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Abstract

Schistosoma japonicum is prevalent in Asia with a wide mammalian host range, which leads

to highly harmful zoonotic parasitic diseases. Most previous transcriptomic studies have

been performed on this parasite, but mainly focus on stages inside the mammalian host.

Moreover, few larval transcriptomic data are available in public databases. Here we mapped

the detailed transcriptome profiles of four S. japonicum larval stages including eggs, mira-

cidia, sporocysts and cercariae, providing a comprehensive development picture outside of

the mammalian host. By analyzing the stage-specific/enriched genes, we identified func-

tional genes associated with the biological characteristic at each stage: e.g. we observed

enrichment of genes necessary for DNA replication only in sporocysts, while those involved

in proteolysis were upregulated in sporocysts and/or cercariae. This data indicated that

miracidia might use leishmanolysin and neprilysin to penetrate the snail, while elastase

(SjCE2b) and leishmanolysin might contribute to the cercariae invasion. The expression

profile of stem cell markers revealed potential germinal cell conversion during larval devel-

opment. Additionally, our analysis indicated that tandem duplications had driven the expan-

sion of the papain family in S. japonicum. Notably, all the duplicated cathepsin B-like

proteases were highly expressed in cercariae. Utilizing our 3rd version of S. japonicum

genome, we further characterized the alternative splicing profiles throughout these four

stages. Taken together, the present study provides compressive gene expression profiles

of S. japonicum larval stages and identifies a set of genes that might be involved in interme-

diate and definitive host invasion.

PLOS NEGLECTED TROPICAL DISEASES

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009889 January 13, 2022 1 / 25

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Cheng S, Zhu B, Luo F, Lin X, Sun C, You

Y, et al. (2022) Comparative transcriptome profiles

of Schistosoma japonicum larval stages:

Implications for parasite biology and host invasion.

PLoS Negl Trop Dis 16(1): e0009889. https://doi.

org/10.1371/journal.pntd.0009889

Editor: James Cotton, Wellcome Trust Sanger

Institute, UNITED KINGDOM

Received: April 7, 2021

Accepted: October 8, 2021

Published: January 13, 2022

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pntd.0009889

Copyright: © 2022 Cheng et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All raw sequencing

data are available via NCBI under SRA accessions

PRJNA719283. Nucleotide sequences have been

deposited in the Sequence Read Archive (SRA) of

https://orcid.org/0000-0002-2057-4023
https://orcid.org/0000-0003-0107-424X
https://orcid.org/0000-0001-6070-5529
https://doi.org/10.1371/journal.pntd.0009889
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0009889&domain=pdf&date_stamp=2022-01-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0009889&domain=pdf&date_stamp=2022-01-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0009889&domain=pdf&date_stamp=2022-01-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0009889&domain=pdf&date_stamp=2022-01-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0009889&domain=pdf&date_stamp=2022-01-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0009889&domain=pdf&date_stamp=2022-01-26
https://doi.org/10.1371/journal.pntd.0009889
https://doi.org/10.1371/journal.pntd.0009889
https://doi.org/10.1371/journal.pntd.0009889
http://creativecommons.org/licenses/by/4.0/


Author summary

Schistosomes are parasitic flatworms that require a snail host and a mammalian host to

complete their life cycle. Due to the difficulties in obtaining materials, little is known

about the molecular aspects of this fluke’s larval stages. Based on RNA-Seq, we provide

the first high-resolution, transcriptomic analysis of four larval stages of Schistosoma japo-
nicum. The data showed the biological and physical features of each stage, also highlighted

that miracidia and cercariae might use a different group of proteases for host invasion.

Additionally, it indicated that different populations of germinal cells may exist in the lar-

val stages. The high expression of tandem duplicated cathepsin B-like proteases at the cer-

cariae stage may contribute to the wide definitive host range of S. japonicum.

Additionally, we observed that alternative splicing plays a vital role in regulating gene

expression in S. japonicum, among which skip exon was the most predominant. Our data

provide valuable information on the expression and function of S. japonicum genes across

their larval stages and will support basic and applied research for the community.

Introduction

Schistosomiasis is a neglected tropical disease caused by Schistosoma spp., which is prevalent in

approximately 78 countries and affects more than 240 million people worldwide [1]. Similar to

other species, Schistosoma japonicum has a complex life cycle occurring in two hosts: snail and

mammal. The life cycle outside the mammalian hosts involves eggs excreted with feces, asexu-

ally reproducing larvae in the snail host and two intermediate free-swimming stages. The

mature egg is excreted with host feces and releases a miracidium in fresh water. Then the cili-

ated and free-swimming larva seeks the snail-Oncomelania genus guided by chemical attrac-

tion and further penetrates the snail host assisted by secretions, which are probably proteolytic

enzymes [2]. Within the snail, the miracidium loses its ciliated plates and undergoes a dra-

matic developmental conversion into a mother sporocyst that contains a population of totipo-

tent stem cells, called germinal cells. The germinal cell will proliferate and form the germinal

balls (primordial daughter sporocyst embryos) to further produce daughter sporocysts. Upon

maturation, the daughter sporocysts emerge from the mother sporocyst and migrate to the

snail’s hepatopancreas where they undergo development to produce the free-swimming cer-

cariae by asexual reproduction [3]. Under suitable light and temperature conditions, the fork-

tailed cercariae will shed from the snail. There are five pairs of acetabular glands inside the cer-

carial head which contain many kinds of proteases [4]. Once contact with the skin of human

and mammals, the cercariae complete the penetration process by the mechanical activity of the

tail and the hydrolytic activities of the proteolytic enzymes.

Transcriptomic studies across the life cycle of schistosomes have been extensively con-

ducted, but mainly by ESTs, SAGE or microarray approaches [5–10]. These techniques lack

the accuracy and sensitivity of a more contemporary RNA-seq approach, which is a powerful

tool for delivering genome-wide transcription profiles unconstrained by genomic annotation.

Previous studies applying RNA-seq mainly focused on adult stages, gonads [11–14] or para-

sites derived from different hosts [15,16]. Dynamic transcriptome profiles of S. japonicum and

S. mansoni from juvenile schistosomulae to sex mature adult worms offered many insights

into the reproductive development of the parasites during intra-mammalian development

[17,18]. Recently, the intramolluscan transcriptomes of S. mansoni were investigated [19], but

the samples used for RNA-Seq were infected whole snails. Thus, the landscape of gene
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expression in ex vivo larval stages, especially the molecular basis behind the stage transitions, is

still lacking.

To obtain the gene expression information in the larval stages, we performed RNA-seq

analysis on S. japonicum eggs, miracidia, sporocysts and cercariae. We used the most recent

3rd version of S. japonicum genome for mapping and annotation. Gene expression information

correlated well with the biology of each life stage. Miracidia and cercariae showed high motor

and proteolysis activity, ready for the host invasion. DNA replication and cell division only

occurred in the sporocysts. We identified genes that are stage specifically expressed or with

enriched expression that could thus be vital for the dominant functions of the parasite in those

life stages. We found that each larval stage has germinal cells and there may be germinal cell

conversion during the larval development. Interestingly, we discovered the tandem duplica-

tion events drove the expansion of the papain gene family in S. japonicum. Furthermore, we

identified a large number of alternative splicing (AS) events in each stage, indicating that AS is

a widespread process for generating protein isoform diversity in S. japonicum. This study pro-

vides rich and valuable resources for the community to understand the larval biology and will

assist in the exploration of novel anti-schistosome targets and vaccine candidates.

Materials and methods

Ethics statement

All experiments involving animals were carried out in accordance with the guidelines for the

Care and Use of Laboratory Animals of the Ministry of Science and Technology of the People’s

Republic of China (2006398) and approved by the Ethics and Animal Welfare Committee of

the National Institute of Parasitic Diseases, Chinese Center for Disease Control and Preven-

tion, Shanghai, China (IPD2008-4).

Parasite material

All parasite material was from an Anhui isolate of S. japonicum maintained in the National

Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, Shanghai.

Isolation of eggs

Eggs were isolated by an improved enzymatic method. Three New Zealand white rabbits were

infected with 800–1000 cercariae each. Six weeks later, the liver tissues were chopped with a

scalpel blade and homogenized in 500 mL saline solution. The suspension was successively

passed through 80 and 180 mesh metal sieves. After repeated centrifugation and removing the

tissue debris, the pellet was resuspended in 10 mL saline solution containing 100 μg collage-

nase IV (Solarbio Life Sciences, Beijing), then incubated at 37˚C for 30 min with gentle shak-

ing. The sample was then centrifuged at 2,000 rpm at 4˚C for 8 min, and the residues after

digestion were removed. The egg pellet was then washed twice with saline solution. Finally, the

eggs were washed by pipetting on a 300-mesh nylon screen, then collected and stored in 1.2%

NaCl solution at 4˚C under dark. Eggs isolated from one rabbit were used as a biological

replicate.

Isolation of the miracidia

Purified eggs were transferred into a 200 mL hatching measuring cylinder wrapped completely

in light-blocking black tape with the exclusion of the top 4 cm from the lip, thereby producing

a light gradient. The hatching cylinder was topped with artificial pond water (0.46 μM FeCl3 �6

H2O, 220 μM CaCl2 �2 H2O, 100 μM MgSO4 �7 H2O, phosphate buffer [313 μM KH2PO4,
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14 μM (NH4)2SO4] pH 7.2) [4] until above the tape-covered area ~1.5cm and exposed to

bright light at 28˚C. Eggs were incubated for 2 h post-hatch, and the top 10 mL of miracidia-

containing water (MCW) was collected for miracidia isolation. Hatched miracidia were col-

lected by centrifugation at 8000 × g for 1 min at 4˚C, and were then washed twice with water.

Miracidia hatched from the eggs purified from the liver of one rabbit were used as one

replicate.

Isolation of the daughter sporocysts

Daughter sporocysts were separated from the hepatopancreas of Oncomelania hupensis snails

after ~5–6 weeks post-infection with dissecting needles under an optical microscope and puri-

fied after washing three times with sterilized PBS (pH 7.4). Daughter sporocysts collected from

6~10 infected snails were used as one replicate.

Collection of cercariae

To obtain S. japonicum cercariae, O. hupensis snails ~7–8 weeks post-infection were exposed

to light in artificial pond water at 26˚C for 2 h. The emerging cercariae were gravity-concen-

trated by cooling on ice for two hours, which prevented swimming, then concentrated by cen-

trifugation. Cercariae collected from 50~80 infected snails were used as one replicate.

RNA isolation, library preparation and sequencing

Each larval stage has three biological replicates. For each replicate, we used 100~150 mg eggs,

15, 000~20, 000 miracidia, 1~2 mg daughter sporocysts and 15, 000~20, 000 cercariae. Para-

sites were homogenized in a 1 mL sterilized glass tissue grinder (Solarbio Life Sciences, Bei-

jing) and total RNA was isolated using Qiagen RNeasy Micro Kit (Valencia, CA). RNA quality

was assessed by 1% agarose gel electrophoresis and a NanoPhotometer spectrophotometer

(Implen, Westlake Village, CA, USA). RNA integrity was assessed using the RNA Nano 6000

Assay Kit of the Bioanalyzer 2100 system (Agilent Technologies, CA, USA). RNA-Seq libraries

were generated with the NEBNext Ultra Directional RNA Library Prep Kits (NEB, USA)

according to the manufacturer’s protocol. After clusters generation on a cBot Cluster Genera-

tion System using TruSeq PE Cluster Kit v3-cBot-HS (Illumia), the libraries were sequenced

on an Illumina Novaseq platform (Novogene, Tianjin, China) with paired-end 150 bp.

Read mapping and data processing

Quality control (QC) of the raw sequencing data was performed using the FASTQC program.

Low-quality reads and adapter sequences were trimmed using fastp tool v.0.20.1. (parameters:

-q 15 -u 40 -n 5 -l 15) [20]. The clean reads were mapped to the chromosome-level S. japoni-
cum reference genome (SjV3) using STAR 2.4.2a in twopassMode (parameters:—outFilter-

MultimapScoreRange 1—outFilterMultimapNmax 10—outFilterMismatchNmax 10—

alignIntronMax 500000—sjdbScore 2—alignSJDBoverhangMin 3) [21] and further used to

estimate the transcript abundance in TPM (Transcripts Per Kilobase million) using RSEM

v.1.3.1 [22] with default parameters. These transcript abundances were imported into R and

summarized with tximport v1.18.0 [23]. Principal Component Analysis (PCA) was performed

using the prcomp function in the stats (v3.6.0) R package. Hierarchical clustering analysis

(HCA) was performed with pheatmap (https://cran.r-project.org/web/packages/pheatmap/

index.html). The R package DEseq2 v1.26.0 [24] was used to perform differential expression

analysis. Gene Ontology (GO) enrichment analysis was performed with the R package
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clusterProfiler [25]. The P-values were corrected for multiple hypothesis testing with the Ben-

jamini–Hochberg false-discovery rate procedure (adjusted P-value).

Gene clustering

To compare time-series gene expression data, the TPM values were clustered using R package

Mfuzz v 2.46.0. Soft clustering was run with fuzzifier parameter set to m = 2.51, which was esti-

mated using the mestimate() function. The cluster number was manually set at c = 8. Cluster

members at a filter of 0.5 were used in subsequent enrichment analyses.

Identification and phylogenetic analysis of papain gene family

The protein and genome sequences of S. japonicum (SjV3) were downloaded from the Zenodo

website (https://doi.org/10.5281/zenodo.5795038). The protein and genome sequences of S.

mansoni were downloaded from the WormBase ParaSite (https://parasite.wormbase.org/

index.html). The peptidase C1 (papain) family is part of clan CA of cysteine peptidases con-

taining catalytic Cys25 (hereinafter papain numbering) and His159 residues in the active site

[26]. To identify the papain genes in S. japonicum and S. mansoni, the HMMER profile of pep-

tidase C1 domain (PF00112) was from the Pfam database and searched against the protein

sequences of S. japonicum and S. mansoni with an E value cutoff of 1 × 10−40. To study the phy-

logenetic relationships of the papain genes between S. japonicum and S. mansoni, multiple

sequence alignments of amino acid sequences were performed using the ClustalW program

with default parameters. An unrooted neighbor-joining tree was constructed with 500 boot-

strap replications using MEGA 7.0 software based on the full-length protein sequence align-

ment. All identified papain genes were classified into different groups based on gene

annotation and the alignment results. Consensus Newick format trees were compiled with

MEGA 7.0 software and edited with Adobe Illustrator.

Characterization of the gene structures, conserved motifs and

chromosomal distributions of the papain genes

Gene annotations of the identified papain genes were extracted from the genome reference

GFF files. The conserved domains were analyzed using MEME 5.1.1 software and the maxi-

mum number of motifs was set to 10. The gene structures and motif patterns were drawn

using TBtools software [27]. Collinearity analysis of papain protein sequences from S. japoni-
cum and S. mansoni were performed with BLASTP and MCScanX software [28]. Duplication

of papain genes was analyzed using MCScanX with E-value< 1 × 10−5. The R package "pheat-

map" was used to draw the heatmap of papain genes based on their expression levels across the

four S. japonicum life stages.

Alternative splicing analysis

Alternative splicing (AS) events in these four S. japonicum life stages were detected and quanti-

fied using rMATs-turbo [29] with the reference transcript annotation. Percent spliced in (PSI)

values were calculated for five classes of alternative splicing events, including skip exons (SE),

retained introns (RI), mutually exclusive exons (MXE), alternative 5’ splice sites (A5SS), and

alternative 3’ splice sites (A3SS). In total, AS events with a false discovery rate (FDR) < 0.05

between two adjacent stages were identified as differential AS events. Sashimi plots used to

show splicing events were generated by rmats2sashimiplot (https://github.com/Xinglab/

rmats2sashimiplot).
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Results and discussion

An overview of the transcriptomes

Twelve digital expression (DGE) libraries were constructed and sequenced using the total

RNA isolated from four S. japonicum stages (eggs, miracidia, sporocysts and cercariae) with

three biological replicates (Fig 1A). Using RNA-Seq, we obtained 40,499,690 to 57,349,268 raw

reads and 40,383,584 to 57,153,380 clean reads for each library. 85.84% to 92.31% of the clean

reads were mapped to the 3rd version of the S. japonicum reference genome (S1 Table). To

study the relationship between samples and evaluate the reproducibility of the biological repli-

cates, we performed Principal component analysis (PCA), Pearson’s rank correlation analysis,

and hierarchical clustering analysis (HCA). The PCA plot shows the top two principal compo-

nents that explain most of the variance between samples in the data set, 70% and 17% for PC1

and PC2. Replicates from eggs and miracidia were clustered closely, and the sporocysts and

cercariae were clustered away from other stages (Fig 1B). Pearson’s rank correlation analysis

confirmed high reproducibility and consistent quality among the biological replicates (S1 Fig).

Based on HCA, the expression profiles of the four life stages are clearly separated (S2 Fig).

Fig 1. Global transcriptomic profiles of S. japonicum in four different life stages. RNA-Seq was performed on replicate samples of eggs (Egg), miracidia (Mir),

sporocysts (Spo) and cercariae (Cer). (A) Four S. japonicum larval stages used for RNA-Seq. (B) PCA results. Each symbol indicates an individual sample. (C) Venn

diagram showing differentially transcribed genes among the four life stages. Circles of different colors represent a set of genes transcribed in one stage, where the values

represent the number of uniquely transcribed genes in one stage, or common transcribed genes between two, three or four life stages.

https://doi.org/10.1371/journal.pntd.0009889.g001
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Additionally, these analyses revealed a high similarity between eggs and miracidia, which is

reasonable because some eggs contain well-developed miracidia. To obtain the co-expressed

and differentially expressed genes between the four stages, an inter-sample Venn diagram

analysis was performed. The mRNA with an expression value equal to or greater than 1 TPM

in at least two of the three biological replicates was considered expressed. A total of 8,732

genes were identified, and 7,925, 7,681, 8,223, and 7,801 genes were found in eggs, miracidia,

sporocysts and cercariae, respectively. The number of genes identified in each larval stage was

much higher than that reported by Gobert et al. [10] and Cai et al. [9]. Most of the genes

(7,072) were identified in all four life stages, but 94, 21, 251, and 141 genes were exclusively

detected in eggs, miracidia, sporocysts and cercariae (Fig 1C and S2 Table).

Stage-specific genes (SSG) and stage-enriched genes (SEG)

Since the parasite at each stage shows distinct biological characteristics, we attempted to identify

genes expressed specifically at each stage, or significantly more highly expressed at each stage. We

thus defined SSG (genes expressed at only one stage) and SEG (genes have significantly higher

expression at one stage compared to the other three with a FC> 5 and FDR< 0.05) to further

analyze the genes related to their stage-related features. We obtained 94 SSG and 245 SEG at the

egg stage, 21 SSG and 2 SEG in miracidia, 251 SSG and 255 SEG in sporocyst as well as 141 SSG

and 209 SEG in cercaria (Fig 2A and S3 Table). By performing GO analysis, we explored the

enriched functions of SSG and SEG at each life stage (Fig 2B and S4 Table).

SSG and SEG in eggs

SEA (soluble egg antigen) secreted by egg induces granulomas in the mammalian host. At this

stage, four members of T2 ribonucleases (Sjc_0002258, Sjc_0002263, Sjc_0002281, and

Fig 2. Stage-specific genes (SSG) and stage-enriched genes (SEG) in the four larval stages. (A) The number of SSG and SEG in each stage. (B) GO enrichment analysis

based on the SSG and SEG in each stage. Gene ratio is the percentage of total SEG or SSG in the given GO term.

https://doi.org/10.1371/journal.pntd.0009889.g002
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Sjc_0002296) associated with ribonucleases T2 activity (GO: 0033897) showed specific expres-

sion. T2 ribonuclease was identified as one of the top 25 most highly enriched genes in eggs in

a previous study [9]. T2 ribonucleases are found in the genome of protozoans, plants, animals

and viruses. A broad range of biological roles for these ribonucleases have been revealed,

including scavenging of nucleic acids, degradation of self-RNA, serving as extra- or intracellu-

lar cytotoxins, and modulating host immune responses [30]. Previous study reported that S.

mansoni omega-1, one major component of the SEA that was specifically expressed in eggs

[31], was able to drive Th2 cell responses [32]. Omega-1 is a member of T2 ribonuclease fam-

ily, both its RNase activity and glycosylation are essential for Th2 skewing [31]. Omega-1 can

be taken up by dendritic cells and alter their cytoskeletal structure and function [33,34]. The

protein structure analysis revealed that S. mansoni Omega-1 and the four S. japonicum T2

ribonucleases all contained ribonuclease_T2 domain (S3 Fig). Therefore, we propose that

these T2 ribonucleases specifically expressed in eggs may participate in the regulation of host

immune response.

SSG and SEG in miracidia

Miracidia are free-swimming and penetrate snail host. We noticed that ten members of cilia-

and flagella- associated protein (CFAP) (Sjc_0004811, Sjc_0003323, Sjc_0007156, Sjc_0000523,

Sjc_0002745, Sjc_0000347, Sjc_0007012, Sjc_0000734, Sjc_0006213, and Sjc_0000078) related

to motile cilium (GO: 0031514) were enriched at this stage. CFAP plays a role in the reproduc-

tion of the size and morphology of cilia [35]. Therefore, it may be involved in the assembly of

the cilium during the development of miracidia. Alternatively, CFAP was reported to regulate

olfactory transduction in mice [36]. Since miracidia are attracted by the chemical substances

secreted by the snail [37] to locate the host, CFAP may participate in this process. In addition,

a 5-hydroxytryptamine (5-HT, serotonin) receptor (Sjc_0004493) was only detected at this

stage. The neurotransmitter molecule 5-HT regulates diverse physiological processes in both

invertebrates and vertebrates [38]. In schistosomes, 5-HT treatment significantly stimulated

motility of the in vitro cultured sporocysts or adult worms [39,40]. And its receptor Sm5HTR

was required for the proper control of motility in S. mansoni [41]. Thus, we reasoned that this

5-HT receptor may be responsible for the control of movement in miracidia.

SSG and SEG in sporocysts

Sporocysts are resident in snail hosts and produce cercariae. One cercarial elastase (SjCE2b,

Sjc_0008947) and nine leishmanolysins (Sjc_0006363, Sjc_0006650, Sjc_0006649, Sjc_0006646,

Sjc_0006648, Sjc_0006647, Sjc_0006120, Sjc_0006219, and Sjc_0006399) associated with prote-

olysis (GO: 0006508) were specifically expressed at this stage. There was an expanded family of

elastases in S. mansoni [42], but only one member in S. japonicum [43]. Cercarial elastases are

the major invasive proteases in S. mansoni [44], and are considered to be involved in S. japoni-
cum cercariae invasion as well [45]. Leishmanolysin (also called GP63) is a critical virulence

factor in various Leishmania species. This important metalloprotease manipulates the host

immune system by allowing the parasite to establish, survive and propagate within mammalian

macrophages [46]. Recently, it was reported that a leishmanolysin derived from S. mansoni
excretory/secretory products could interfere snail haemocyte morphology and migration [47].

It’s worth noting that the cercaria head is mostly transcriptionally and translationally quiescent

[48]. The elastase and leishmanolysins transcribed in the daughter sporocysts may be prepared

for the cercariae penetration. Additionally, genes necessary for DNA replication (GO:

0006160) and DNA replication initiation (GO: 0006270) were enriched in daughter sporocysts,

such as DNA replication licensing factor MCM2 (MCM2, Sjc_0000705), G2/mitotic-specific
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cyclin-B2 (ccnb2, Sjc_0005264) and mitotic spindle assembly checkpoint protein MAD2A

(MAD2L1, Sjc_0002379). These genes play pivotal roles in the mitosis process, which is consis-

tent with active cell division to produce cercariae at this stage. We also noted that more hypo-

thetical proteins were enriched in daughter sporocyst than those from other stages, which may

contribute to the biological functions of this poorly studied stage.

SSG and SEG in cercariae

Cercariae are free-swimming and invade the mammalian host. One rhodopsin-type GPCR

(Sjc_0002522) and two octopamine receptors (Sjc_0007275, Sjc_0000926) were specifically

transcribed at this stage. Rhodopsin-type GPCRs were known to be involved in photorecep-

tion, typically thought of as light sensors in animals [49]. Given that the release of cercariae

from snails is triggered by the sunlight, we speculated that it may participate in cercariae pho-

tokinesis. Octopamine (OA) is one of the invertebrate-specific biogenic amines. In locusts and

mollusks, OA is involved in motor control [50]. In S. mansoni adult worms, OA is widely dis-

tributed in neurons of the peripheral nerve net that innervate muscle [51]. The octopamine

receptors that specifically expressed in cercariae may play a role in movement control. Besides,

calcium binding protein (CaBP, Sjc_0006317) related to calcium ion binding (GO: 0005509)

exhibited the most enriched expression in the cercariae stage. The divalent cation calcium is

used as a cellular signal or ionic cofactor involved in diverse metabolic processes, including

secretion, metabolism, muscle movement and neuronal function [52]. In Paragonimus ohirai,
the excystment of metacercaria is a calcium-dependent process [53]. In Trichobilharzia regenti,
CaBP represented the fifth most differentially transcribed gene between cercariae and schisto-

somulae [54]. In S. mansoni, the preacetabular glands of cercariae contain a high concentration

of calcium [55], and there is a downregulation of CaBP in cercariae following epidermal pene-

tration [56]. These findings suggest that the function of calcium may be conserved among

trematode species by regulating the larval physiology, while CaBP may be important for the

infectious cercariae.

Differentially expressed genes (DEG) between adjacent life stages

During development, S. japonicum undergoes dramatic morphological changes as well as

physiological changes. To view the transcriptional changes during the transition of these four

stages, pairwise differential gene expression analysis was performed for adjacent life stages. A

list of differentially expressed genes (DEG) with a P-value< 0.05 was generated for each of the

different pairwise comparisons of the life stages. A total of 1,184 DEGs were associated with

the development from egg to miracidium, of which 190 and 994 were up-and downregulated

in miracidium, respectively. 3,530 DEG between miracidium and sporocyst while 3,066 DEG

between sporocyst and cercaria were detected (Fig 3 and S5 Table). Besides, Gene Ontology

(GO) enrichment analysis was performed based on the DEG to analyze the enriched gene

functions, the fold change cutoff value was set at> 5 to obtain more representative GO terms

(S4 Fig and S6 Table).

During the development from egg to miracidium, two GO categories were upregulated,

including magnesium ion binding (GO: 000287). The associated gene was a 7-methylguano-

sine phosphate-specific 5’-nucleotidase (Sjc_0000850). 50-nucleotidases are enzymes catalyzing

the hydrolytic dephosphorylation of nucleoside monophosphates to nucleosides and ortho-

phosphate [57]. As catabolic enzymes, they play important roles in the regulation of nucleotide

levels in living cells [58]. Compared to miracidia, fifteen GO categories were upregulated in

eggs, including those related to lipid metabolic process (GO: 0006629), pyridoxal phosphate

binding (GO: 0030170) and heme binding (GO: 0020037). Schistosomes are reported to
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uptake the basic sterols and fatty acids from host [59]. The pyridoxal phosphate (the active

form of vitamin B6) [60] as well as heme, the important cofactor for oxygen transfer [61] were

also derived from the host. Since the egg is produced and developed in the host, the high lipid

metabolism activity and binding activity of vitamin B6 and heme may contribute to nutrients

and oxygen that are required for the embryonic development in the egg.

During the development from miracidium to sporocyst, ten GO categories were enriched

from the upregulated genes in miracidia. The enrichment of protein glycosylation (GO:

0006486) and fructosyltransferase activity (GO: 0008417) may be associated with the enhanced

formation of glycocalyx that covers the surface of the miracidium [62]. Besides, a group of

leishmanolysin and neprilysin linked to metalloendopeptidase activity (GO: 0004222) were

upregulated. Notably, these leishmanolysins were different from those specifically expressed in

sporocysts. Neprilysin (NEP) is a zinc-metalloenzyme belonging to the M13 family [63], which

plays an important role in the interactions between host and parasite. Neplilysin was shown to

involve in the production of immunoactive peptides, which could inactive the immunocytes

from the snail host [64]. These data indicate that leishmanolysin and neprilysin may help the

parasite escaping the immune attack of the Oncomelania hupensis hemocytes after miracidia

penetration. On the opposite, ten GO categories were upregulated in sporocysts, including

DNA replication (GO: 0006260), DNA replication initiation (GO: 0006270) and DNA binding

(GO: 0003677), which are consistent with the asexual reproduction of sporocysts that under-

goes active cell division [19].

Ten GO categories were upregulated during the development from sporocyst to cercaria.

Go terms related to glycolytic process (GO: 0006096), transmembrane transport (GO:

0055085) and microtubule-based process (GO: 0007017) represent the high motility and meta-

bolic activity of cercaria. Besides, proteolysis (GO: 0006508) related cysteine-type (GO:

0004197), aspartic-type (GO: 0004190) and serine-type endopeptidase activity (GO: 0004252)

were also enriched. Many members of these important protease family have been studied, such

as cathepsin B and cathepsin L from the cysteine protease family [65], cathepsin D from the

aspartic protease family [66] and trypsin and elastase from the serine protease family [67].

Fig 3. Differential gene expression among the stage transitions. Volcano plots showing differentially expressed genes (DEGs) in miracidium compared to egg (A), in

sporocyst compared to miracidium (B), and in cercaria compared to sporocyst (C). Genes with p-value near 0 were adjusted to the p-value = 10−500. The dot line on the y

axis refers to p-value = 0.05. The dotted lines on the x axis refer to fold change = -2 or 2.

https://doi.org/10.1371/journal.pntd.0009889.g003
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These proteases participate in numerous biological processes, such as the parasite’s invasion,

survival and longevity in the definitive host.

Gene clusters based on expression pattern across the four life stages

To further explore the transcriptomic changes across the four life stages, genes were clustered

into 8 groups based on their expression profile (Fig 4). Each cluster showed a specific expres-

sion pattern. Genes from clusters 1, 2 and 5 showed highest expression in eggs, miracidia and

cercariae respectively, while those from clusters 3 and 4 were highly expressed in sporocysts.

GO categories enriched in these clusters were generally consistent with those based on SSG

and SEG of each stage (S7 Table). We noticed that cluster 5 contained 17 genes that are linked

to G protein-coupled receptor (GPCR) signaling pathway (GO: 0007186), including one meta-

botropic glutamate receptor (Sjc_0001309), one tachykinin-like peptides receptor

(Sjc_0003380), one rhodopsin GPCR (Sjc_0003938), two 5-HT receptors (Sjc_0001525,

Sjc_0007274) and three octopamine receptors (Sjc_0005446, Sjc_0007275, and Sjc_0006297).

Glutamate is a neurotransmitter that is involved in controlling parasite locomotion [68].

Tachykinins are peptides that play a role in the processing of sensory information and control

of motor activities [69]. These GPCRs may coordinate to regulate cercariae movement, light

response, host sensory and adaption to a new osmotic pressure environment after host pene-

tration. Genes in cluster 6, 7 and 8 showed high expression at two stages. Among them, cluster

6 showed increased expression in both the miracidia and cercariae. The enriched GO catego-

ries were mainly related to protein synthesis and transport, such as endoplasmic reticulum

(GO: 0005783), intracellular protein transport (GO:0006886) and vesicular mediated transport

(GO: 0016192). This may reflect that parasites at these two free-swimming stages are preparing

proteins used for the host invasion.

Fig 4. Clusters of genes based on time-course expression pattern. Membership value was calculated using R package Mfuzz, which indicated the degree of

membership of this gene for the corresponding cluster. The y-axes were scaled independently to emphasize the differences between clusters.

https://doi.org/10.1371/journal.pntd.0009889.g004
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Genes associated with germinal cell and asexual reproduction in the larval

stages

In planarians (close relatives of schistosomes), a population of pluripotent stem cells called

neoblasts can regenerate injured tissues and replenish a whole animal from a single cell

[70,71]. In recent years, it was shown that schistosomes, like the planarians, also contain stem

cells. There are two major stem cells that play in the different life stages during intramolluscan

and intramammalian development, including the germinal cells of sporocysts involved in asex-

ual reproduction and the neoblast of adult worms involved in sexual reproduction [72]. Ger-

minal cells have similar morphology with the neoblasts of planarians, they have a high nuclear

to cytoplasmic ratio, an open chromatin structure and a large nucleolus [73]. These cells seem

to proliferate indefinitely, evidenced by the serial transplantation of sporocysts into naïve mol-

luscan hosts that led to continuous propagation of the parasites [74].

Recently, many methods were developed to study schistosome stem cells, including 5-ethy-

nyl-20-deoxyuridine (EdU) labeling, whole-mount in situ hybridization (WISH), and RNA

interference (RNAi) [75]. Wang et al. compared gene expression profiles of miracidia and spo-

rocysts 48 h post-transformation with the transcripts enriched in FACS-purified planarian

neoblasts [76]. The same group also transcriptionally profiled stem cells from Schistosoma
mansoni in vitro transformed mother sporocysts at single-cell levels. Three major stem cells

classes were identified upon their respective markers: k-cells (that transcribe klf and nanos-2);

ϕ-cells (that transcribe fgfrA and fgfrB); and δ-cells that produce transcripts of nanos-2 and

fgfrA, B [77]. ScRNAseq analysis was also performed in the 2-day old schistosomulae to better

understand the cell types and tissue differentiation [78]. These works provided many valuable

markers of schistosome stem cells. We picked 18 markers and identified the homologs in S.

japonicum using reciprocal BLAST comparisons (E-value < e−10) (S8 Table). Then we

described the expression profiles of these marker genes in the four larval stages (Fig 5A).

Nanos-2 expression was observed in the eggs and miracidia, but declined in the sporocysts.

The RNA-binding protein nanos-2 has been showed to function in schistosomes as a con-

served regulator of adult stem cells [79]. It has been proposed that there are two germinal cell

subpopulations (nanos-2+ and nanos-2- cells) in the mother sporocysts, with the later subpopu-

lation proliferating more rapidly [76]. The two fibroblast growth factor receptors (fgfr)—fgfrA
and fgfrB, showed different expression patterns across these stages. FgfrA is essential for main-

tenance for adult stem cells [79], it’s expression in miracidia, sporocysts and cercariae was sta-

ble (Fig 5B). However, fgfrB showed relatively high expression in the sporocysts (Fig 5B),

suggestive of its important role in germinal cells. A polo-like kinase (plk) gene highly expressed

in sporocysts, polo-like kinases are important regulators of cell cycle progression and mitosis

[80]. Cell cycle related transcripts (h2a, cyclinB, and PCNA) all showed relatively high expres-

sion in sporocysts (Fig 5B). Ago2-1, a stem cell marker and enriched in germinal cells [76], was

also upregulated in sporocysts (Fig 5B). ZFP-1 is a zinc finger protein which is essential for the

specification of new tegument cells [81]. This gene was highly expressed at the cercariae stage

(Fig 5B). Soria et al. discovered a novel stem/germ cell marker-calmodulin (cam) in the schis-

tosomulae [78]. Calmodulin is a Ca2+ transporter and is critical for miracidium-to-sporocyst

transformation [82], for sporocyst growth and for egg hatching [83]. We found this gene was

upregulated in the cercariae stage (Fig 5B). In conclusion, these stem cell marker genes dis-

played differential expression patterns across the four larval stages. This indicated that germi-

nal cells existed in every larval stage and stem cell conversion may have occurred during the

larval development.
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Highly expressed cathepsin-B like proteases in cercariae were produced by

tandem duplications

Peptidase C1 genes are cysteine proteases of the papain superfamily. These enzymes play key

roles in the pathogenesis of both protozoan and metazoan parasites, including skin or tissue

penetration, hydrolysis of host or parasite proteins, and evasion or modulation of the host

immune response [65,84]. The multiple functions of cysteine proteases make them attractive

chemotherapeutic and vaccine targets [85].

Through a Hidden Markov Model (KMM) search, we identified 14 and 30 papain genes in

S. japonicum and S. mansoni (S1 Dataset), respectively. To obtain the phylogenetic relationship

of Schistosoma papain proteins, an unrooted tree was constructed. Papains were classified into

six groups, including cathepsin B, cathepsin B-like, cathepsin C, cathepsin L, cathepsin L-like

and cathepsin S (Fig 6A). A schematic representing the structure of all papain proteins was

constructed from the MEME motif analysis results. As exhibited in Fig 6B, papain members

within the same groups were usually found to share a similar motif composition. The exon-

intron organizations of all the identified papain genes were examined to gain more insight

into the evolution of the papain family. As showed in Fig 6B, all papain genes contain two to

eleven exons (1with two exons, 5 with three exons, 27 with four exons, 1 with five exons, 5

with seven exons, 2 with eight exons, 2 with nine exons, and 1 with eleven exons). The papain

genes in the same group shared similar gene structures.

To explore the relationship between S. japonicum and S. mansoni papain genes, we deter-

mined their chromosomal locations and whether they originated from gene duplication

Fig 5. Stem cell-related genes. (A) Heatmaps showing the relative gene expression of the eighteen stem cell markers in egg, miracidium, sporocyst and cercaria, as

indicated. (B) Expression profiles of the nine stem cell markers in the four larval stages.

https://doi.org/10.1371/journal.pntd.0009889.g005
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events. We identified papain genes on five chromes, most of them are located on chromosome

8 (for S. japonicum) or chromosome 1 (for S. mansoni). Tandem-duplicated genes are defined

as two paralogous genes that are separated by fewer than 10 intervening genes [86], and it is

Fig 6. Genome-wide identification, characterization, and expression patterns analysis of the papain gene family in S. japonicum. (A) Phylogenetic relationship

of papain. An un-rooted phylogenic tree was constructed in MEGA 7 using multiple alignments of S. japonicum and S. mansoni whole sequences data. (B) The motif

composition and exon-intron structure of papain genes. For the motif pattern, the motifs, numbers 1–10, are displayed in different colored boxes. For the gene

structure, green boxes indicate untranslated 5’- and 3’-regions; yellow boxes indicate exons; black lines indicate introns. (C) Synteny analysis of papain genes between

S. japonicum and S. mansoni. Gray lines in the background show the collinear blocks within S. japonicum and S. mansoni genomes, while the red lines highlight the

syntenic papain gene pairs. The tandem duplicated genes are marked in red. (D) Expression profiles of the papain genes at the four life stages.

https://doi.org/10.1371/journal.pntd.0009889.g006
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one of the main sources of diversity for the evolution of gene families in eukaryotic organisms

[87]. We identified 17 S. japonicum papain genes (10 pairs) that correspond to the tandem

duplication events. In S. mansoni, we only detected 2 tandem-duplicated papain genes, com-

prising 1 gene pair (Fig 6C). We also added papain genes of Schistosoma haematobium and

Schistosoma bovis into phylogenetic analysis. There are 14 papain genes in S. haematobium
and 15 in S. bovis. The unrooted tree showed that a branch of S. japonicum cathepsin B-like

proteases (14 members) separated from others, ten of them were produced by tandem duplica-

tion (S5 Fig). These results suggested that tandem duplication played important roles in the

expansion of the papain gene family in S. japonicum. We then evaluated the papain gene

expression profiles in different S. japonicum life stages via the RNA-seq data, and found that

87.5% of papain genes, including all the tandem-duplicated cathepsin B-like proteases, were

highly expressed in the cercaria stage (Fig 6D).

Here, for the first time, we characterized the phylogenetic relationships, gene and protein

structures and chromosome locations of the papain gene family in S. japonicum. We found

that tandem duplication events drove the expansion of the papain gene family in S. japonicum.

Besides, all the duplicated cathepsin B-like proteases showed the highest expression at the cer-

cariae stage. S. mansoni and S. haematobium primarily infect humans, but S. japonicum is a

zoonotic specie that infects more than 40 different mammalian species [88]. Thus, we speculate

that these tandem duplicated and cercariae highly-expressed cathepsins may play important

roles in assisting S. japonicum in establishing infections in broad definitive hosts.

Genome-wide identifications and comparative analysis of alternative

splicing events within the four life stages

Alternative splicing (AS) is the process that enables one gene to encode two or more mature

mRNAs through the differential utilization of splice sites [89]. AS greatly expands the tran-

scriptome and proteome diversity; it is widespread in the genomes of humans and other spe-

cies [90,91]. In parasites, AS may play fundamental roles in the host-parasite interactions by

producing alternative isoforms with different functions [92]. The discovery of AS giving rise to

different isoforms of antigenic proteins is indicative of immune evasion strategies by the para-

sites [93]. AS has been investigated in S. japonicum schistosomulae and adult worms [94,95],

but they were based on the early RNA-Seq technologies, the sequencing depth and accuracy

were far inferior to the one used in our study. Here, based on the most accurate SjV3 genome,

we characterized the detailed AS in the four larval stages of S. japonicum.

In this study, five major AS types were considered as described before [96], including skip

exons (SE), retained introns (RI), mutually exclusive exons (MXE), alternative 5’ splice sites

(A5SS) and alternative 3’ splice sites (A3SS). 6,099, 6,101, 5,949 and 6,282 AS genes were deter-

mined in eggs, miracidia, sporocysts and cercariae (S2 Dataset), accounting for 62%, 62%,

61%, and 64% expressed genes, respectively (Fig 7A). The distributions of AS types in eggs,

miracidia, sporocysts and cercariae are comparable; that is, SE was the most abundant AS

events (44%-49%), followed by RI (21%-27%), A5SS (10%-12%), A3SS (10%-11%) and MXE

(6%-9%) (Fig 7B).

The overall statistics of shared/unique AS genes in the four life stages are shown in Fig 7C.

Interestingly, 5,374 genes were undergone alternative splicing in all four stages, and there are

143, 117, 124, 241 genes uniquely spliced at the stage of eggs, miracidia, sporocysts and cercar-

iae, respectively. Notably, different AS patterns may occur for a single gene. Thus, UpSet plots

were used to depict the intersections between AS types for each stage (Figs 7D and S6). For

example, at the cercariae stage, a total of 2,240 genes only occurred in one type of AS event.
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Fig 7. AS landscapes in S. japonicum larval stages. (A) Number and percentage of AS events in S. japonicum eggs, miracidia, sporocysts and cercariae. (B)

Proportions of different AS types detected in S. japonicum eggs, miracidia, sporocysts and cercariae. (C) The Venn diagram shows the overlap of AS genes in the four

life stages. (D) Interactions between the five types of detected AS genes in the cercaria stage were visualized using an UpSet plot. (E) Venn diagram of the overlap of

the DE and DAS genes between the eggs and miracidia stages. (F) An example of a gene (Sjc_0007531) displayed different SE at the eggs and miracidia stages.

https://doi.org/10.1371/journal.pntd.0009889.g007
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The number of the SE is the most, with 1,562 genes, and the least is MXE, with only 13 genes.

Furthermore, 519 genes contained up to five types of AS events (Fig 7D).

To explore whether gene expression and AS acted cooperatively or independently to regu-

late S. japonicum development, both gene expression levels and gene with AS in the three stage

transitions were simultaneously analyzed (S2 Dataset). Among the genes identified to be dif-

ferentially expressed, only a small number overlapped with the genes had differential AS in the

three comparisons: 42 (8.6%) between eggs and miracidia, 142 (11.5%) between miracidia and

sporocysts, 106 (9.4%) between sporocysts and cercariae (Figs 7E and S7). Sjc_0007531, a cell

cycle control protein, showed different SE in the eggs and miracidia (Fig 7F).

In conclusion, more than 60% of the expressed genes showed alternative splicing in each

stage, much higher than previously detected in schistosomulae, which was 42.14%. The most

common type of AS events detected in the larval stages was the SE, while the MXE was the

least. In the schistosomulae and adult worms, the most common were SE and A3SS, the least

were RI and MXE, respectively [94,95]. Among all events, RI is the predominant mode of AS

in plants [97], whereas ES is the major type in humans [98]. However, in the cestodes Echino-
coccus granulosus and Echinococcus multilocularis or the free-living flatworm Schmidtea medi-
terranea, the major type AS was RI [99,100]. Hence, our results suggest that the gene

regulation pattern of S. japonicum is much closer to its human hosts. Besides, we found that,

similar to Trypanosoma cruzi and Arabidopsis [101,102], the co-regulated genes account only

for a relatively small portion of all DAS or DE genes, which indicated that AS and gene activa-

tion could be separately regulated.

Conclusions

This work presents the most thorough examination to date of the transcriptomes of S. japoni-
cum larval stages. Evidence of DNA replication and cell division was only seen and confirmed

in the sporocysts, while each stage upregulated different genes involved in development, mor-

phogenesis, movement and host invasion. Our data indicated that neprilysins and leishmano-

lysins might play a role in the penetration of the snail by the miracidia. It’s known that S.

japonicum cathepsin B2 (SjCB2) played fundamental roles in skin penetration [103]. Our anal-

ysis indicated that cercarial elastase (SjCE2b) and leishmanolysins might also be involved in

the process of cercariae invasion and the tandem duplications of cathepsin B-like proteases

probably contributed to the wide mammalian host range of the S. japonicum. These genes

should be targeted in the future for hypothesis-driven functional studies. The expression pro-

file of stem cell markers revealed that different populations of germinal cells exist in the larval

stages. We also performed the most comprehensive AS analysis in S. japonicum. We found

that the AS prevalence was 61–64% at the genome-wide level, and ES was the predominant AS

type in the larval transcriptomes, which revealed an affinity with its mammalian hosts in gene

regulation patterns. The transcriptome profiles of S. japonicum larval stages provide new

insights into host invasion, and the landscape of AS will not only facilitate future investigations

on transcriptome complexity and AS regulation during the life cycle of Schistosoma species but

also offered an invaluable resource for future functional and evolutionary studies of AS in

platyhelminth parasites.

Supporting information

S1 Fig. A heatmap showing Person’s correlation coefficient among different samples, with

correlation levels indicated by colors. The scores calculated by the R function () indicated the

correlation levels between two samples.

(TIF)
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S2 Fig. Hierarchical clustering analysis (HCA) of transcriptional profiles from 12 S. japo-
nicum samples with 8,732 genes. Egg, egg; Mir, miracidium; Spo, sporocyst; Cer, cercaria.

(TIF)

S3 Fig. Domain organizations of the S. mansoni Omega-1 and the four S. japonicum T2

ribonucleases. The signal peptide and ribonuclease_T2 domain are depicted in red and blue,

respectively.

(TIF)

S4 Fig. GO enrichment for differentially expressed genes (DEGs) in miracidium compared to

egg (A), in sporocyst compared to miracidium (B), and in cercaria compared to sporocyst (C).

(TIF)

S5 Fig. Phylogenetic relationship of papain in the four Schistosoma species. The protein

and genome sequences of Schistosoma haematobium SchHae_2.0 [104] and Schistosoma bovis
ASM395894v1 [105] were downloaded from the WormBase ParaSite (https://parasite.

wormbase.org/index.html). An un-rooted phylogenic tree was constructed in MEGA 7 on the

basis of multiple alignment of full-sequences from S. japonicum, S. mansoni, S. haematobium
and S. bovis. Tandem duplicated cathepsin B-like cysteine proteases of S. japonicum and S.

mansoni were indicated by bold black lines.

(TIF)

S6 Fig. Interactions between the five types of detected AS genes in the (A) egg stage, (B) mira-

cidium stage, and (C) sporocyst stage were visualized using an UpSet plot.

(TIF)

S7 Fig. Venn diagram of the overlap of the DE and DAS genes between the (A) miracidium

and sporocyst stages, and (B) sporocyst and cercaria stages.

(TIF)

S1 Table. Summary of sequence statistics for S. japonicum RNA-seq data.

(XLSX)

S2 Table. Illumina RNA-Seq S. japonicum transcript TPM (Transcripts Per Kilobase mil-

lion) values.

(CSV)

S3 Table. List of stage-specific genes (SSG) or stage-enriched genes (SEG) in the four S.

japonicum larval stages.

(XLSX)

S4 Table. Enriched GO terms of SSG and SEG in the four S. japonicum larval stages. Gene

ratio is the percentage of total SEG or SSG in the given GO term.

(XLSX)

S5 Table. Differentially expressed genes (DEG) between the adjacent life stages.

(XLSX)

S6 Table. Enriched GO terms of genes differentially expressed between the adjacent life

stages.

(XLSX)

S7 Table. Enriched GO terms of genes in the eight clusters.

(XLSX)
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S8 Table. 18 homologs of stem cell markers between S. japonicum and S. mansoni.
(CSV)

S1 Dataset. The HMMER output file and multiple sequence alignment results of peptidase

C1 (papain) in the four Schistosoma species, and the GFF file of peptidase C1 (papain)

genes in the SjV3 genome.

(ZIP)

S2 Dataset. AS events in each life stage and the differential AS events between the adjacent

life stages.

(ZIP)
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