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The molecular substrate of age-associated cognitive decline (AACD) is still elusive.
Evidence indicates that AACD is related to synaptic impairment in hippocampus, but
different hippocampal regions play different roles, with the dorsal hippocampus (DH)
associated to spatial learning, and the ventral hippocampus (VH) crucial for emotionality.
If changes in hippocampal function contributes to AACD, this contribution may be
reflected in alterations of synaptic protein levels. A commonly used approach to
investigate this issue is western blotting. When this technique is applied to the entire
hippocampus and the cognitive impairment is evaluated by a single task, changes in
expression of a protein might undergo a “dilution effect”, as they may occur only in
a given hippocampal region. We show that two behavioral tests yield more accurate
results than one test in evaluating the function of the whole rat hippocampus by studying
the expression of synaptotagmin 1 (SYT1), a vesicular protein whose expression in
aged hippocampus is reportedly inconsistent. Analysis of SYT1 levels in the whole
hippocampus of rats selected by the Morris water maze (MWM) test only failed to
highlight a difference, whereas analysis of SYT1 levels in the whole hippocampus of
rats categorized by both the MWM and the step-through passive avoidance (STPA)
tests demonstrated a significant increase of SYT1 level in impaired rats. These findings,
besides showing that SYT1 increases in impaired aged rats, suggest that using the
whole hippocampus in blotting studies may prevent false negative results only if animals
are categorized with tests exploring both DH and VH.

Keywords: brain aging, cognitive decline, hippocampus, synaptic proteins, synaptotagmin 1, Morris water maze
test, step-through passive avoidance test

Memory dysfunction is a hallmark of brain aging. Although numerous studies have been focused
on this phenomenon over the last decades (Park et al., 2002; Salthouse, 2003, 2012; Butler et al.,
2004; Dixon and De Frias, 2014; Pudas et al., 2014), the molecular substrates of age-related
cognitive deficits are still elusive.

Mounting evidence indicates that age-associated cognitive decline (AACD) can be related to
synaptic impairment in hippocampus (e.g., Vanguilder and Freeman, 2011; Vanguilder et al., 2011),
and investigations on synaptic structure and function and on synaptic proteins have flourished in
the recent past (e.g., Burke and Barnes, 2006; Bishop et al., 2010; Bano et al., 2011). Indeed, the
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hippocampus is involved in important aspects of learning and
memory (e.g., Bettio et al., 2017), but different hippocampal
regions play different roles. In their 1995 article, Moser et al.
(1995) showed that removal of 40% of the dorsal hippocampus
(DH) impaired spatial learning, whereas removal of 70% of
the ventral part did not affect performance in this test. On
the contrary, the ventral hippocampus (VH), as part of a
network comprising prefrontal cortex, amygdala and subcortical
structures associated with hypothalamic-pituitary-adrenal axis,
is crucial for emotionality, i.e., fear, anxiety and depression
(Kjelstrup et al., 2002; Fanselow and Dong, 2010; McLaughlin
and Gobbi, 2012; Bannerman et al., 2014).

If changes in hippocampal synaptic function contribute to
AACD, this contribution may be determined by or reflected
in alterations of synaptic protein levels. A commonly used
approach to investigate such an issue is western blotting.
Indeed, it is informative, easy, inexpensive and non-time
consuming. However, when this tecnique is applied to the entire
hippocampus in order to obtain enough material to study a
broad pannel of structurally and functionally linked proteins

and the cognitive impairment is evaluated by a single task,
significant changes in expression of a given protein might
undergo a ‘‘dilution effect’’, as they may occur only in a
given hippocampal subregion underpinnig a specific functional
domain (Shimohama et al., 1998; Chen et al., 2007; Cao et al.,
2013).

THE TWO BEHAVIORAL TESTS
APPROACH

To overcome this problem, we reasoned that the hippocampal
regions analyzed by western blotting, hence the amount of
tissue examined and the ability of the method to detect
alterations in proteins levels, can be increased by employing
a larger number of behavioral tests. Here, we report some
methodological considerations gathered in the course of our
ongoing investigations on the correlation between the level of
synaptic proteins, studied by western blotting, and behavioral
analysis. We administrated in series the Morris water maze
(MWM) and the step-through passive avoidance (STPA)

FIGURE 1 | (A) Diagram showing animal categorization and numbers. The initial cohort included 40 male Sprague-Dawley albino rats aged 24 months. Performing
the Morris water maze (MWM) test according to Vorhees and Williams (2006) yielded 19 Impaired and 15 Non-impaired rats, while 6 rats were excluded as they were
unable to significantly reduce the distance moved to find the platform during the 5-day learning phase. These 34 rats were then subjected to the step-through
passive avoidance (STPA) test according to Platano et al. (2008). This step produced 12 Impaired and 6 Non-impaired rats according to both tests; 16 rats had
opposite result in the two tests, and were excluded. (B) Percent time spent in the target quadrant at probe day of the 34 rats classified by the MWM test. Animals
were classified as Non-Impaired if the time spent in the target quadrant was >30% and superior to that spent in each non-target quadrant; rats where categorized
as Impaired if their permanence in the target quadrant was <25%. To exclude any categorization bias due to visual deficits, a post hoc control was applied and the
distance moved by Non-Impaired and Impaired rats to find a multiple-located visible platform was compared. (C) Examples of performances at probe day. The first
panel represents a Non-Impaired rat with a percentage of time spent in the target quadrant of 51; the second and the third panels represent the performance of two
Impaired rats with percentages of time spent in the target quadrants of 24 (random swimming equally distributed in all the quadrants) and 17 (preferential searching
in non-target quadrants), respectively. (D) Latency at test day of the STPA task of the 34 rats classified by the MWM test. A value <100 s to enter the dark
compartment 24-h after the shock release was taken to indicate Impairment and a latency >200 s was taken to indicate Non-impairment. Horizontal lines indicate
mean ± SEM values.
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tests. We considered these tests suitable to validate/reject
our hypothesis for three reasons: (i) together, they allow
to assess the performance of both the DH and the VH
(Moser et al., 1995; Lorenzini et al., 1996; Ambrogi Lorenzini
et al., 1997; Wang et al., 2017); (ii) the MWM test is the
preferred test for assessing core aspects of spatial learning
and memory (Vorhees and Williams, 2014), while one-trial

FIGURE 2 | Western blotting analysis of hippocampal tissue from male
Sprague-Dawley albino rats categorized only with the Morris water maze
(MWM) test or with the MWM and the step-through passive avoidance (STPA)
tests (MWM+STPA). Rats were anesthetized with intraperitoneal chloral
hydrate (300 mg/kg), decapitated, and the hippocampi were quickly collected.
Homogenization and crude synaptic plasma membrane preparation were as in
Danbolt et al. (1990) and Marcotulli et al. (2017). The Bio-Rad Protein Assay
(Bio-Rad Laboratories GmbH, Munich, Germany) was used to determine the
total amount of protein in each homogenate (3–4 measurements/
homogenate). For quantitative analysis, standard curves with increasing total
protein concentrations were drawn to define a linear range for immunoblot
densitometric analysis (Bragina et al., 2006). For optimal resolution of
synaptotagmin 1 (SYT1; 105011 clone 41.1; 1:500; Synaptic System,
Göttingen, Germany; RRID AB_887832) concentrations, western blotting
analysis was performed in crude synaptic membranes using 7 µg of total
protein. Immunoblot densitometric analysis of MWM group rats was
conducted in tissue from 11 Non-impaired (green) and 13 Impaired subjects
(red; 108.5% ± 5.72% of Non-impaired rats), whereas the MWM+STPA group
included 5 Non-impaired (green) and 9 Impaired (red) rats (117.2% ± 5.64%
of Non-impaired rats; ∗p = 0.029, Mann Whitney test). Circles represent
animals that were Non-Impaired (green) or Impaired (red) at both MWM and
STPA tests, while squares represent animals that had discordant
performances at the two tests (i.e., Non-Impaired at MWM test but Impaired
at STPA test (green) and Impaired at MWM test but Non-Impaired at STPA
test (red)). Horizontal lines indicate mean ± SEM values. Graphs include
representative western blottings of Non-Impaired and Impaired animals
classified by MWM (top) or MWM+STPA (bottom) tests.

inhibitory avoidance is the best studied task concerning
the molecular post-training processes of hippocampal cellular
memory consolidation (Izquierdo et al., 2016); and (iii) evidence
exists that spatial and aversive memories, both crucial for a
proper interaction with the environment, undergo age-related
changes (Lovatel et al., 2013; Beaudet et al., 2014; Leffa et al.,
2014).

We first administered the MWM test to 40 old male Sprague-
Dawley albino rats (24 months of age). Thirty-four animals were
categorized as Impaired (n = 19) and Non-impaired (n = 15),
while six (15%) were excluded because they were unable to
learn the task (Figures 1A–C). The addition of the STPA test
determined the exclusion of further 16 animals, because we
selected only animals that exhibited the same results in both
tests. Indeed, only 18 of the 34 rats that were categorized by the
MWM test could be included after categorization with the STPA
test (12 Impaired, 6 Non-impaired), whereas a further 16 did
not comply the inclusion criteria. Altogether, 55% of the cohort
was excluded (Figures 1A,D). Therefore, in our experimental
conditions, performing two tests implied that less than half of the
animals passed the selection and were categorized as Impaired
and Non-impaired. Notably, the calculation does not take into
account physiological mortality.

Next, we tested the hypothesis that two behavioral tasks
provide more accurate results than one test alone in evaluating
the function of the whole rat hippocampus by studying the
expression of the vesicular protein synaptotagmin 1 (SYT1).
We specifically selected SYT1 because its expression in the
aged hippocampus provided inconsistent results to date. Indeed,
Chen et al. (2007), who categorized their animals with the
MWM test and used only dorsal hippocampal tissue for western
blotting analysis, reported that cognitive impairment correlated
with increased SYT1 levels, whereas Nicolle et al. (1999), who
categorized the animals by the same test but examined the
whole hippocampus found no difference in SYT1 levels. In
our study, analysis of SYT1 levels in the whole hippocampus
of rats selected by the MWM test alone, as in the study of
Nicolle et al. (1999), failed to highlight a difference (Figure 2),
whereas analysis of SYT1 levels in the whole hippocampus
of rats categorized with both the MWM and the STPA tests
demonstrated a significant increase of SYT1 level in rats with
cognitive impairment (117.2% ± 5.64% vs. Non-Impaired rats;
p = 0.029, Mann Whitney test; Figure 2). Therefore, using the
entire hippocampus to analyze proteins levels requires classifying
animals by at least two tests, exploring the dorsal and ventral
portion of the hippocampus, if false negative results are to be
avoided.

HOW TO CHOOSE?

Our findings raise the question whether, when investigating
cognitive decline, information should be obtained from a single
hippocampal sub-region or from the whole structure. The answer
to this question is important for the proper interpretation of
results. Rats categorization with two behavioral tests allows
using the entire hippocampus for western blotting studies,
i.e., about 300 µg of protein in crude synaptic plasma membrane
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preparations (Danbolt et al., 1990; see also Marcotulli et al.,
2017). Since 4–5 measurements and 7 µg of protein per
measurement are generally required for each antigen, the whole
hippocampus allows testing 8–10 antigens. In contrast, the use
of the MWM test alone involves that although a larger number
of categorized animals is available (meaning that one could
employ half the animals that are needed for two tests protocol),
only the upper third of the hippocampus should be evaluated
(Chen et al., 2007; Cao et al., 2013). This amount of tissue
is sufficient to test only 2–3 antigens. If the western blotting
study will involve only few proteins, it would be preferable to
select animals using exclusively one test, and to analyze only the
involved part of the hippocampus, thus allowing to employ fewer
animals. If, however, more proteins are to be investigated, the
two-tests approach will allow to use all the hippocampal tissue,
thus maximizing the ratio between the amount of tissue and the
number of animals used.

CONCLUSION

Our findings show a relationship between AACD, assessed by
the MWM and the STPA tests, and increased SYT1 levels
in the whole hippocampus of aged rats. They also suggest
that the use of the whole hippocampus in western blotting
analysis may avoid false negative results if animals have been
categorized with behavioral tests that explore both the DH
and the VH. Moreover, these findings might shed new light
in the field of cognitive dysfunctions, in particular Alzheimer’s
disease. Indeed, synaptotagmins seem to play a role as APP
interactors in promoting Aβ generation (Gautam et al., 2015;

Kuzuya et al., 2016): the application of the present methodology
to assess their level could help to better clarify their possible
involvement in Alzheimer’s disease etiopathogenesis.
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