter (Figs. 5B and 5C). Moreover, silencing MUC1-C (Fig. 5D) or ZEB1 (Fig. 5E) was 

associated with decreases in DNMT3b occupancy, indicating that MUC1-C/ZEB1 

complexes recruit DNMT3b to the RASSF1A promoter. In support of these findings, 

DNMT3b occupancy was significantly increased in HEK293/MUC1-C, as compared to 

HEK293/vector, cells (Fig. 5F).

MUC1-C drives DNMT3b-mediated methylation of the RASSF1A promoter

To assess function of the MUC1-C/ZEB1/DNMT3b complexes, we studied the effects of 

silencing MUC1-C on methylation of the CpG island in the RASSF1A promoter (Fig. 6A). 

Immunoprecipitation of methylated DNA (MeDIP) followed by qPCR demonstrated that 

silencing MUC1-C (Fig. 6B), ZEB1 (Fig. 6C) or DNMT3B (Fig. 6D) decreases CpG island 

methylation. In addition, RASSF1A promoter methylation was increased in HEK293 cells 

expressing MUC1-C (Fig. 6E), confirming involvement of the MUC1-C/ZEB1/DNMT3b 

pathway. In concert with these findings, silencing DNMT3b was associated with increases in 

RASSF1A expression in BT-549 (Fig. 6F), A549 (Supplemental Fig. S5) and HEK293/

MUC1-C (Fig. 6G) cells. Other work has demonstrated that RASSF1 CpG island 

methylation is linked to activation of RASSF1C expression (44). In concert with those 

findings, silencing MUC1-C with decreases in RASSF1 promoter methylation was 

associated with suppression of RASSF1C mRNA levels (Supplemental Fig. S6).

MUC1-C regulates the RAS→MEK→ERK pathway

RNA-seq analysis further demonstrated that targeting MUC1-C in BT-549 cells is highly 

associated with regulation of KRAS signaling as determined by gene set enrichment analysis 

from the Hallmarks Molecular Signature Database (Fig. 7A; Supplemental Fig. S7)(45). 

Targeting MUC1-C expression in A549 cells was also significantly associated with the 

Hallmark RAS Signaling gene set (Fig. 7B; Supplemental Fig. S7). In concert with this 

involvement of MUC1-C in KRAS signaling and MUC1-C-mediated repression of 

RASSF1A, we found that downregulation of MUC1-C in BT-549 cells has no apparent 

effect on KRAS activity (Supplemental Fig. S8), but is associated with decreases in MEK 

and ERK phosphorylation (Fig. 7C), consistent with the role of RASSF1A in suppression of 
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the MEK→ERK pathway (8–10). Moreover, silencing RASSF1A in BT-549/MUC1shRNA 

cells attenuated the suppression of pMEK and pERK levels (Fig. 7D), confirming 

dependence on RASSF1A for this response. Similar effects of targeting MUC1-C signaling 

on downregulation of pMEK and pERK were observed in A549 (Fig. 7E; Supplemental 

Figure S9) and PC-3 (Fig. 7F) cells. As further support for MUC1-C→ZEB1→RASSF1A 

signaling in driving the MEK→ERK pathway, expression of MUC1-C in HEK293 cells 

increased pMEK and pERK levels (Supplemental Fig. S10A) and this response was 

attenuated by ZEB1 silencing (Supplemental Fig. S10B).

Discussion

Epigenetic silencing of TSGs is considered an early event in oncogenesis and is universally 

found in human cancers (46). MUC1-C, a widely overexpressed oncogenic protein in human 

carcinomas (23, 24), has been linked to the epigenetic downregulation of TSGs, such as 

CDH1, CDKN2A, PTEN and BRCA1, by mechanisms involving in part PRC1/2-mediated 

suppression (30–33, 47). The present findings have identified a role for MUC1-C in 

downregulation of the RASSF1A TSG, which is reportedly one of the most frequently 

inactivated genes in over 30 types of cancers (5, 7). Studies in normal human mammary 

epithelial cells identified a role for the Sp1 transcription factor in activation of the RASSF1A 
promoter, such that decreases in Sp1 occupancy were associated with downregulation of 

RASSF1A expression (48). Our results demonstrate that silencing MUC1-C in breast, 

NSCLC and prostate cancer cells is associated with induction of RASSF1A mRNA and 

protein. In support of these observations, enforced expression of MUC1-C in MUC1-low 

MCF-10A mammary epithelial cells or in MUC1-null HEK293 cells resulted in suppression 

of RASSF1A expression. We also found that MUC1-C occupies the RASSF1A promoter 

and intron 1, suggesting that MUC1-C plays a direct role in repressing RASSF1A 
transcription. In concert with this notion, we found that MUC1-C suppresses activation of 

the RASSF1A promoter. These findings provided support for the premise that 

overexpression of MUC1-C, as found in human carcinomas, contributes to repression of the 

RASSF1A gene.

RASSF1A is epigenetically silenced by promoter hypermethylation (8). In this respect, 

studies in human carcinoma cells have shown that MYC/EZH2/DNMT3b complexes occupy 

the RASSF1A promoter and are necessary for its methylation and inactivation (49). Of 

potential relevance to those findings, MUC1-C drives MYC (34, 50, 51), EZH2 (32) and 

DNMT3b (30) expression in cancer cells and could thereby contribute to the formation of 

MYC/EZH2/DNMT3b complexes. MUC1-C also activates the inflammatory NF-κB p65 

pathway, binds to NF-κB p65 and induces transcription of ZEB1 (38, 41, 52)(Fig. 7G). In 

turn, MUC1-C forms a complex with ZEB1 and promotes ZEB1-mediated transcriptional 

repression (41). MUC1-C and ZEB1 thus cooperate in suppression of the miR-200c gene 

and thereby the induction of EMT in human cancer cells (30, 38). The present studies extend 

the importance of the MUC1-C→NF-κB p65→ZEB1 pathway by demonstrating that 

MUC1-C and ZEB1 also occupy the RASSF1A promoter and suppress its activation. In 

addition, we found that MUC1-C/ZEB1 complexes recruit DNMT3b to the RASSF1A 
promoter and that MUC1-C, ZEB1 and DNMT3b are necessary for its methylation (Fig. 

7G). In this way, MUC1-C/ZEB1-mediated recruitment of DNMT3b could integrate with 
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that conferred by MYC/EZH2 (49) and thereby further enhance methylation of the 

RASSF1A promoter. Moreover, MUC1-C binds to EZH2 and increases H3K27 

trimethylation (32). Therefore, MUC1-C could directly contribute to the function of MYC/

EZH2/DNMT3b complexes by interacting with EZH2 (49). Our findings thus (i) support a 

model in which MUC1-C→ZEB1→DNMT3b signaling contributes to repression of 

RASSF1A, (ii) invoke the possibility for functional integration of MUC1-C/ZEB1/DNMT3b 

and MYC/EZH2/DNMT3b complexes on the RASSF1A promoter, and (iii) provide 

evidence for a potential link between ZEB1-mediated induction of EMT and downregulation 

of RASSF1A expression (Fig. 7G). Our findings may also provide the basis for studies of 

other TSGs, such as HIC1 (53), that are hypermethylated in cancer cells.

RASSF1A plays an important role in the regulation of RAS signaling and downstream 

effectors, such as the MEK→ERK pathway (8, 12, 15, 54–56). In this capacity and as 

determined using the Hallmarks Molecular Signature Database, we found that targeting 

MUC1-C in TNBC and NSCLC cells is highly associated with the RAS signaling gene set. 

To our knowledge, MUC1-C has not been previously linked to regulation of the RAS 

pathway. Notably, these findings do not preclude a role for MUC1-C in other pathways, such 

as GRB2/SOS (21), that like RASSF1A contribute to the control of RAS signaling. Further 

studies will thus be needed to more precisely address other potential relationships between 

MUC1-C and RAS. Along these lines, we found that (i) targeting MUC1-C in carcinoma 

cells is associated with suppression of the MEK→ERK pathway, and (ii) overexpression of 

MUC1-C in HEK293 cells with suppression of RASSF1A results in activation of MEK and 

ERK. Importantly, RAF→MEK→ERK signaling is necessary for RAS-induced 

oncogenesis (57) and inhibiting this pathway has represented a major focus of drug 

development (58, 59). However, additional weapons are needed for the treatment of RAS-

driven carcinomas. Therefore, targeting the MUC1-C→ZEB1→DNMT3b pathway with 

derepression of RASSF1A could represent an alternative strategy for inhibiting 

MEK→ERK signaling in cancer cells (Fig. 7H). In this context, previous work 

demonstrated that targeting MUC1-C is associated with marked synergy in combination 

with MEK inhibitors (60). These findings were attributed to the effects of targeting MUC1-C 

on downregulation of BCL-XL (60). The present results demonstrating that targeting 

MUC1-C induces RASSF1A and suppresses pMEK and pERK therefore provide new 

insights regarding the potential basis for synergy with MEK inhibitors. Of additional 

importance, RAS signaling in cancer is MYC dependent (57, 61). In this respect, MUC1-C 

drives MYC expression in carcinoma cells (34, 50, 51) and, accordingly, targeting MUC1-C 

could suppress integration of the RAS and MYC pathways in promoting cancer progression.

Materials and Methods

Cell culture

Human BT-549 TNBC, A549 (mutant KRAS) NSCLC, H460 (mutant KRAS) NSCLC and 

embryonic kidney HEK293 cells were cultured in RPMI1640 medium (ATCC, Manassas, 

VA, USA). MDA-MB-231 (mutant KRAS) TNBC cells were grown in Dulbecco’s modified 

Eagle’s medium (Corning, Manassas, VA, USA). PC-3 prostate cancer cells were grown in 

F-12K medium (ATCC). MCF-10A cells were cultured in MEGM medium (Lonza, 
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Walkersville, MD, USA). Media were supplemented with 10% heat-inactivated fetal bovine 

serum, 100 U/ml penicillin and 100 μg/ml streptomycin. Cell authentication was performed 

by short tandem repeat analysis. Cells were monitored for mycoplasma contamination using 

the MycoAlert Mycoplasma Detection Kit (Lonza, Rockland, MA, USA). Cells stably 

expressing a control scrambled shRNA (CshRNA), MUC1shRNA, ZEB1shRNA, 

DNMT3bshRNA, empty vector or MUC1-C were generated as described (30–32). Cells 

were transfected to express a control siRNA (AM4611; ThermoFisher Scientific, Waltham, 

MA, USA) or RASSF1A siRNA (AM16708; ThermoFisher Scientific) in the presence of 

Lipofectamine RNAimax reagent (Invitrogen, Carlsbad, CA, USA).

Real-time quantitative reverse-transcription PCR (qRT-PCR)

Total RNA was isolated using Trizol reagent (Invitrogen). cDNAs were synthesized using 

the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Grand Island, NY, 

USA) (32). Samples were amplified using the Power SYBR Green PCR Master Mix 

(Applied Biosystems) and the 7300 Realtime PCR System (Applied Biosystems). Primers 

used for qRT-PCR analysis are listed in the Supplemental Table S1.

Immunoblot analysis

Whole cell lysates were prepared in NP-40 buffer containing protease inhibitor cocktail 

(ThermoFisher Scientific). Immunoblotting was performed with anti-MUC1-C (62), anti-

RASSF1A (Abcam, Cambridge, MA, USA), anti-β-actin (Sigma), anti-ZEB1, anti-

DNMT3b, anti-pMEK(S217/S221), anti-MEK, anti-pERK(T202/Y204) and anti-ERK (Cell 

Signaling Technologies, Danvers, MA, USA).

RASSF1A promoter luciferase reporter assays

Cells were transfected with (i) an empty pGL3 vector, (ii) a pRASSF1A-Luc vector 

containing RASSF1A promoter sequences –600 to +19 relative to the TSS, and (iii) SV-40-

Renilla-Luc in the presence of Lipofectamine 3000 Reagent (Invitrogen). At 48 h after 

transfection, cell extracts were prepared using the Luciferase Assay System (Promega, 

Madison, WI, USA). Luminescence was detected with the Dual-Luciferase Reporter Assay 

System (Promega).

Chromatin immunoprecipitation (ChIP) assay

Soluble chromatin was precipitated with anti-MUC1-C (NeoMarkers, Fremont, CA, USA), 

anti-ZEB1, anti-DNMT3b or a control non-immune IgG (Santa Cruz Biotechnology, Santa 

Cruz, CA, USA). In re-ChIP studies, complexes from the primary anti-MUC1-C or anti-

ZEB1 ChIPs were eluted and re-immunoprecipitated with anti-DNMT3b. The precipitates 

were analyzed by ChIP-PCR using the Power SYBR Green PCR Master Mix (Applied 

Biosystems) and the 7300 Realtime PCR System (Applied Biosystems). Primers used for 

ChIP-PCR are listed in the Supplemental Table S2. Data are reported as the fold-enrichment 

relative to IgG (32).
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MeDIP analysis

Promoter methylation analysis was performed using the Methylation DNA IP (MeDIP) kit 

(Active Motif) as described (30). Primers used for MeDIP are listed in Supplemental Table 

S3. Data are reported as the fold-enrichment relative to IgG (32).

RNA-seq analysis

Total RNA from cells cultured in triplicates was isolated using Trizol reagent (Invitrogen). 

TruSeq Stranded mRNA (Illumina, San Diego, CA, USA) was used for library preparation.

RNA-seq data analysis

Raw sequencing reads were aligned to the human genome (GRCh38.74) using STAR 

(20.1×106 uniquely mapped reads per sample). Raw feature counts were normalized and 

differential expression analysis using DESeq2. Differential expression rank order was 

utilized for subsequent GSEA, performed using the fgsea (v1.8.0) package in R. Gene sets 

queried included the Hallmark Gene Sets available through the Molecular Signatures 

Database (MSigDB) (45).

KRAS activation assays

Lysates were assayed for KRAS activation according to the manufacturer’s instructions (Cat. 

#STA-400-K; Cell Biolabs, San Diego, CA).

Statistical analysis

Each experiment was repeated at least three times. Data are expressed as the mean±SD. The 

unpaired Student’s t-test was used to examine differences between means of two groups. A 

p-value of <0.05 was considered a statistically significant difference.

Data and software availability

The accession number for the RNA-seq data reported in this paper is GEO ACCESSION 

GSE123860.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

MUC1 mucin 1

MUC1-C MUC1 C-terminal transmembrane subunit

TNBC triple negative breast cancer
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NSCLC non-small cell lung cancer

PC prostate cancer

RASSF1A RAS Association Domain Family 1A

MST mammalian sterile twenty kinase

TSG tumor suppressor gene

DNMT DNA methyltransferase

PRC polycomb repressive complex

CRB3 Crumbs Polarity Factor 3

YAP Yes-associated protein

TAZ transcriptional activator with PDX-binding motif

DEC decitabine

MeDIP immunoprecipitation of methylated DNA
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Figure 1. Targeting MUC1-C represses RASSF1A expression.
A-F. BT-549 TNBC (A,B), A549 NSCLC (C,D) and PC-3 PC (E,F) cells were transduced to 

stably express a CshRNA or MUC1shRNA. The cells were analyzed for MUC1-C and 

RASSF1A mRNA levels by qRT-PCR using primers listed in Supplemental Table S1. The 

results (mean±SD of three determinations) are expressed as relative mRNA levels compared 

to that obtained with cells expressing the CshRNA (assigned a value of 1)(A,C,E). Lysates 

were immunoblotted with antibodies against the indicated proteins (B,D,F). G and H. 

HEK293/MCF-10A cells were transduced to stably express an empty vector or one encoding 

MUC1-C. Cells were analyzed for MUC1-C and RASSF1A mRNA levels by qRT-PCR. The 

results (mean±SD of three determinations) are expressed as relative mRNA levels compared 

to that obtained with cells expressing the empty vector (assigned a value of 1)(G). Lysates 

were immunoblotted with antibodies against the indicated proteins (H). The asterisk (*) 

denotes a p-value <0.05.
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Figure 2. MUC1-C occupies the RASSF1A promoter and intron 1 in a complex with ZEB1.
A. Schema of the RASSF1A promoter and intron 1 with highlighting localization of GC-rich 

E-boxes. B-C. Soluble chromatin from BT-549 (B) and A549 (C) cells was precipitated with 

anti-MUC1-C, anti-ZEB1 or a control IgG. D-E. Soluble chromatin from BT-549 (D) and 

A549 (E) cells expressing a CshRNA or MUC1shRNA was precipitated with anti-ZEB1 or a 

control IgG. The final DNA samples were amplified by qPCR with primers for the 

RASSF1A promoter (listed in Supplemental Table S2). The results (mean±SD of three 

determinations) are expressed as the relative fold enrichment compared to that obtained with 
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the IgG control (assigned a value of 1). F and G. Soluble chromatin from A549 (F) and 

A549/CshRNA or A549/MUC1shRNA (G) cells was precipitated with anti-MUC1-C, anti-

ZEB1 or a control IgG. The final DNA samples were amplified by qPCR with primers for 

the RASSF1A intron 1 region (listed in Supplemental Table S2). The results (mean±SD of 

three determinations) are expressed as the relative fold enrichment compared to that 

obtained with the IgG control (assigned a value of 1). The asterisk (*) denotes a p-value 

<0.05.
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Figure 3. ZEB1 represses RASSF1A expression.
A. BT-549 cells expressing a CshRNA or ZEB1shRNA were analyzed for ZEB1 and 

RASSF1A mRNA levels. The results (mean±SD of three determinations) are expressed as 

relative mRNA levels as compared to that obtained with cells expressing the CshRNA 

(assigned a value of 1). B and C. Lysates from BT-549 cells expressing a CshRNA, 

ZEB1shRNA or MUC1shRNA were immunoblotted with antibodies against the indicated 

proteins. D-G. A549 (D, E) and HEK293/MUC1-C (F,G) cells stably expressing a CshRNA 

or ZEB1shRNA were analyzed for ZEB1 and RASSF1A mRNA levels (D,F). The results 
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(mean±SD of three determinations) are expressed as relative mRNA levels as compared to 

that obtained with cells expressing the CshRNA (assigned a value of 1). Lysates were 

immunoblotted with antibodies against the indicated proteins (E,G). The asterisk (*) denotes 

a p-value <0.05.
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Figure 4. MUC1-C/ZEB1 complexes repress activation of the RASSF1A promoter.
A. Schema of the RASSF1A promoter-luciferase reporter (pRASSF1A-Luc). B-E. The 

indicated BT-549 (B,C) and A549 (D,E) cells expressing a CshRNA, MUC1shRNA or 

ZEB1shRNA were transfected with pGL3-Basic Luc or pRASSF1A-Luc vectors for 48 h 

and then analyzed for luciferase activity. The results (mean±SD of three determinations) are 

expressed as relative luciferase activity as compared to that obtained with pGL3 (assigned a 

value of 1). The asterisk (*) denotes a p-value <0.05.
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Figure 5. MUC1-C/ZEB1 form complexes with DNMT3b on the RASSF1A promoter.
A. Soluble chromatin from BT-549 cells was precipitated with anti-MUC1-C, anti-DNMT3b 

or a control IgG. B and C. In re-ChIP analyses, anti-MUC1-C (B) or anti-ZEB1 (C) 

precipitates were released and reimmunoprecipitated with anti-DNMT3b or a control IgG. D 

and E. Soluble chromatin from BT-549 cells expressing a CshRNA, MUC1shRNA (D) or 

ZEB1shRNA (E) was precipitated with anti-DNMT3b or a control IgG. F. Soluble 

chromatin from HEK293/vector and HEK293/MUC1-C cells was precipitated with anti-

DNMT3b or a control IgG. The final DNA samples were amplified by qPCR with primers 
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for the RASSF1A promoter (listed in Supplemental Table S2). The results (mean±SD of 

three determinations) are expressed as the relative fold enrichment compared to that 

obtained with the IgG control (assigned a value of 1). The asterisk (*) denotes a p-value 

<0.05.
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Figure 6. MUC1-C→ZEB1→DNMT3b pathway drives methylation of the RASSF1A promoter.
A. Schema of the RASSF1A promoter and exon 1 highlighting the CpG islands (blue) with 

the region (−130 to −31) analyzed for CpG methylation. B-D. Soluble chromatin from 

BT-549 cells expressing a CshRNA or MUC1shRNA (B), ZEB1shRNA (C) and 

DNMT3bshRNA (D) was precipitated with anti-5’-mC or a control IgG. E. Soluble 

chromatin from HEK293/vector and HEK293/MUC1-C cells was precipitated with anti-5’-

mC or a control IgG. The final DNA samples were amplified by qPCR with primers for the 

RASSF1A promoter (listed in Supplemental Table S2). The results (mean±SD of three 

determinations) are expressed as the relative fold enrichment compared to that obtained with 

the IgG control (assigned a value of 1). F and G. Lysates from BT-549 (F) and HEK293/

MUC1-C (G) cells expressing a CshRNA or DNMT3bshRNA were immunoblotted with 

antibodies against the indicated proteins. The asterisk (*) denotes a p-value <0.05.
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Figure 7. Targeting MUC1-C and ZEB1 suppresses MEK→ERK signaling.
A and B. RNA-seq was performed in triplicate on (A) BT-549/CshRNA and BT-549/

MUC1shRNA cells, and (B) A549/CshRNA and A549/MUC1shRNA cells. The BT-549 and 

A549 datasets were analyzed using the Hallmark gene signature collection. MUC1-C 

expression was significantly associated with regulation of the KRAS pathway. C. Lysates 

from BT-549 cells expressing a CshRNA or MUC1shRNA were immunoblotted with 

antibodies against the indicated proteins. D. Lysates from BT-549/MUC1shRNA cells 

transfected with a CsiRNA or RASSF1AsiRNA were immunoblotted with antibodies against 
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the indicated proteins. E. Lysates from A549 cells expressing a CshRNA or MUC1shRNA 

were immunoblotted with antibodies against the indicated proteins. F. PC-3 cells expressing 

a CshRNA or MUC1shRNA were immunoblotted with antibodies against the indicated 

proteins. G-H. Proposed model depicting the roles of MUC1-C in driving repression of the 

RASSF1A gene and activation of the RAS→RAF→MEK→ERK pathway. G. MUC1-C 

activates the NF-κB p65 TF and thereby induction of the ZEB1, DNMT3b and EZH2 genes 

(30, 41, 52). In turn, MUC1-C binds to ZEB1 and MUC1-C/ZEB1 complexes contribute to 

repression of miR-200c with induction of EMT. MUC1-C/ZEB1 complexes also occupy the 

RASSF1A promoter, recruit DNMT3b and drive RASSF1A methylation and inactivation. H. 

Targeting MUC1-C derepresses RASSF1A, which results in downregulation of 

RAF→MEK→ERK signaling. These findings support the potential involvement MUC1-C 

in linking the induction of ZEB1 and EMT with downregulation of RASSF1A expression 

and activation of the RAS→MEK→ERK pathway.
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