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ABSTRACT

Objective: Early identification of chronic diseases is a pillar of precision medicine as it can lead to improved out-

comes, reduction of disease burden, and lower healthcare costs. Predictions of a patient’s health trajectory

have been improved through the application of machine learning approaches to electronic health records

(EHRs). However, these methods have traditionally relied on “black box” algorithms that can process large

amounts of data but are unable to incorporate domain knowledge, thus limiting their predictive and explanatory

power. Here, we present a method for incorporating domain knowledge into clinical classifications by embed-

ding individual patient data into a biomedical knowledge graph.

Materials and Methods: A modified version of the Page rank algorithm was implemented to embed millions of

deidentified EHRs into a biomedical knowledge graph (SPOKE). This resulted in high-dimensional, knowledge-

guided patient health signatures (ie, SPOKEsigs) that were subsequently used as features in a random forest en-

vironment to classify patients at risk of developing a chronic disease.

Results: Our model predicted disease status of 5752 subjects 3 years before being diagnosed with multiple scle-

rosis (MS) (AUC ¼ 0.83). SPOKEsigs outperformed predictions using EHRs alone, and the biological drivers of

the classifiers provided insight into the underpinnings of prodromal MS.

Conclusion: Using data from EHR as input, SPOKEsigs describe patients at both the clinical and biological lev-

els. We provide a clinical use case for detecting MS up to 5 years prior to their documented diagnosis in the

clinic and illustrate the biological features that distinguish the prodromal MS state.

Key words: knowledge graph, electronic health records, multiple sclerosis, preventative medicine

INTRODUCTION

Efforts to move toward precision and preventative medicine have in-

creased in the last decade and are now pervasive in most aspects of

biomedicine.1 As a result, there has been a sharp increase in medical

research studies that implement machine learning (ML) approaches

using electronic health records (EHRs).2,3 ML approaches have been

moderately successful and have substantially advanced tasks such as

disease diagnosis and specimen classification.4 However, because
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they identify patterns in data without knowledge of the underlying

clinical or biological meaning, their overall performance has been

limited and interpretability of the results remains a black box.

Most chronic diseases lack a unique sign or symptom at presen-

tation. On the contrary, patients may consult a specialist following a

clinical event, but often acknowledge that symptoms presented

months or even years prior. Early identification of individuals at risk

for chronic diseases who are still healthy or have subclinical mani-

festations would be beneficial for both patients (to receive early

treatment or close monitoring) and the health system as a whole (to

help optimize across multiple visits and expensive testing).

In order to systematically assess the earliest symptoms (ie, pro-

dromal period) and the biological changes underlying a chronic dis-

ease, clinical record standardization is critical in order to overcome

the incompleteness in a patient’s biomedical history. The Observa-

tional Medical Outcomes Partnership (OMOP) format5 helps bridge

the incompatibility of disparate EHR systems and facilitates the uni-

fication of patient records and timelines. Additionally, projects that

incorporate basic science-level data (genomics, proteomics, etc.) into

EHR research, such as Electronic Medical Records and Genomics,

have furthered our understanding of disease pathogenesis and of-

fered practical applications.6–9 A recently recognized need is the

consideration of known general biological mechanisms in patient-

specific health data analytics.10 This need can be addressed by

knowledge graphs (KGs) which naturally bridge the gap between ba-

sic science research and medical practice.11 KGs connect informa-

tion from multiple classes of biological and medical concepts, thus

allowing to constraint the vast solution space faced by traditional

ML methods.12–15 SPOKE is a KG that connects information from

over 30 databases and contains more than 3 million nodes of 16

types and more than 16 million edges of 32 types.16,17 The subset of

nodes and edges used here is listed in Tables 1 and 2.

Early detection of chronic diseases such as diabetes or hyperten-

sion has enabled their effective management to avoid or delay clini-

cal complications.18,19 However, despite current efforts in

quantifying genetic and environmental risk factors,20 accurate meth-

ods to predict diagnosis of multiple sclerosis (MS) do not yet exist.

MS is a chronic, autoimmune disease of the central nervous system

(CNS) with severe and life-long consequences. Early symptoms of

MS, such as fatigue or depression, are often nonspecific, which can

make it difficult for the general practitioner to identify and refer the

patient to a neurologist. However, previous studies suggest that

healthcare utilization by some patients increases even 10 years prior

to their MS diagnosis.21 Since early treatment of MS is associated

with improved long-term neurological outcomes,22 early recognition

of a (sub)clinical presentation and understanding its biological basis

could have a major impact on disease trajectories of individual

patients. Here, we present a computational method to identify

patients before they are diagnosed with MS using only the structured

portion of their medical records and biological knowledge from a

KG. This method for incorporating biological knowledge in health

data analysis has broad applicability to other chronic conditions.

MATERIALS AND METHODS

Patient encounter snapshots
The initial cohort consisted of deidentified EHR from 2 180 882

patients who visited UCSF between 2011 and 2018. Available

“snapshots” from the medical history of 5752 patients with a con-

firmed diagnosis of MS were taken using only past encounters 1–7

years prior to their first MS diagnosis code (t0; Figure 1A). These

snapshots represent everything a doctor knows about a patient

(through their EHRs), up to a given point in time (ie, snapshot at

year �1 contains data up to 1 year before MS diagnosis). These

snapshots represent the de facto prodromal period of MS.

A control group (non-MS, n¼2 175 130) was selected among

individuals who never received an MS diagnosis during the observa-

tional period. For the non-MS group, t0 was set at 6 months prior to

their most recent visit to UCSF. This aligned MS and non-MS snap-

shots and ensured that the control population had a follow-up pe-

riod without MS equal to the minimum amount of observation time

available for MS patients after diagnosis.

Parallel analyses were conducted to simulate 2 possible scenar-

ios: patients who visited multiple specialists all visit types (All-Visits)

and patients with only primary or emergency care providers (PCP-

Only) visits. A patient could potentially be in both simulations if

they received both primary and specialist care at UCSF, but only

data collected during primary care type visits were used for the

PCP-Only analysis. Figure 1B depicts the number of MS and non-

MS patients included in the All-Visits (left) and PCP-Only (right)

groups for each snapshot (years �1 to �7).

Embedding EHRs into SPOKE
The EHRs used for this analysis were translated into the OMOP Com-

mon Data Model. We first created Propagated SPOKE Entry Vectors

(PSEVs), machine-readable embeddings that quantify the significance

of each node in SPOKE for a given cohort of patients.23 To create

PSEVs, SPOKE Entry Points (SEPs) were first identified by finding all

concepts that are present in both the EHRs and SPOKE. For this

work, we identified 7535 SEPs, defined as the EHR concepts from the

primary tables “condition_occurrence,” “drug_exposure,” and

“measurement” that directly corresponded to nodes in SPOKE. Then,

for a given concept (eg, carbamazepine), a connection was made be-

tween a patient’s SEPs in the EHRs and SPOKE. A modified version

of topic-sensitive Page Rank24 was then used to generate PSEVs for

each SEP (Figure 2A and B). Specifically, a random walker was placed

onto a node in SPOKE and allowed it to randomly traverse edges

within the network until the walker is forced to restart (P¼ .1) at one

of the input patients (that was prescribed carbamazepine in this exam-

ple). This process continues until the amount of time (importance) the

walker spends on each node becomes stable. The resulting PSEV holds

weights for each node in SPOKE based on how important a node is

for the corresponding patient population.

Once population-level embeddings (PSEVs) were created for all

matching EHR concepts, they were aggregated to create vectors for

Table 1. SPOKE node statistics

Node type Count

Compound 286 790

Protein 33 857

Gene 19 567

Anatomy 13 257

Biological process 13 156

Disease 9128

Side effect 3865

Molecular function 3407

Pathway 2428

Pharmacologic class 1748

Cellular component 1725

Symptom 369
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the individual patient snapshots. Similar to other machine-learning

algorithms,25,26 we applied vector/matrix arithmetic to produce the

Patient-Specific SPOKE Profile Vectors (SPOKEsigs, see Supplemen-

tary Methods). Following this principle, SPOKEsigs were computed

for each patient, at each snapshot (Figure 2C). The resulting vectors

represent the importance of each node in SPOKE for each patient at

that time point.

Building a classifier for early detection of MS
Random forest classifiers were used to determine if SPOKEsigs

could predict prodromal MS. Random forest was chosen based on

its combination of interpretability and performance.27 To measure

the importance of the knowledge network in the prediction, we also

created a classifier using only the binary vector corresponding to the

patient’s SEP. Since SEPs are simply the EHR input variables used to

derive the SPOKEsigs, comparing the performance between the 2

classifiers allowed us to gauge the predictive performance gained by

using SPOKE.

In order to build a classifier that could be used to compute risk

of MS in the general population, the classifier was tested using the

prevalence of MS at UCSF, which approached �1:1000 for all

groups (comparable to the prevalence of MS in the United

States).28,29 The classifiers (using either SPOKEsigs or SEPs) were

run from snapshots at years �5, �3, and �1 from diagnosis for

both the All-Visits and PCP-Only groups.

RESULTS

MS-related nodes increase in significance as time of

diagnosis approaches
In order to measure the flow of information from thousands of sub-

jects through the “MS” node in SPOKE before diagnosis, we gener-

ated SPOKEsigs without using the PSEV corresponding to the

concept MS (as MS is naturally the top-ranked node within the MS

PSEV).23 Of interest, nodes related to the physiopathology of MS

were found to be highly ranked likely due to the biologically mean-

ingful connections within SPOKE. To investigate the importance of

the MS node in our subject population, the rank distribution of MS

was compared for years �7 to �1 relative to MS diagnosis in the in-

dex group. Figure 3A shows that MS increases in significance as

time to diagnosis approaches for both the All-Visits and PCP-Only

groups (r2 ¼ 0.93; P< .037 PCP-Only and r2 ¼ 0.96; P< .018 All-

Visits). Furthermore, when compared with all other diseases in

SPOKE, MS remains within the top 1% in the All-Visits group and

(and within 2% for PCP-Only visits), during years �7 to �1. Fur-

ther, the importance of MS is statistically significant (t test) for both

groups between years �5 (5.5e-6 PCP-Only; 1.6e-26 All-Visits) to

Table 2. SPOKE edge statistics

Node type 1 Edge Node type 2 Count

Disease ASSOCIATES_DaG Gene 1 998 072

Gene PARTICIPATES_GpBP Biological process 1 480 742

Protein INTERACTS_PiP Protein 1 238 535

Compound BINDS_CbP Protein 1 098 776

Anatomy EXPRESSES_AeG Gene 1 052 814

Gene REGULATES_GrG Gene 531 344

Gene INTERACTS_GiG Gene 294 328

Gene PARTICIPATES_GpMF Molecular function 260 152

Gene PARTICIPATES_GpCC Cellular component 226 582

Gene PARTICIPATES_GpPW Pathway 221 080

Anatomy DOWNREGULATES_AdG Gene 204 480

Anatomy UPREGULATES_AuG Gene 195 696

Disease RESEMBLES_DrD Disease 128 000

Gene COVARIES_GcG Gene 123 380

Compound CAUSES_CcSE Side effect 86 400

Disease LOCALIZES_DlA Anatomy 79 010

Protein TRANSLATEDFROM_PtG Gene 67 332

Compound TREATS_CtD Disease 64 872

Pharmacologic class INCLUDES_PCiC Compound 62 952

Disease PRESENTS_DpS Symptom 47 606

Compound DOWNREGULATES_CdG Gene 42 204

Compound CONTRAINDICATES_CcD Disease 41 302

Compound UPREGULATES_CuG Gene 37512

Anatomy ISA_AiA Anatomy 37 304

Anatomy CONTAINS_AcA Anatomy 37 304

Disease ISA_DiD Disease 22 952

Disease CONTAINS_DcD Disease 22 952

Anatomy PARTOF_ApA Anatomy 19 502

Disease UPREGULATES_DuG Gene 15 462

Disease DOWNREGULATES_DdG Gene 15 246

Compound RESEMBLES_CrC Compound 12 972

Compound INTERACTS_CiP Protein 6390

Compound PALLIATES_CpD Disease 780

Compound AFFECTS_CamG Gene 718
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�1 (6.4e-62 PCP-Only; 3.4e-147 All-Visits). Note that this cannot

be explained by prescriptions of MS-specific disease-modifying med-

ications (DMTs), as these individuals have not been yet diagnosed

with MS. There is a noticeable gap between the P-values for the All-

Visits and the PCP-Only groups, suggesting a substantial increase in

information related to MS being recorded during specialist visits.

Though this increase in significance (overtime as well as the differ-

ence between PCP-Only and All-Visits groups) can partially be at-

tributed to the increased sample size, the average P-value at any

time point is not significant. Further, the slope for the MS node com-

pared with the slope of the average P-value over time is 215� and

127� higher (All-Visits and PCP-Only, respectively), suggesting

that only a small portion of the increase in significance can be attrib-

uted to increased sample size.

To ensure that these results were MS-specific and not simply the

outcome of visiting a neurologist (in the All-Visits group), a similar

analysis was conducted using snapshots from patients diagnosed

with amyotrophic lateral sclerosis (ALS). Similarly, ALS was the

most important disease (P<3.17e-9) in the ALS snapshots at year

�1. In contrast, the MS node was not differentially ranked

compared with the control population (P> .9). This indicates that

although both MS and ALS patients can see neurologists during the

prodromal period, each prodromal disease has a distinct signal in

SPOKE.

Considering that a first demyelinating event must occur prior to

the diagnosis of MS,30,31 we speculated that SPOKE nodes related

to myelin might also increase in significance as time to diagnosis

approached. Figure 3B illustrates the increased significance of the

concept Myelin sheath adaxonal region (GO:0035749). Further-

more, the same trend is observed for any node with “myelin” in its

name (Figure 3C). These results suggest that the biological under-

pinnings of the disease might be detectable during the prodromal pe-

riod using only information from the EHR.

Predicting prodromal MS
After confirming that SPOKEsigs contained meaningful information

related to MS, a predictive model was built using patient-specific

SPOKEsigs as inputs to a random forest classifier. The average area

under the receiver operating characteristic (ROC) curve (AUC) for
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Figure 1. Patient timeline aligning and filtering. (A) Timepoint 0 (t0) is the point of alignment for the multiple sclerosis (MS) and non-MS timelines. For MS

patients, t0 was the first visit in which a patient received a diagnosis code for MS. The duration of time a patient has been diagnosed with MS is represented by a

red line between the first and last visits with an MS diagnosis code. For Non-MS patients, t0 was set to 6 months (purple line) prior to their most recent visit (hexa-

gon). Left of t0 are the patient snapshots that encompass all of the information (electronic health record data) a doctor has on a patient up to a given point of time.

The snapshot at year �1 (blue line) contains all data between the first visit (triangle) and �1 year from t0. The remaining snapshots (years �3, �5, and �7) become

smaller as their endpoints move farther from t0. (B) Two patient encounter groups were followed throughout the workflow: All-Visit (left) and Primary Care Physi-

cian only (PCP-Only) (right). The All-Visit analysis uses all possible encounters at UCSF, whereas the PCP-Only analysis only includes patient encounters at pri-

mary (or emergency) care visits. The number of MS or non-MS patients at each year goes from t0 (top) to �7 years (bottom) is shown.
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the SPOKEsig All-Visit (AV) classifier was 0.76 at �7 years, and

progressively increased to 0.84 for year �1. This same trend was ob-

served for all 4 classifier types (AUCSPOKE AV: 0.76–0.84, AUCSPOKE

PCP: 0.6–0.78, AUCSEP AV: 0.7–0.83, and AUCSEP PCP: 0.53–0.75;

Figure 4). As expected, the classifier that used all encounters outper-

formed the classifier that used PCP-Only encounters (Avg.

DAUCSPOKE Years �1 to �5: 0.11 and Avg. DAUCSEP Years �1 to

�5: 0.15; Avg. DAUC ¼ Avg. AUC All-Visits—Avg. AUC PCP-

Only). In all cases of information loss, either from smaller time win-

dows (time from diagnosis) or missing specialist visits (PCP-Only),

the enhancement of EHRs with SPOKE drove classifier perfor-

mance. The greatest improvement was seen at 3 years prior to diag-
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Figure 2. Embedding individual patients in SPOKE. (A) Example embedding the electronic health record (EHR) concept for the drug carbamazepine into SPOKE.

First, SPOKE Entry Points (SEPs) are created by finding all concepts that are present in both the EHRs and SPOKE. Then each patient that was prescribed carba-

mazepine is connected to SPOKE through the SEPs in their EHRs. A random walker is then placed onto a node in SPOKE and randomly traverses edges within

the network until the walker is restarted at 1 of the patients that was prescribed carbamazepine (probability of restart ¼ .1). (B) This process continues until the

amount of time the walker spends on each node becomes stable. The nodes are then ranked such that the most important nodes are given the highest rank (dark

teal) and the least important nodes are given the lowest rank (white). Here the medically or biologically important nodes for carbamazepine are darker teal. Mean-

while, heartburn, which is not related to carbamazepine, is white. (C) A SPOKEsig is produced for a patient at a given snapshot by summing the PSEVs associated

with the SEPs in their EHRs during that time period. During this example snapshot, Patient X had 3 SEPs: carbamazepine, epilepsy, and constipation. Therefore,

the PSEVs for carbamazepine, epilepsy, and constipation are summed to create this snapshot for Patient X. Just as the elements in the PSEVs, each element in

the SPOKEsig corresponds to a single node in SPOKE.
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nosis using PCP-Only encounters (DAUCSPOKE-SEP: 0.12). Alto-

gether, these results demonstrate that embeddings of patients’ clini-

cal data from the structured portion of the EHR onto a KG contain

relevant information about their health status. Furthermore, adding

structured knowledge to EHR data through SPOKE can compensate

for missing and incomplete EHR data.

More SEPs will likely improve classifier performance
We recognize SEPs themselves are incomplete because they currently

do not map every EHR concept to SPOKE (88% of conditions, 79%

of medications, and 47% of measurements for All-Visits at year

�1). To estimate how much SPOKEsigs could improve if each EHR

concept was mapped to SPOKE, the same classifiers were run using

the full set of EHR concepts. Interestingly, the average difference in

AUC between full OMOP and SPOKEsigs was the same as that be-

tween SPOKEsigs and SEPs (DAUC: 0.053). The majority of OMOP

concepts that drove the full OMOP classifiers were measurements

that were not mapped to SPOKE (Supplementary Tables S1 and S2).

These results suggest that if more EHR concepts were mapped to

SPOKE, a significant improvement in the classifier could be

achieved.

Biological drivers of the classifier
Our previous results suggest that the improved performance of clas-

sifiers using SPOKEsigs over those using only SEPs (ie, straight from

the EHR) is due to biologically relevant information from SPOKE

being utilized in the computation (ie, because the network connects

these variables). To understand how the incorporation of biological

knowledge increased the AUC, we extracted the scores of each bio-

logical node using the average feature value across all years for both

the All-Visits and PCP-Only groups. Next, the top 20 nodes from

each biological node type (Gene, Protein, Biological Process, Molec-

ular Function, Cellular Component, and Pathway) were selected

and split into MS or non-MS significant groups according to the

sign of the t-statistic (Figure 5A and B, respectively). To further in-

terpret how each group of top nodes was connected to one another,

additional SPOKE nodes were added if they had direct edges to at

least 2 top biological nodes (Figure 5A and B). Remarkably, the

highest-ranked nodes in the MS groups corresponded to myelin biol-

ogy (myelin sheath adaxonal region, MAG, glial cell differentiation,

etc.), neurophysiological functions (axonogenesis, ceramide binding,

etc.), and adaptive immunity (CD4þT cells and B cell-specific path-

ways, CCR5, etc.; Figure 5A and Supplementary Table S3). Also

significant were nodes related to the CNS, muscle behavior, the ex-

tracellular matrix (eg, matrix metalloproteinases, collagen, NCAM,

Basigin interactions, etc.), and genes associated with other neurolog-

ical diseases such as spastic paraplegia (MPV17L2), ataxia

(RNF170) Alzheimer’s disease (APBA3), and lysosomal storage dis-

ease (NAGLU). Together, these nodes illustrate how the classifier

detected the importance of neurological and immunological pro-

cesses in MS patients several years before their diagnoses. In con-

trast, the highest-ranked nodes within the non-MS group were

related to Th2 cell differentiation (eosinophil migration, prostaglan-

dins, CCR3 chemokine receptor binding, etc.), an immune subset as-

sociated with protection against inflammatory diseases like MS

(Figure 5B).32–35

Medications and common laboratory tests drive

information flow to neurological nodes
The difficulty in identifying MS at an early stage is due to the combi-

nation of the EHRs being sparse and MS symptoms being vague and

common in the general population. Often this results in OMOP

codes only being associated with one or a small number of MS

patients (Supplementary Figure S2) which does not contribute to the

classifier. However, after mapping an OMOP concept to a SEP it is

transformed into a multidimensional SPOKEsig that represents the

importance of each node in SPOKE for that OMOP concept/SEP.

Therefore, 2 distinct OMOP concepts could “push” information to

the same downstream nodes.
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To identify which OMOP concepts were responsible for

“pushing” information downstream to each of the MS-significant

biological nodes, network paths were traced back to the originating

SEPs (see Materials and Methods). For most of the top MS nodes,

the SEPs that were essential for the high rank of the MS-significant

nodes were mapped from medication orders and common labora-

tory tests (note that MS DMTs are not SEPs, as none of these indi-

viduals had been diagnosed with MS at the time of analysis).

Though these SEPs may not have been significant in the MS popula-

tion as a whole, their propagation through SPOKE led to increased

information flow to the MS top nodes. For example, while Carba-

mazepine and Lithium are not significant as distinct SEPs, they both

direct information flow to the GO concept “Myelin sheath adaxonal

region” (GO:0035749, a highly ranked MS-relevant node) in a rep-

resentative patient shown in Figure 5C. For this patient, informa-

tion flows from Carbamazepine to a set of Disease nodes (either

through “treated by” or “contraindicated for” edges) and then (ei-

ther directly or through an additional Disease or Gene node) to the

genes CNP, MAG, or PTEN which are all components of “Myelin

sheath adaxonal region.” Interestingly, Carbamazepine or Lithium

can be used to treat symptoms and comorbidities of MS such as tri-

geminal and glossopharyngeal neuralgia or depression, respectively,

which are common symptoms experienced by MS patients. This fur-

ther demonstrates that distinct clinical presentations can lead to sim-

ilar SPOKE representations of MS patients.

Similarly, the paths between the laboratory test for Aspartate

aminotransferase travel through aspartic acid (Compound) and then

traverse 1–2 edge(s) before reaching MAG and PTEN (Genes) (Sup-

plementary Figure S3). Despite the different paths of entry into

SPOKE, data are repetitively sent through nodes such as MAG and

PTEN, which then converge at the “Myelin sheath adaxonal region”

node. Similar patterns were observed for multiple other neurological

nodes.

Th2-mediated diseases drive information to non-MS bi-

ological nodes
The same method for abstracting the pertinent OMOP concepts in-

formation flow was then applied to the top non-MS biological

nodes. After retracing several paths, we found that the OMOP con-

cepts that facilitated the flow of information to nodes related to

eosinophils, eicosanoids, and T cells were driven by Th2-mediated

diseases such as asthma and allergies which are more prevalent in

the non-MS population (–log2 odds ratio of �2.46 and �1.97, ac-

cordingly). Figure 5D provides an example of how these diseases

transfer information to the (non-MS significant) biological node Ei-

cosanoid ligand-binding receptors. In this representative patient,

data start at the node for asthma and then either directly connect to

or are 1 neighbor apart from genes that participate in Eicosanoid

ligand-binding receptor (Pathway). In the latter case, the informa-

tion first flows through diseases similar to asthma or its associated

genes. These straightforward routes from Th2-mediated diseases to

their associated genes are what power the Th2 signal in the non-MS

significant biological nodes.

Taken together, our results show that SPOKE nodes useful for

the classifier include nodes with both strongly positive (highly

ranked in MS) and negative (highly ranked in controls) associations

with MS. In both cases, the biological interpretation of those nodes

is consistent with the known pathogenesis of MS.

DISCUSSION

The purported prodromal period of MS is often described in terms

of healthcare utilization.36,37 MS patients in the prodromal stage

are, by definition, months or even years away from a recorded diag-

nosis code for MS. During this period, however, they are not just

standing idly—in fact, their healthcare use both within and beyond

the primary care setting, steadily increases until time to diagnosis.36

Previous research revealed that MS patients have more encounters

with psychiatrists and urologists, as well as higher proportions of

musculoskeletal, genito-urinary, or hormonal-related prescrip-

tions.38These findings hint that underlying biological signals must

be present months or even years before diagnosis and the informa-

tion from these specialist visits could be pivotal in uncovering those

differences.

Although patients often pay multiple visits to a specialist before

receiving an MS diagnosis, the process of obtaining an appointment

with a specialist can itself be prolonged, usually requiring a referral

and insurance coverage. As a result, a patient’s initial interface with

a health system is often through primary or emergency care. Appre-

ciating the different roles primary care and specialist clinicians play

in the diagnosis process, we ran 2 analyses in parallel using data

from either PCP-Only or All-Visits. Though it is possible for symp-

toms to be recorded in the structured portion of EHRs, this typically

only occurs if it is necessary for billing. Additional patient data can
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Figure 5. Th1/Th2 balance and neurological nodes drive biological increase in AUC. (A, B) Networks of significant biological nodes for random forest classifier.

Red nodes were higher ranked in the MS population (A), whereas blue nodes were higher ranked higher in the non-multiple sclerosis (MS) population (B) (color

gradient based on t-statistic). The shape (diamond or oval) of the node denotes whether or not the node is in the top 20 of a given node type. If it is an oval, it

must connect to � 2 nodes in the top 20. Highlighted in the network are some of the nodes that correspond to Th1/Th2 balance or neurology. (C) Illustration of

how a prescription for carbamazepine can send information to the Myelin sheath adaxonal region node (GO:0007404, GO:0043360; replaced by: GO:0010001). (D)

Depiction of how asthma (a Th2-mediated disease that is more prevalent in the non-MS UCSF population) pushes information downstream to the Eicosanoid li-

gand-binding receptors node (Reactome R-HSA-391903).
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be extracted from the patient notes using natural language process-

ing (NLP). However, NLP methods to date generate rather sparse

data, and need further validation in healthcare settings; thus their in-

corporation is out of scope for this work.

The generation of PSEVs is comparable with word2vec, another

machine-learning vector embedding method.25,26 Similar to how

word2vec learns the embedding of a word by using the words

around it as context, PSEVs utilize patient cohorts to give context to

the nodes in SPOKE. PSEVs are then added together to produce the

Patient-Specific SPOKE Profile Vectors (SPOKEsigs) that describe a

patient in terms of node weights in SPOKE. The main difference be-

tween these 2 embedding techniques is that PSEVs (and therefore

SPOKEsigs) are based on a “clear box” algorithm that constructs

machine-readable vectors while maintaining human interpretability.

This means each element in the vector corresponds to a node in

SPOKE and it is possible to trace back how information travels from

sparse EHRs to downstream nodes. The diffusion of EHRs through

SPOKE enabled the prioritization of the MS Disease node in the

SPOKEsigs of MS patients compared with controls. Additionally,

the significance of this differential prioritization increases as the

time to diagnosis decreases. Further, we have shown that the known

biological underpinnings of MS could be abstracted using these

sparse clinical data. This is evident by the prioritization of myelin-

related nodes within the SPOKEsigs of MS patients—whose disease

is characterized by demyelination in the CNS—compared with con-

trols up to 7 years prior to MS diagnosis.

We hypothesized that SPOKEsigs contained deeper information

about a patient than the equivalent EHR vectors (SEPs). Remark-

ably, SPOKEsigs outperformed SEPs (ie, EHR-only information) at

all time points for both the All-Visits and PCP-Only analyses. The

All-Visit AUCs were always higher than the PCP-Only AUCs due to

the greater power of the All-Visit group in both the number of

patients and encounters. This difference was minimized by the addi-

tion of SPOKE, which enabled the use of PCP-Only data to achieve

results closer to using All-Visit data using the SEPs alone. This en-

hancement of EHRs using SPOKE was particularly striking for the

PCP-Only analysis performed 3 years before diagnosis, which

showed a 12% improvement in AUC (over SEPs alone). These

results hint at a future where, after adequate validation including

consideration of possible biases, SPOKE could be used at the point

of care to support or target supplementary evaluation for primary

care providers.

The top biological drivers of the classifier were split into 2

groups (MS significant or non-MS significant) according to whether

they were ranked higher in the MS or Control SPOKEsigs. Notably,

neurophysiological functions, CNS, and muscle behavior nodes

were among the top MS-significant nodes. In contrast, there were

many Th2-related nodes (indicating immunoregulatory activity)

dominating the non-MS significant nodes. Interestingly, phospholi-

pase C activity, which was high in the MS group, is known to play a

role or interact within both the MS and non-MS top immune fea-

tures. Moreover, phospholipase C39 was recently implicated in

female-specific neuropathic pain induce a myelin basic protein pep-

tide (MBP84–104) in mice. This study showed that after MBP expo-

sure, T cells attack the DRG and spinal cord in females but remain

localized in males.40 Notably, multiple top nodes from both the MS

and non-MS groups participate together in this pathway in a way

that is consistent with both this observed sexual dimorphism as well

as the increased prevalence of MS among women. This connection

between top immune nodes within MS and non-MS groups further

supports the hypothesis that MS (and others like RA) results from

an imbalance between proinflammatory (Th1 or Th17) and immu-

noregulatory Th2 responses.41 In contrast, asthma and allergies are

mediated by Th2 responses, which presumably protect against Th1/

Th17-driven diseases.42,43

PSEVs represent a new class of clear (as opposed to a black) box

algorithms. This property allowed us to trace back how key biologi-

cal nodes became significant. The propagation of information to

nodes that were ranked higher in non-MS patients mostly originated

from Th2-mediated diseases such as allergies and asthma, which

were more prevalent in the non-MS population. In contrast, a het-

erogeneous set EHRs mainly from commonly ordered laboratory

tests or treatments for comorbidities facilitated information to move

to the MS significant nodes. These results demonstrate that clinical

presentation and biological changes are inherently linked and the in-

tersection can be uncovered using EHRs during the MS prodromal

period.

To move toward the delivery of precision medicine, disease biol-

ogy and clinical manifestations must be investigated side by side. In-

creasing amounts of data are being obtained for individual patients,

and knowledge networks will play a key role in bridging the gap be-

tween biological knowledge derived from basic science research,

and medical knowledge. As more measurements (genomics, proteo-

mics, microbiome) become available, we hypothesize the SPOKEsigs

will become even more informative. Further, the transition from cu-

rative to preventative medicine can only be possible through a better

understanding of the prodromal biology of a disease. It is our hope

that such methods will be used for a variety of diseases to advance

both precision and preventative medicine.

CONCLUSIONS

This work presents a strategy to embed EHR data onto a knowledge

graph (SPOKE) to obtain high-dimensional health status profiles

(SPOKEsigs). SPOKEsigs were computed for hundreds of thousands

of individuals and a random-forest classifier was trained to identify

individuals at risk of MS. This approach was able to detect MS up

to 5 years prior to their documented diagnosis in the clinic. SPOKEs-

igs represent a new kind of “clear box” explainable predictable

models with broad applicability to other chronic medical conditions

where early diagnosis can benefit patients.
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