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A B S T R A C T

Resting-state functional magnetic resonance imaging (rs-fMRI) is widely used to research abnormal functional
connectivity (FC) in patients with disorders of consciousness (DOC). However, most studies assumed steady
spatial-temporal signal interactions between distinct brain regions during the scan period. The aim of this study
was to explore abnormal dynamic functional connectivity (dFC) in DOC patients. After excluding 26 patients’
data that failed to meet the requirements of imaging quality, we retained 19 DOC patients (12 with unresponsive
wakefulness syndrome and 7 in a minimally conscious state, diagnosed with the Coma Recovery Scale-Revised
[CRS-R]) for the dFC analysis. We used the sliding windows approach to construct dFC matrices. Then these
matrices were clustered into distinct states using the k-means clustering algorithm. We found that the DOC
patients showed decreased dFC in the sensory and somatomotor networks compared with the healthy controls.
There were also significant differences in temporal properties, the mean dwell time (MDT) and the number of
transitions (NT), between the DOC patients and the healthy controls. In addition, we also used a hidden Markov
model (HMM) to test the robustness of the results. With the connectome-based predictive modeling (CPM)
approach, we found that the properties of abnormal dynamic network can be used to predict the CRS-R scores of
the patients after severe brain injury. These findings may contribute to a better understanding of the abnormal
brain networks in DOC patients.

1. Introduction

It was nearly impossible to observe overt behavioral response in
disorders of consciousness (DOC) patients without the ability to move
and/or communicate verbally (Bosco et al., 2010; Schnakers et al.,
2009). Using the task-fMRI technique, Owen et al. (2006) acquired
fMRI data from a vegetative state/unresponsive wakefulness syndrome
(VS/UWS) patient when she was performing the mental imagery tasks
(playing tennis and visiting house) and found that the patient showed
similar brain activation patterns compared with the healthy control.
This study provided critical evidence that consciousness in brain

injured people is detectable even the patients are behaviorally non-re-
sponsive. Subsequently, Monti et al. (2010) collected fMRI data from 54
DOC patients who performed similar mental imagery tasks, observed
that five patients could react to command by generating specific neural
responses and two of the five were diagnosed as VS/UWS patients who
by definition lack overt behavioral responses. Actually, because the
brain injury severity and impaired cognitive ability vary in DOC pa-
tients, it is obvious that not all DOC patients could follow verbal or
other commands to finish a task-fMRI experiment. As subjects do not
need to do any behavioral responses, the rs-fMRI technique is widely
adopted to study abnormal brain function and functional connectivity
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(FC) in various brain disorders such as DOC patients (Demertzi et al.,
2019; Perri et al., 2016; Hannawi, 2016).

Abnormal default mode network (DMN), sensory network,

somatomotor network (SMN), and thalamocortical network (TCN) are
frequently reported in rs-fMRI studies involving DOC patients
(Boly et al., 2011; Mashour and Hudetz, 2018a; Schiff et al., 2007). In

Fig. 1. Illustration of brain structure images for the patients with disorders of consciousness (DOC) showing those included and those excluded. In total, we acquired
imaging data (rs-fMRI and high-resolution brain structural images) from 45 patients. In the data analysis, we only included 19 patients in the current study after
excluding 26 patients from the total data sample. The imaging data for these 26 patients were excluded because they had at least one of these imaging qualities or
clinical conditions: heavy artifact, brain lesion or atrophy, overlarge head motion, diagnosed with LIS (locked-in syndrome) or EMCS (emerged minimally conscious
state), and other type imaging quality problems.
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addition, abnormal functional metabolism (Fridman et al., 2014;
Vanhaudenhuyse et al., 2010) and brain white matter (WM) structural
connectivity (Fernandez-Espejo et al., 2012) were found in the DMN of
DOC patients. Further studies also reported that the abnormal brain
activity of the DMN was correlated with Coma Recovery Scale-Revised
(CRS-R) scores (Rosazza et al., 2016) and could be viewed as a prog-
nostic biomarker (Qin et al., 2015; Song et al., 2018). Moreover, ab-
normal FC and brain WM structural connectivity between the thalamus
and the frontal cortex were reported in DOC patients (Giacino et al.,
2014; Schiff, 2010; Weng et al., 2017). In sum, those studies indicated
that some brain regions, such as DMN (Vanhaudenhuyse et al., 2010)
and TCN (Schiff, 2010), play an important role in sustaining con-
sciousness (Laureys, 2005; Wijdicks, 2018).

The functioning of the auditory, visual, and somatomotor regions in
DOC patients is believed to be correlating with the degree of damage to
consciousness. Previous studies found that the primary auditory cortex
of VS/UWS patients presented similar responses to those of healthy
controls when receiving stimuli using PET and fMRI (Laureys et al.,
2000; Owen et al., 2005). However, compared with VS/UWS patients,
minimally conscious state (MCS) patients preserved more activation
areas in high level auditory processing regions (Di et al., 2007). Similar
phenomena were also found in the visual and somatomotor cortices of
DOC patients (Kotchoubey et al., 2013; Monti et al., 2013; Zhu et al.,
2009).

Most rs-fMRI studies assumed that the temporal correlation of blood
oxygen level-dependent (BOLD) signal between distinct brain regions
remains steady during the scanning. In fact, this assumption may be
outdated in that the pattern of brain activation changes over time
(Allen et al., 2014; Chang and Glover, 2010; Vidaurre et al., 2017).
Several approaches, such as sliding windows approach (Allen et al.,
2014), time-frequency analysis (Chang and Glover, 2010) and hidden
Markov model (HMM) (Vidaurre et al., 2017), have been applied to
study the dynamic properties of brain functional configuration. Among
them, the sliding windows approach has been widely used to study
alterations in the brain's dynamic FC under conscious modification
(Barttfeld et al., 2015; Kafashan et al., 2016; Tagliazucchi and Laufs,
2014). For example, several studies found that the brain dynamic
functional properties were reduced with the decline in consciousness
when subjects are asleep (Tagliazucchi and Laufs, 2014) or under an-
esthesia (Barttfeld et al., 2015). Altogether, these studies contributed to
the comprehension of the relationship between altered consciousness

and brain dynamic functional properties.
To date, few studies (Demertzi et al., 2019; Perri. et al., 2018) have

examined the alteration of consciousness after severe brain injury based
on dynamic framework approach. In this study, we attempted to use the
sliding windows approach and hidden Markov model to understand the
properties of dynamic functional connectivity (dFC) associated with
consciousness in DOC patients. Previous rs-fMRI studies (Giacino et al.,
2014; Mashour and Hudetz, 2018b; Schiff, 2008) reported abnormal FC
patterns of several cortical and subcortical regions in DOC patients but
lacked detailed spatial-temporal information to interpret these ab-
normal brain network alterations. In the calculations, we first applied
an independent component analysis (ICA) to select the intrinsic com-
ponents (ICs) within the whole-brain, then used a sliding windows
approach to construct dFC matrices for each subject. We applied the k-
means clustering algorithm to cluster these matrices. To overcome a
drawback of the sliding windows approach, we also used a hidden
Markov model (HMM) to test the robustness of the result. Finally, we
applied connectome-based predictive modeling (CPM) to assess the
clinical predictability of CRS-R in the patients and used support vector
machine (SVM) to predict patients’ diagnostic status.

2. Materials and methods

2.1. Participants

A total of 45 DOC patients were recruited from the Liuhuaqiao
Hospital in Guangzhou, China. Each patient was assessed using the
CRS-R (Kalmar and Giacino, 2005), which consists of a total of 23 items
and 6 subscales that test auditory, visual, motor, oromotor, commu-
nication, and arousal functions. The exclusion criteria for the patients
were as follows: (1) history of alcohol or drug abuse, (2) previous
psychiatric or neurological illness, and (3) extensive focal brain da-
mage. Fig. 1 shows the patients who were excluded for the above rea-
sons and those who exhibited excessive head-motion. In the end, we
retained the data from 19 DOC patients (14M/ 5 F; aged 39.0 ± 14.6
years old) after excluding 26 patients’ fMRI data for the above reasons.
Based on this behavioral assessment, 12 patients were diagnosed as VS/
UWS and 7 patients as MCS. The detailed demographic and clinical
information for the DOC patients is listed in Table 1 and exhaustive
etiological information about DOC patients could be found in Table S1.
We also recruited 19 healthy volunteers (11M/ 8 F; aged 32.2 ± 6.9

Table 1
Demographic and clinical information for the patients with disorders of consciousness (DOC).

Patient Gender Months to the scan Age VS/MCS Etiology CRS-R scores
(M: male; F: female) (years old) Au/V/M/O/C/Ar/T

P01 M 1 21 VS/UWS HIE 1/0/2/1/0/1/5
P02 M 2 39 VS/UWS TBI 0/0/2/1/0/2/5
P03 M 2 16 VS/UWS HIE 0/0/1/0/0/2/3
P04 M 2 64 VS/UWS TBI 0/0/1/1/0/2/4
P05 M 1 62 VS/UWS HIE 0/0/1/0/0/2/3
P06 M 2 36 VS/UWS HIE 1/0/0/0/0/1/2
P07 M 1 43 VS/UWS HIE 0/0/1/1/0/2/4
P08 M 1 48 VS/UWS HIE 0/0/1/0/0/2/3
P09 M 9 32 VS/UWS HIE 1/0/1/1/0/2/5
P10 M 1 39 VS/UWS HIE 0/0/2/1/0/2/5
P11 M 1 62 VS/UWS HIE 0/0/1/0/2/2/5
P12 F 1 52 VS/UWS HIE 0/0/0/1/0/2/3
P13 M 1 30 MCS TBI 1/1/3/2/0/2/9
P14 F 1 59 MCS TBI 1/0/5/1/0/2/9
P15 M 3 41 MCS TBI 1/1/3/0/0/2/7
P16 F 1 15 MCS HIE 1/3/5/1/0/2/12
P17 F 2 20 MCS TBI 1/1/2/1/0/2/7
P18 M 9 41 MCS HIE 2/3/2/1/0/1/9
P19 M 3 47 MCS HIE 1/3/0/1/0/2/7

Abbreviations: MCS, minimally conscious state; VS, vegetable state; UWS, unresponsive wakefulness syndrome; TBI, traumatic brain injury; HIE, hypoxic ischemic
encephalopathy; CRS-R, Coma Recovery Scale-Revised; Au, auditory; V, visual; M, motor; O, oromotor; C, communication; Ar, arousal; T, total.
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years old) as a control group. This study was approved by the Ethics
Committee of the Liuhuaqiao Hospital. Written informed consent in the
study was obtained from the legal representatives of the DOC patients
and from the healthy controls.

2.2. Image acquisition

All MRI data were acquired on a GE 3T MR scanner with an eight-
channel phased-array head coil. The rs-fMRI data were obtained using a
single-shot multi-slice gradient-echo echo-planar imaging (GE-EPI) se-
quence. The sequence parameters were as follows: repetition time
(TR)= 2000ms, echo time (TE)= 26ms, flip angle (FA)= 90°, field of
view (FOV)= 240×240 mm2, data matrix= 64×64, slice thick-
ness= 3.6 mm, inter-slice gap= 0.6mm, 36 axial sequential slices, and
240 volumes acquired in about 8 min. High-resolution brain structural
images were also acquired using a T1-weighted 3D fast spoiled gradient
recalled (FSPGR) sequence with the following parameters:
TR=8.86ms, TE=3.52ms, FOV= 240×240 mm2, data ma-
trix= 256×256, FA=90°, voxel size= 0.94× 0.94× 1mm3, and
176 sagittal slices covering the whole-brain.

2.3. Data preprocessing

Fig. 2 illustrates the flowchart of the data analysis steps. First, we
preprocessed the raw rs-fMRI data and used ICA to select the in-
dependent components (ICs). Then, we calculated the FC matrices of
those ICs in each window (window length= 22 TRs, step= 1 TR) and
used the k-means clustering algorithm to cluster these matrices. Next,
we chose HMM to describe the time series of functional signal in dif-
ferent brain region by using discrete number of states, and then to test
the robustness and replicability of the results obtained from the sliding
windows approach. Finally, we applied CPM to predict the CRS-R scores

of the DOC patients.
The rs-fMRI data were preprocessed using SPM12 (http://www.fil.

ion.ucl.ac.uk/spm). We removed the first 10 image volumes, performed
slice-timing, and corrected the head-motion. In this study, the fMRI
data were used only if the head motion satisfied a translation of less
than 3mm in any direction and a rotation of less than 3° in any axis.
Subsequently, the functional images were co-registered to high-re-
solution T1-weighted brain structural images, which were segmented
into GM, WM, and CSF; then we registered the segmented GM images to
MNI space. The normalized functional images were resampled to a
voxel size of 3mm3 and smoothed with a 5mm full width at half-
maximum (FWHM) Gaussian kernel.

2.4. Group ICA and postprocessing

We used GIFT (4.0b, http://mialab.mrn.org/software/gift)
(Calhoun et al., 2001) to decompose the preprocessed rs-fMRI data into
spatially independent and temporally coherent components. Before
running the group ICA, we z-scored the time series in each voxel to
normalize the spatial variance. Then, we selected a high model order to
obtain cortical and subcortical functional parcellations. We retained
120 principal components (ICs) using principle component analysis
(PCA) and then used an expectation maximization (EM) algorithm to
decompose all the subjects’ reduced data into 100 ICs. For the estima-
tion stability, we ran the Infomax group ICA in ICASSO 20 times. A
group ICA (GICA) back-reconstruction was used to estimate the subject-
specific spatial maps and time series. We selected the 43 ICs whose peak
activations were located in the GM rather than the WM or ventricles as
intrinsic connectivity networks (ICNs). The following steps were per-
formed on the time courses of the 43 ICs to reduce the remaining noisy
signals: (1) linear, quadratic, and cubic detrending, (2) multiple re-
gression of the 6 head motion parameters and their temporal

Fig. 2. Flowchart for analyzing the properties of the dynamic functional connectivity (dFC) states in patients with disorders of consciousness (DOC) and healthy
controls (HC). a) A total of 43 intrinsic components (ICs) were selected using independent component analysis (ICA). b) The dFC was estimated by calculating the
inter-ICs temporal correlation within a siding window. Then four states were clustered by the k-means clustering algorithm. c) The robustness of the results was tested
by the hidden Markov model (HMM). d) Connectome-based predictive modeling (CPM) was used to predict the CRS-R scores. We used a two-sample t-test to examine
the between-group differences in the temporal properties of the dFC and the HMM.
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derivatives, (3) low pass filtering by removing high frequencies beyond
0.15 Hz, and (4) exclusion of detected outliers.

2.5. Dynamic functional connectivity (dFC) networks and clustering

To obtain each subject's dFC matrices, we calculated the Pearson
correlation between each pair of ICs timeseries by using tapered sliding
windows. We selected 22 TRs (44 s) as window lengths and a Gaussian
(σ=3 TRs) to convolve a tapered window, resulting in 209 windows by
sliding in steps of a single TR every time. An L1 (Manhattan distance)
penalty was imposed on the precision matrix (inverse of the correlation
matrix) to raise its sparsity. The windows size was established at 22 TRs
(44 s) because 30 s to 60 s has been deemed reasonable and was used in
previous studies (Allen et al., 2014; Damaraju et al., 2014). This range
reaches a satisfactory temporal trade-off between the real dynamic
fluctuation and the reliable temporal information (Preti et al., 2017).

To assess the re-occurrence of the dFC patterns, we used the k-
means clustering algorithm to cluster those FC matrices that were ob-
tained from all the subjects in the present study. The correlation dis-
tance function was chosen as a k-means clustering algorithm because
this approach has the advantage of reflecting the FC pattern regardless
of magnitude (Damaraju et al., 2014). Then k=4 was determined as
the number of clusters by using the elbow-criterion (a ratio of within-
cluster distance to between-cluster distance), and the result was similar
to the k values for 3 and 5.

2.6. Statistical analysis

These group differences in dFC were determined using a two-sample
t-test and corrected by a false discovery rate correction (FDR,
q < 0.05). In addition, we calculated the mean dwell time (MDT) and
the number of transitions (NT) to examine the group differences in the
temporal properties. The MDT was calculated as the mean number of
successive windows assigned in one state, and NT was the number of
times one state transited to another.

2.7. Hidden Markov model (HMM)

To test the robustness of the results obtained from the sliding win-
dows approach, we re-processed the data using the hidden Markov
model-multivariate autoregressive toolbox (Vidaurre et al., 2018,
2017). The HMM had the basic assumption that the fMRI time series
data could be depicted and represented by a series of discrete brain
states that recur with time. The number of discrete brain states was
selected as 4 because that was the number of states identified by the
sliding windows approach.

The functional data were preprocessed in accordance with the
previous preprocessing steps used in the sliding windows approach.
These ICs were set as ROIs to extract the time series (mean was zero and
standard deviation was units). After temporally concatenating all the
subjects’ time series data, we applied the HMM to estimate the brain
states at the group level. We ran the random initialization algorithm 5
times to acquire a stable estimate. Then the variational inference al-
gorithm was repeated 10 times to ensure that the procedure could skip
the local minima and find the global best solution. Then we calculated
each subject's specific brain state to obtain the MDT and the transition
rate counted as the number of transitions (NT) per second that corre-
spond to the similar parameters used in the sliding windows approach.
A two-sample t-test was used to test the significant difference in the
MDT and the transition rate between the DOC patients and the healthy
controls.

2.8. Connectome-based predictive modeling and support vector machine

We applied the CPM method (Shen et al., 2017) to assess the pre-
diction ability of dFC for the CRS-R scores of the DOC patients.

Specifically, this method has four steps: (1) choosing features, (2)
summarizing features, (3) constructing and applying the model, and (4)
evaluating the significance of the prediction. First, to acquire re-
presentative information from the dFC, we extracted the mean dFC by
averaging the FC in all the windows for every DOC patient. Next, we
used a leave-one-out cross-validation (LOOCV) by splitting patients into
a training set (subjects= 18) and a testing set (subject= 1) to assess
the generalization performance of the predicted result. In the training
set, to reduce the influence of outliers and obtain a stable result, we
calculated the robust regression correlation between every edge re-
presented in the mean dFC and the CRS-R scores. A threshold (p < .05)
was applied to select the edges that were significantly correlated with
the clinical scores. The strength values (correlation value) of those
significant relevant edges were added together for each subject. Then,
we used the sum value and the clinical scores to build a linear model to
predict the clinical scores of the subject in the testing set. Finally, we
computed the correlation between the predicted clinical scores and the
real CRS-R scores to obtain the predictive performance.

To validate the significance of the r-values generated from the
clinical scores and the predicted scores from the LOOCV, we iterated
1000 permutations. To generate a new predicted score, we assigned the
shuffled clinical scores to the subject before running the LOOCV.
Finally, we calculated the p-value by dividing the position of the true
prediction r-value in the random prediction r-value by the number of
permutations.

By taking NT and MDT of the four states as features, we applied a
linear support vector machine (SVM) classifier to discriminate MCS
patients from VS/UWS patients. The patients were split up into a
training set (18 subjects) and a testing set (1 subject). We used the
leave-one-out cross-validation (LOOCV) to evaluate the performance of
the classifier. We first trained the SVM classifier based on features of the
training set and then used this classifier to predict a single-subject’ di-
agnosis status in the testing set. With the LOOCV, we estimated the
accuracy of the classifier by using the rate of correctly predictive
number and the number of all subjects. After the true classifier accuracy
being obtained, we randomly assign the data labels to different subjects
and recomputed the classifier accuracy. These steps were iterated 1000
permutations to generate an empirical null distribution of the classifier
accuracy. Finally, the threshold of significance of classifier accuracy
was set at p < .05 based on the distribution result of permutation test.

In addition, we used Spearman's rank correlation coefficient to as-
sess the relationships between these indices (NT and MDT for the four
states) and CRS-R scores in the patient group and set the threshold for
significant level at p < .05.

3. Results

3.1. Demographic and clinical information

The demographics and the statistical clinical information are listed
in Table 2. No differences in age or gender were found between the two
groups.

3.2. Intrinsic connectivity networks

Fig. 3 shows the spatial maps of the obtained 43 intrinsic ICs. The
labels and peak coordinates for all these ICs are provided in Table S2
(Supplementary Materials). Considering their anatomical locations and
functional properties, we classified these ICs into seven sub-networks,
the auditory (AUN), somatomotor (SMN), cerebellar (CBN), cognitive
control (CCN), default mode (DMN), visual (VSN), and subcortical
networks (SCN). In fact, the classification of ICs was similar to that of
previous studies (Allen et al., 2014; Rashid et al., 2014).

The AUN comprised two symmetrical ICs whose activations were
located in the bilateral superior temporal gyrus (STG). The region of the
CBN included three ICs, which included most of the cerebellum. The
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CCN included 9 ICs. The DMN consisted of 11 ICs. The SCN contained
only 1 IC, which was activated in the bilateral putamen. The SMN
consisted of 8 ICs. The VSN included 9 ICs, which were centered in the
occipital cortex.

3.3. Group differences in dynamic functional connectivity (dFC)

After acquiring 209 FC matrices for each subject, we using a k-
means clustering algorithm to divide all the windows into 4 states
(Fig. 4), which were represented by their centroids (cluster medians).
State 1, occupying the majority of the windows, showed sparse and

weak dFC in the SMN, CCN, and DMN. State 2 exhibited positive intra-
and inter-connectivity in the CCN, VSN, SMN, and DMN. In addition,
the VSN correlated positively with the DMN and CCN. State 3 displayed
strong and dense inter- and intra-network dFC in the VSN and SMN.
State 4 showed positive intra- and inter-network dFC in the VSN and
DMN.

Fig. 5 shows the centroids of the states for the DOC patients and for
the controls. Because theMDT in State 2 of the healthy controls was less
than one, we added it in Fig. S1 (Supplementary Materials). The MDTs
for each group are shown in Fig. 6a. In brief, we found that the DOC
patients had a significantly shorter MDT in State 1 (t=−4.65, p <
.001) and a longer MDT in State 2 (t=4.33, p < .001) than the healthy
controls. We also found State 4 was only detected in the DOC patients.
In addition, we calculated the between-group difference in NT and
found that the DOC patients changed more often (t=2.36, p= .024)
than the healthy controls (Fig. 6b). Fig. 6c summarizes the group-dif-
ferences in dFC between the ICs pairs. For each dFC state, we calculated
group difference in FC between the DOC patients and healthy controls.
We found that in State 3 instead of other states, the patients showed
significantly lower intra- and inter-network dFC in the VSN, SMN, and
AUN than the healthy controls.

3.4. Hidden Markov model (HMM)

Fig. 7 shows the 4 states and the between-group difference in
temporal properties of those states obtained using HMM. We found

Table 2
Demographic and clinical statistical information for the patients with disorders
of consciousness (DOC) and the healthy controls (HC).

Characteristics DOC HC Statistics p-value

Age (years old) 39.0 ± 14.6 32.2 ± 6.9 t=1.83 0.08a

Gender (male/female) 15/4 11/8 χ2= 1.94 0.16b

Months to the scan 2.73 ± 2.79
Etiology (HIE/TBI) 12/7
Diagnosis (UWS/MCS) 12/7

Abbreviations: HIE, hypoxic ischemic encephalopathy; TBI, traumatic brain
injury; MCS, minimally conscious state; UWS, unresponsive wakefulness syn-
drome.

a
Two-sample t-test.

b χ2 test.

Fig. 3. Spatial maps of the 43 selected independent components (ICs) for patients with disorders of consciousness (DOC) and healthy controls (HC). Based on their
anatomical and functional properties, we classified these ICs into seven sub-networks. Different colors indicate the identified ICs in the spatial maps.
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that, compared with the healthy controls, the DOC patients had a sig-
nificantly longer MDT in States 2 and 4 but shorter MDT in States 1 and
3 (State 1: p < .001; State 2: p= .006; State 3: p < .001; State 4: p <
.001, Fig. 7b). The DOC patients showed (transition rate= 0.031) sig-
nificantly more switching behavior than the controls (transition
rate= 0.008, t=3.618, p < .001).

3.5. Connectome-based predictive modeling and support vector machine

Pearson's correlation coefficient (r=0.446) between the predicted
and observed scores was estimated using the LOOCV. With the non-
parametric permutation t-test, we showed that the CPM could sig-
nificantly (p= .015) predict the CRS-R scores of a new subject (Fig. 7d).
Although we put all of the positive and negative dFC into the prediction
model, we found that the negative dFC, but not the positive dFC, was
significantly correlated with the CRS-R scores.

We found the NT had ability to discriminate the MCS patients from
the VS/UWS patients. When taking the NT as features to predict pa-
tients’ diagnostic status, we found that the classification accuracy could
reach up to 73.68% (p= .001, sensitivity to 75.00%, and specificity to
71.43%) (Fig. 8a). However, when taking the linear SVM classifier and
selecting MDT as features to discriminate the MSC patients from VS/
UWS patients, we found a chance level accuracy. In addition, using
Spearman's rank correlation, we found a significant positive correlation

(r=0.540, p= .017) between NT and the CRS-R scores in DOC patients
(Fig. 8b). However, no significant correlation was found between MDT
in any state and the CRS-R scores (State 1: r=0.075, p= .418; State 2:
r=0.418, p= .197; State 3: r=0.308, p= .247; State 4: r=0.107,
p= .381).

4. Discussion

In this study, we used a sliding windows approach to analyze the
dynamic functional properties of the DOC patients. We found that the
DOC patients displayed reduced dFC within the visual, auditory, and
somatomotor networks and had a greater number of transitions (NT)
than the healthy controls. The robustness of the result was tested using
HMM. From the CPM analysis, we found that the dFC could be used to
predict a patient's clinical scores. Those results extended our knowledge
of the altered dFC in the DOC patients.

4.1. Group differences in state

A total of 4 states were identified in either or both of the DOC pa-
tients and controls using the k-means clustering algorithm (Fig. 4). This
means the FC fluctuated over time rather staying at stationary in the
DOC patients. The number of clusters was similar to that reported in a
previous study, in which Demertzi et al. (2019) analyzed brain

Fig. 4. The four dFC states for patients with disorders of consciousness (DOC) and healthy controls (HC). The total number and the percent of temporal occurrences
are listed above each centroid.
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dynamics of DOC patients by using a dynamic functional coordination
approach, detected 4 patterns of functional signal coordination asso-
ciated with conscious and unconscious states. Based on the distribution
of MDT between the patient and control groups (Fig. 6a), we divided

the four states in two types, common states, which were found in both
the DOC patients and the heathy controls, and altered states, which
were mainly found in the patients. This phenomenon is also found in
previous studies (Li et al., 2014; Ou et al., 2014). For example,

Fig. 5. Detailed group centroids of the dFC states for patients with disorders of consciousness (DOC) and healthy controls (HC).

Fig. 6. Between-group differences in temporal properties of the dFC states derived using the sliding windows approach. (a) The mean dwell time (MDT). (b) The
number of transitions (NT) for each group. (c) The group differences in dynamic functional connectivity (dFC) in State 3 (two-sample t-test, FDR correction, q <
0.05). Notes: * indicates p< .05; ** indicates p< .001. We did not calculate the p value of theMDT in State 4 because this state was not found in the healthy controls.
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Li et al. (2014) reported that two altered states in post-traumatic stress
disorder (PTSD) patients could act as biomarkers for distinguishing
patients from controls. Specifically, the two altered states (Fig. 5),
States 2 and 4, displayed relatively weak dFC inter- and intra- AUN,
VSN, and SMN compared with the common states. This result was
consistent with previous studies (Demertzi et al., 2015;
Vanhaudenhuyse et al., 2010) and suggests that some of the dynamic
functional interactions had been inactivated.

4.2. Group differences in dynamic functional connectivity (dFC)

We found that the significant between-group differences in dFC
(Fig. 5c) were mainly associated with the AUN, VSN, and SMN. This
result was similar to a previous study (Demertzi et al., 2019) which
adopted a dynamic functional coordination analysis and found widely
decreased FC (not only in intra- and inter-network FC but also long-
distance FC) in the whole brain of DOC patients compared with health
controls. In the AUN, the DOC patients showed decreased dFC between
the right STG and left STG compared with the healthy controls. This
result is in line with previous studies of DOC patients (Demertzi et al.,
2015, 2014). The STG is believed to process sound information
(Friederici et al., 2017) and comprehend language (Wise et al., 2001).
Demertzi et al. (2014) analyzed the FC of different networks of DOC

patients and found that the auditory network, including the STG, was
one of the most severely damaged regions compared with healthy
controls. Subsequently, a study (Demertzi et al., 2015) found the FC of
this region could be used to distinguish MCS patients from VS/UWS
patients. Overall, there seems to be some evidence to indicate that the
STG is associated with the abnormal auditory response in DOC patients.

In this study, we found that the DOC patients showed decreased dFC
between the right postcentral gyrus and the left postcentral gyrus, be-
tween the paracentral gyrus and the right postcentral gyrus, and be-
tween the paracentral gyrus and the left postcentral gyrus in the SMN
(Fig. 6c) compared with the controls. This result is consistent with
several previous studies (Kotchoubey et al., 2013; Ovadia-Caro et al.,
2012; Yao et al., 2015). In addition to decreased FC (Ovadia-Caro et al.,
2012), Yao et al. (2015) found a positive correlation between the am-
plitude of low-frequency fluctuation (ALFF) in the postcentral gyrus
and the fractional anisotropy of the posterior thalamic radiation in DOC
patients. Kotchoubey et al. (2013) found the weighted global con-
nectivity of the postcentral gyrus could help in differentiating between
VS/UWS patients or MCS patients. Moreover, Perri et al. (2016) re-
ported that the FC between the paracentral gyrus and the DMN was
positively correlated with the conscious state (from VS/UWS patients,
MCS patients, to controls). Altogether, our study showed that the
postcentral and paracentral gyrus seem to be associated with the

Fig. 7. The four states and between-group dif-
ferences in their temporal properties derived from
the hidden Markov model (HMM) for patients
with disorders of consciousness (DOC) and
healthy controls (HC). (a) The four states of all
the subjects. The nodes color-coded in red (blue)
represent the nodes with a positive (negative)
activation in the given state. (b) The mean dwell
time for each state. (c) The transitional rate for
each group. (d) Connectome-based predictive
modeling (CPM) predicted the CRS-R scores of
every subject. Notes: *, p < .05; **, p < .001.
(For interpretation of the references to color in
this figure legend, the reader is referred to the
web version of this article.)

Fig. 8. Performance of support vector machine
(SVM) to predict the diagnostic status and the
correlation between the number of transitions
(NT) and clinical scores for DOC patients. (a)
Bar plot of different predictive performance.
Using the NT as a feature, we estimated the
classification accuracy (73.68%), sensitivity
(75%), and specificity (71.43%) for predicting
patients’ diagnostic status. The dashed line re-
presents the chance level (50%). (b) Scatter
plot of the correlation between the number of
transitions and the CRS-R scores. The dotted
line corresponds to the best fit (r=0.54,
p= .015).
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impaired somatosensory function in DOC patients.
Several significantly decreased between-group dFCs were found in

the VSN. Compared with the controls, reduced dFC was found between
the inferior occipital gyrus and the cuneus/the right lingual gyrus,
between the inferior occipital gyrus and the right calcarine gyrus, and
between the inferior occipital gyrus and the left lingual gyrus in the
DOC patients (Fig. 6c). Monti et al. (2013) reported that DOC patients
still preserved some visual cognitive function when receiving visual
stimuli. The current study also showed group differences in inter-net-
work dFC between the AUN, SMN, and VSN. This result is compatible
with previous studies (Amico et al., 2017; Demertzi et al., 2015).
Demertzi et al. (2015) found that the inter-network FC between the
auditory and visual networks could be used to classify patients into the
correct categories (MCS or VS/UWS patient). Amico et al. (2017) re-
ported abnormal inter-network FC between the VSN and SMN by ex-
tracting ICA traits in DOC patients. Taken together, our finding of ab-
normal dFC in the DOC patients may be associated with the dysfunction
of sensory and somatomotor processing.

4.3. Dynamic functional connectivity (dFC) predict CRS-R scores

The decreased dFC was mainly located in the SMN, AUN, and VSN,
and the functions of those networks were related to the measured items
of the CRS-R. Using CPM, we found that the dFC could be used to
predict the scores of the DOC patients (r=0.446, p= .015). In addi-
tion, we noticed that the negative edges, rather than the positive edges,
could be used to predict the CRS-R scores. Using a dynamic causal
model, Chen et al. (2018) found that only negative effective con-
nectivity could predict CRS-R scores in DOC patients. Our findings in-
dicated that the dFC might be useful for diagnosing a patient's state of
impairment.

4.4. Group difference in number of transitions (NT)

The between-group difference in NT could be understood from the
organization of the brain network. Modularity provides a measure for
evaluating the segregation and integration of networks (Bullmore and
Sporns, 2009; van den Heuvel and Sporns, 2019). High modularity
indicates that the nodes densely connect with each other within a
network but sparsely connect between networks. Although integration
can enhance the brain's working efficiency (van den Heuvel and Sporns,
2019), maintaining segregation is also advantageous for supporting
cognitive ability (Gallen et al., 2016; Grady et al., 2016), resistance to
damage (Nomura et al., 2010; Siegel et al., 2016), and meeting task
processing demands (Bassett et al., 2015; Cohen and D'Esposito, 2016).
Godwin et al. (2015) found that brain modularity may be basic for
generating awareness. Taking these findings together, the network or-
ganization in healthy controls appears to reach an optimal state be-
tween integration and segregation (Raichle, 2015).

It is possible that our results refect the effect of severe brain damage,
which caused an unstable brain situation in brains (Alexander-
Bloch et al., 2010). Previous several studies (Crone et al., 2014;
Demertzi et al., 2019) showed that DOC patients had lower modularity
than healthy controls. However, no significant difference was found in
either path length or the global efficiency between DOC patients and
healthy controls (Crone et al., 2014). In addition, a diffusion tensor
imaging (DTI) study (Weng et al., 2017) also found that DOC patients
showed a reduced clustering coefficient and lower local efficiency,
which implies that the balance between segregation and integration
was broken. These studies indicated that the patients may possibly
enter a disturbed situation in which they retain the ability to integrate
but lose the ability to segregate. Using SVM approach, we found that
the NT could be used as a potential biomarker for predicting patient's
diagnostic status (VS/UWS and MCS). We also found that the NT was
positively correlated with CRS-R scores in the patients. Therefore, our
NT results may indicate that DOC patients were in an unstable state and

this index may reflect altered consciousness after sever brain injury.

4.5. Relationship between dFC and brain activation

After using the sliding windows approach to determine the number
of states, the distribution of the MDT, and the NT for two groups, we
found that these temporal properties were similar to the results from
the HMM. Specifically, the DOC patients showed a greater number of
states and number of transitions (NT) than the healthy controls. From a
methodological perspective, although the two approaches that we used
are data-driven methods to cluster the states, the sliding windows ap-
proach produced the dynamic patterns of the FC between brain regions
and the HMM gave the patterns of activity across the subjects’ brain
regions. This study, which combined FC with brain activation, may
provide new insights for exploring brain properties. Recent studies
found there was an association between BOLD activity and FC (Fu et al.,
2018; Tomasi and Volkow, 2018). Fu et al. (2018) reported that aber-
rant coupling between dynamic ALFFs and dFC measures occurs in
schizophrenia. Tomasi and Volkow (2018) found that the local FC
density (lFCD) showed a linear relationship with ALFF and that the
lFCD could be used to predict the BOLD activation patterns. Taken to-
gether, our findings suggest that FC and brain activation have the same
physiological foundation.

4.6. Limitations

This study has several limitations. First, although a total of 45 DOC
patients were recruited at the time we did the scanning, we were only
able to utilize 19 patients for the analysis. There was an agonizing
trade-off between subject quantity and image quality. The extensive
brain lesion in some patients would have produced poor normalization
results and overlarge head-motions would have introduced artifacts.
The results of the specific exclusion process are shown in Fig. 1. Second,
although the sliding windows approach has been widely used to study
the dynamic properties of the brain, this method has an unsolved issue
in that the length of the windows is decided by rule of thumb, not by a
gold standard (Preti et al., 2017). However, HMM does not need to
overlap in time when it is used to calculate dynamic properties. This is
the reason that we chose the HMM as a supplemental approach to test
the robustness of our result. Third, previous studies found that the
thalamus was involved in the abnormal functioning of the corticotha-
lamic system in DOC patients (Fridman et al., 2014; Schiff, 2010).
However, we did not find such a result for the thalamus in the sub-
cortical region using a high order ICA model. This result may be asso-
ciated with serious thalamic impairment in DOC patients (Adams et al.,
2000).

In summary, we analyzed the dFC across the whole-brain in DOC
patients using a sliding windows approach and a hidden Markov model.
We found that, compared with the healthy controls, the patients had a
greater number of states and number of transitions (NT) among the
states as well as displaying a reduced dFC in the auditory, visual, and
somatomotor networks. Using CPM, we found that the dFC could be
used to predict the CRS-R scores of the DOC patients and, using SVM,
the NT was capable to be used to discriminate VS/UWS patients from
MCS patients. These findings may provide a deeper insight into the
pathophysiology mechanisms of this disease.
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