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Abstract: Due to the limited number of organ donors, 3D printing of organs is a promising technique.
Tissue engineering is increasingly using xenogeneic material for this purpose. This study was
aimed at assessing the safety of decellularized porcine pancreas, together with the analysis of the
risk of an undesirable immune response. We tested eight variants of the decellularization process.
We determined the following impacts: rinsing agents (PBS/NH3 · H2O), temperature conditions
(4 ◦C/24 ◦C), and the grinding method of native material (ground/cut). To assess the quality of
the extracellular matrix after the completed decellularization process, analyses of the following
were performed: DNA concentration, fat content, microscopic evaluation, proteolysis, material
cytotoxicity, and most importantly, the Triton X-100 content. Our analyses showed that we obtained
a product with an extremely low detergent content with negligible residual DNA content. The
obtained results confirmed the performed histological and immuno-fluorescence staining. Moreover,
the TEM microscopic analysis proved that the correct collagen structure was preserved after the
decellularization process. Based on the obtained results, we chose the most favorable variant in terms
of quality and biology. The method we chose is an effective and safe method that gives a chance for
the development of transplant and regenerative medicine.

Keywords: pancreas; decellularization; extracellular matrix; bioink; bioprinting; Triton-X100; detergent;
DNA; tissue engineering

1. Introduction

Each year, the shortage of organs for transplantation condemns many patients to
arduous substitution treatment, severe complications, and consequently, even death [1].
Although transplants from deceased donors are often the only way for patients to return to
everyday life, such complicated surgical procedures are often associated with numerous
postoperative complications and the possibility of rejection of the transplanted organ by
the recipient’s immune system [2,3]. Therefore, tissue engineering is a promising field in
the reconstruction and replacement of missing or malfunctioning tissues and organs [2–5].
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One of the branches of tissue engineering that is currently thriving is 3D bioprint-
ing. This pioneering technology allows the production of biomimetic constructs with a
heterogeneity of tissue composition [6,7]. Despite the large variety of natural and synthetic
biomaterials (such as collagen, alginate, and polyglycolic acid), it is still challenging to
mimic the complexity of native tissues [8,9]. The extracellular matrix (ECM) is a naturally
occurring scaffold secreted by the resident cells of each tissue and organ, which forms a
cellular microenvironment composed of glycoproteins, collagens, glycosaminoglycans, and
proteoglycans [10]. ECM ensures the shape and strength of many tissues, provides optimal
conditions for the functionality of the cells included in the organ, and is an essential source
of growth factors [11,12]. ECM proteins (collagens, proteoglycans, and glycoproteins) and
their spatial structures can determine cell behavior and viability through communication
with the intracellular cytoskeleton [13,14].

In recent years, decellularized extracellular matrices (dECMs) have been recognized as
one of the most promising biocomponents that can be used in the 3D-bioprinting process,
diagnostics, and regenerative medicine [15]. dECMs retain functional and structural
proteins and bioactive indicators that are included in natural ECM [16,17]. Rivetingly, it has
been demonstrated that manipulating dECMs by various techniques is an efficient strategy
of controlling and imparting new dECM characteristics. Such dECMs can be used in many
therapeutic applications (e.g., muscle, neural tissue and liver regeneration, vascular grafts,
cartilage repair, insulin delivery, skin grafts) [18].

The most common factors used in the decellularization process of tissues and whole
organs are ionic (SDS) and/or non-ionic (Triton X-100) detergents [19,20]. They are con-
sidered the most effective means in the decellularization process. However, the results
of many studies indicate a lower degree of damage to the ECM components using Triton
X-100 [19,21–23].

It is worth noting that all factors (e.g., detergent, flushing agent) and protocols (e.g.,
duration/temperature of the process) used for tissue decellularization can change the
composition of dECM and cause disruption to its microarchitecture [24,25]. Therefore,
this study aimed to assess how the conditions of the decellularization process affect the
quality of the final product. For this purpose, we analyzed the influence of the degree of
disintegration of the tissue material, the type of rinsing agent, and the temperature on the
protein composition, the content of residual DNA, fat, and most importantly, the amount
of remaining detergent.

So far, in the literature [19], an effective decellularization process has been determined
based on the residual DNA content and histological evaluation. However, the evaluation
of the concentration of detergent remaining in the decellularized tissue is not a standard
part of the research reported in the art and is practically never conducted. The assessment
of the residual detergent content in dECM is difficult, but from our point of view it is
necessary due to the high cytotoxicity of Triton X-100. It should be also emphasized that
too high residual content of Triton X-100 in dECM will prevent the use of such material
in clinical trials [26]. It seems that the success of the decellularization process should be
based as much on the removal of genetic material as the removal of the detergent. These
two parameters should, first and foremost, prove the quality of the entire process. These
research approaches are not widely described in the literature, wherefore we developed a
new way for determining the content of triton X-100 in dECM and conducted cytotoxicity
tests to confirm the biological quality of decellularized tissue.

2. Results
2.1. The Amount of Residual DNA Concentration

Quantitative Pico-Green analysis for residual DNA content in the decellularized
material showed that it was virtually completely removed relative to native tissue. The
method of preparing the material for the decellularization process significantly affected the
final concentration of genetic material in the obtained dECM. Values below the generally
accepted 50 ng/mg standard [19] were obtained in all tested samples. However, in tissue
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subjected to the grinding process, statistically lower residual DNA values were found
compared to the cut tissue (Figure 1). Samples that were cut into small fragments during
material preparation stage showed a residual DNA content ranging from 2.71 ± 0.07 ng/mg
(PBS, 4 ◦C) to 6.32 ± 0.37 ng/mg (NH3 · H2O, 24 ◦C) in powdered dECMs. However, in
the case of material mechanically disintegrated by means of a machine, the amount of
remaining genetic material was significantly lower and amounted from 0.05 ± 0.07 ng/mg
(PBS, 4 ◦C) to 2.65 ± 0.21 ng/mg (PBS, 24 ◦C). It is worth noting that the lowest residual
DNA values were obtained, regardless of the grinding method, using PBS as a rinse agent
and the temperature of 4 ◦C.
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Figure 1. The graph shows the results of residual DNA in the final product after decellularization,
lyophilization, and milling on a cryogenic mill. In the event of the grounded tissue, the PBS solution
at 24 ◦C turned out to be the least effective. All other tests showed significantly lower residual DNA
values. As in the case of the PBS solution, a significant decrease in DNA content was demonstrated
for the NH3 · H2O solution at 4 ◦C vs. 24 ◦C.

The obtained residual DNA results were on average more than 17 times lower than
the norm. Moreover, the values received for all analyzed variants were over 320 times
lower than the results achieved for the native tissue, i.e., 811 ± 155 ng/mg (data not shown
in the diagram).

Next, the impact of the scrubbing solution used during the decellularization process
was analyzed. The analysis was carried out on samples that were milled at the stage of
processing the tissue material. Based on the analyses carried out, it has been shown that
both the type of fluid used and the temperature at which the entire process is carried out is
significant for the final content of genetic material in the obtained raw material (Figure
1). Both when using the PBS solution and NH3 · H2O, it was shown that a significant
reduction in residual DNA content occured when the process is carried out at 4 ◦C.

DAPI staining performed for the most preferred variant of the decellularization
process (ground tissue/PBS as rinse agent/4 ◦C) showed no cell nuclei (blue structures in
Figure 2a) in the decellularized tissue (Figure 2b). This examination confirmed the results
obtained with the PicoGreen assay (Figure 1).
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Figure 2. Microscopic image of DAPI staining of native tissue ((a); scale: 100 µm) and decellularized
tissue ((b); scale: 500 µm).

2.2. Proteomic Analysis of Powdered dECM

Protein composition analysis showed that, regardless of the decellularization protocol
used, over 70% of proteins derived from the extracellular matrix were found in all evaluated
samples (Figure 3; Table 1).
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Figure 3. Percentage of proteins in the final decellularization product depending on the method of
tissue disintegration (cut vs. ground), temperature (4 ◦C vs. 24 ◦C), and the solution used for rinsing
(NH3 · H2O vs. PBS).

Table 1. p-values obtained for the results presented in Figure 3.

Variants p-Value

CUT/PBS/24 ◦C, GROUND/PBS/4 ◦C <0.0001
CUT/PBS/4 ◦C, GROUND/PBS/4 ◦C <0.0001
CUT/WA/24 ◦C, GROUND/PBS/4 ◦C <0.0001
CUT/WA/4 ◦C, GROUND/PBS/4 ◦C <0.0001

GROUND/PBS/24 ◦C, GROUND/PBS/4 ◦C <0.0001
GROUND/PBS/4 ◦C, GROUND/NH3 · H2O/24 ◦C <0.0001
GROUND/PBS/4 ◦C, GROUND/NH3 · H2O/4 ◦C <0.0001
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It should be noted, however, that when PBS was used as the scrubbing solution, tissue
was ground, and the temperature of the entire process was maintained at 4 ◦C, the ECM
protein content was the highest. In detail, in this variant, more than 80% of the total protein
content was made up of ECM proteins (most of which is collagen) and less than 20%
was other proteins (nuclear proteins, resulting from the breakdown of cell organelles, cell
membrane, cytosol or cytoskeleton of cells building the pancreas organ).

ECM samples were sterilized by radiation. The literature has reported the influence of
this sterilization method on the composition of the sterilized material [27–29]. Therefore, it
was decided to analyze the total collagen content of the ECM powder, obtained with the
use of the most preferable variant (i.e., ground/PBS/4 ◦C), subjected and not subjected
to radiation sterilization (Figure 4). As expected, a decrease in the total content of this
fibrillar protein was observed (without sterilization, 82.2 ± 3.7 µg/mg; after sterilization,
74.8 ± 2.1 µg/mg). However, after the sterilization process, collagen content in the ECM
powder produced according to our method proposed in this article was still very high.
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Figure 4. Total collagen content in dECM powder obtained with the use of the most preferable
variant (i.e., ground/PBS/4 ◦C) without sterilization (i.e., before sterilization; left graph bar) and
after sterilization (right graph bar); MV ± SD, n = 4, p = 0.0230.

2.3. Contents of the Remaining Triton X-100 Detergent in the Final Product

Evaluation of the final content of the used detergent conducted by our novel manner
showed significantly lower values when using the method based on grinding the material
in preparation for the decellularization process (Figure 5). In these samples, the remaining
detergent level was lower in cut material (cut vs. ground: 5.47 ± 2.38 µg/mL (4 ◦C,
NH3 · H2O), 8.91 ± 2.38 µg/mL (24 ◦C, NH3 · H2O), 2.54 ± 1.19 µg/mL (4 ◦C, PBS),
6.59 ± 1.26 µg/mL (24 ◦C, PBS) vs. 6.26 ± 1.96 µg/mL (4 ◦C, NH3 · H2O), 4.42 ± 1.96
µg/mL (4 ◦C, NH3 · H2O), 1.46 ± 0.51 µg/mL (4 ◦C, PBS), 3.44 ± 0.50 µg/mL (24 ◦C,
PBS)). In addition, the effect of the rinse agent on the amount of detergent remaining was
analyzed (Figure 5; Table 2). Also, in this case, the advantage of using PBS solution for
leaching Triton X-100 was proved. In the samples where this solution was used, lower
concentration of the remaining detergent was observed.
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Figure 5. Evaluation of residual detergent content in the final product (i.e., in dECM powder)
depending on how the tissue was minced (cut vs. ground), the solution used for rinsing (NH3 · H2O
vs. PBS), and temperature (4 ◦C vs. 24 ◦C).

Table 2. p-values obtained for the results presented in Figure 5.

Variants p-Value

GROUND/PBS/4 ◦C, GROUND/NH3 · H2O/4 ◦C 0.0030
GROUND/PBS/4 ◦C, GROUND/NH3 · H2O/24 ◦C 0.0467

CUT/NH3 · H2O/4 ◦C, GROUND/PBS/4 ◦C 0.0100
CUT/NH3 · H2O/24 ◦C, GROUND/PBS/4 ◦C <0.0001

CUT/PBS/24 ◦C, GROUND/PBS/4 ◦C 0.0019

2.4. Total Fat Content

The fat content assessment in the final product significantly depended on the initial
preparation of the tissue material (Figure 6). The tissue, which at the initial stage of
treatment was cut with small scissors into small fragments, in the final product, showed
2.95 times higher total fat content than ground tissue (cut vs. ground: 5.6% vs. 1.9%;
p < 0.05) and two times lower than native tissue (11.6%—data not shown in Figure 6).
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decellularization process (MV ± SD, n = 3, * p < 0.05).
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2.5. Histological Analysis

H + E staining confirmed the decellularization process’s efficiency, which resulted
in the complete removal of cellular material while maintaining a structure comparable to
native tissue (Figure 7). Cellular elements, including nuclei (purple structures), were visible
in the native tissue (Figure 7a). These structures were not present in the decellularized tissue
(Figure 7b), which confirms the effectiveness of the proposed decellularization method.
Moreover, Alcian blue–van Gieson staining of native tissue (Figure 8a) and decellularized
tissue showed the presence of GAGs (blue–green structures on Figure 8b), and collagen in
decellularized tissue (mauve structures on Figure 8b)—those structures were also clearly
visible on the TEM image (Figure 9).
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2.6. SEM/TEM Analysis

Comparison of the SEM of native (Figure 10a) and acellular (Figure 10b) pancreas
showed the preservation of the three-dimensional microstructure after decellularization
with clearly visible ECM protein fibers. Furthermore, the TEM image confirmed the preser-
vation of proper collagen fibril structure (characteristic bands) after the decellularization
process (Figure 9).
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2.7. Cytotoxicity Evaluation

In compliance with ISO 10993-5 standard, a material is non-cytotoxic if cell viability
does not drop by 30% compared to the negative control. Viabilities of L929 cells (mouse
fibroblasts) after 24 h-culture with extracts were about 80–87%, wherefore according to ISO
10993–5, all samples (from three different series in two repetitions, labeled as IA, IB, IIA,
IIB, IIIA, IIIB) were shown to be non-cytotoxic (Figure 11).
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None of the tested samples did exhibit cytotoxicity, which leads to the conclusion that
the presented decellularization process is repeatable and enables obtaining non-cytotoxic
products. Additionally, MTT test results (which did not show a significant difference
between samples–87 ± 5% for IA, 82 ± 7% for IA, 80 ± 7% for IIA, 87 ± 5% for IIB, 82 ± 7%
for IIIA and 83 ± 4% for IIIB) confirmed results received during the assessment of the
remaining detergent contents in the final product.

3. Discussion

The production of tissue models using the latest technologies (including 3D bio-
printing) enables the use of bionic organs and tissues to regenerate those damaged in-
patients or to replace them completely. Of course, it will be a few more years before
bioprinting becomes a permanent feature of clinical practice. However, the research and
results achieved by scientists worldwide allow us to be optimistic about the further devel-
opment of this scientific field. The potential benefits of using biological materials based on
dECM to replace and rebuild damaged or non-functional tissues and organs are notewor-
thy. Of course, you can use various types of materials for biodegradation, both synthetic
and natural. However, dECM obtained from native organs and tissues is characterized
by a decisive advantage. One of the most common methods used to obtain fines of the
extracellular matrix from tissues is the decellularization process. However, despite the
many available protocols, a universal decellularization method cannot be clearly identified
for each source tissue type.

In this study, we focused on testing various conditions (tissue fragmentation, temper-
ature, flushing agent) during the pig pancreas’ decellularization process in order to assess
the quality of the resulting dECM. We decided to use a scrub with Triton X-100 non-ionic
detergent, followed by the use of DNase enzymes to remove nucleic acid residues. Triton
X-100 is a detergent capable of interfering with lipid–lipid and lipid–protein interactions,
leaving intact protein–protein interactions, suggesting the legitimacy of using this detergent
to obtain biocompatible scaffolds [30–32].

Despite the fact that detergents such as Triton X-100 are extremely effective in the de-
cellularization process, it should be remembered that the detergent residual concentration
and toxicity remain the main problems in this process. Cytotoxicity is possible even at
reduced agent concentrations, and the main toxic effect of this detergent is its cytolytic
and hematolytic activity, resulting from impaired cell membrane integrity, mitochondrial
function, and cellular metabolism [26,33,34]. Triton X-100 as a surfactant is used in the
production of vaccines, and its acceptable amounts are from 0.17 to 0.5 mg/mL [35]. The
test results showed the effectiveness of our protocol, resulting in dECM with a residual
detergent content below the cytotoxicity level, and the lowest results for this parameter
were recorded in the group subjected to tissue grinding and using 1×PBS as a washing
agent (Figure 5). Additionally, the MTT tests performed by us for the aforementioned
most favorable variant confirmed the lack of cytotoxicity of the obtained dECM powder.
Moreover, other scientists have also proven that a non-cytotoxic product can be received
by decellularization using Triton X-100 [36].

An equally important subject of research was the nucleic acid residues remaining
in the dECMs. Remains of DNA fragments can cause problems with immunological
compatibility. The best solution is to use xenogenic material. The advantage of this solution
is, for example, easy access to biological material, and thus there is also a significant
production potential. However, in the case of choosing such a path of obtaining a dECM,
the potential immunogenicity should be sufficiently reduced [37]. Therefore, the goal is to
obtain DNA below 50 ng/mg dsDNA in the final material, and the DNA fragment length
should not exceed 200 bases [19,38]. Our dECM also met these standards because the
amount of isolated DNA in each analyzed variant was much lower than the recommended
standard [19]. In addition, we found that grinding the tissue by milling and using a 1×PBS
solution at 4 ◦C as a rinse agent after the detergent had a significant effect on the removal of
residual DNA content. Such results confirmed the literature reports showing the removal
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of more than 90% of the genetic material during the decellularization process with the use
of Triton-X100 [39–46].

Literature reports have shown that Triton X-100 affects the removal of glycosamino-
glycans (GAG) [47] and retention of cellular debris [48]. Such results were presented by
a group of scientists engaged in the decellularization of the aortic valve [47]. In turn,
our histological analysis of pancreatic tissue [49], which we decellularized, confirmed the
effectiveness of Triton X-100 as a decellularizing agent, which resulted in the absence of
visible cellular debris while maintaining the architectural structure of the tissue, including
GAG. Moreover, the proteomic analysis of the obtained dECM showed that in all the used
washing variants, the main remaining components were ECM proteins, with a definite
predominance of collagen. Therefore, the selection of appropriate process parameters is
crucial to achieving a material that reflects the native tissue as much as possible.

In this article, we have developed a massive tissue decellularization method. We
proposed eight variants of the decellularization process (we analyzed the influence of
different rinsing agents, different temperatures, and methods of grinding native material).
Based on the results of detailed studies obtained, we chose the most preferred variant,
which was additionally analyzed (e.g., cytotoxicity tests). We evaluated the residual Triton
X-100 content in the decellularized tissue, even though this assessment is not a standard
part of the research reported in the existing literature and is practically never conducted.
Our analyses have shown that we retreived a product with an extremely low Triton X-100
content with negligible residual DNA content. It should also be foregrounded that the
very low residual content of Triton X-100 in our dECM may allow the use of this material
in clinical trials. Moreover, performed stainings (Alcian blue–van Gieson, DAPI, and
Harris hematoxylin–Eosin stainings) confirmed the obtained results. Furthermore, the
TEM microscopic analysis proved that the correct collagen structure was preserved after
the decellularization process. To sum up, the manner we propose is a repeatable and
effective method; moreover, it evolved to European Patent Application (EP19218191.5) and
International Patent Application (PCT/IB2020/056856).

4. Materials and Methods

Pig pancreases with a total weight of about 5 kg were used for the decellularization
process. The material was collected in a local slaughterhouse. All organs were frozen at
−20 ◦C after collection. Then they were thawed and cleared of fat. The pancreas was
immersed in PBS (Tablets, Takara, Janki, Poland)/streptomycin (Sigma Aldrich/Merck;
Warsaw, Poland) solution (final concentration 0.01% v/v) before the actual experiment.
The cleaned pancreatic material was divided into eight parts equal in mass. As part of the
experiment, temperature conditions, type of flushing agent, and method of grinding the
tissue material were tested (Figure 12). A 1% Triton X-100 (Sigma Aldrich/Merck; Warsaw,
Poland) solution with 0.1% NH3 · H2O in 1× concentrated PBS was used as the detergent
in each case. All tested variants were placed in the incubator (Eppendorf Innova® 42R,
Warsaw, Poland) throughout the experiment (maintaining the appropriate temperature
variants) with constant stirring of 150 rpm.

The decellularization process lasted five days, and during this time, the detergent
was changed every 4 h for the first three days and every 24 h for the next two days. The
detergent was then rinsed for 72 h with 0.1% NH3 · H2O or 1×PBS solution (according
to the experimental design). The penultimate step was the addition of a 0.0002% DNase
solution in 1×PBS with 0.12 mM calcium and magnesium ions. This stage lasted 8 h
and was conducted at 37 ◦C regardless of the whole process’s analyzed conditions. The
last step was to rinse all variants again with a 1×PBS solution. All solutions used for
decellularization were enriched with streptomycin at a final concentration of 0.01%.

After the process was completed, the obtained extracellular matrix was frozen in liquid
nitrogen and ground into fragments about 0.5 cm in size. The material prepared in this
way was subjected to a freeze-drying process. The lyophilizate thus obtained was ground
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into a powder with the use of a cryogenic mill (SPEX® SamplePrep 6775, Rickmansworth;
UK). All obtained samples were subjected to radiation (25 kGy) to sterilize the material.
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4.1. DNA Evaluation

Total DNA was extracted from porcine tissues using DNeasy Blood & Tissue kit
(Qiagen, Hilden, Germany) in accordance with manufacturer’s instruction. Determination
of DNA purity was performed by absorbance spectroscopy. Thus, the absorbance of DNA
samples was measured at 260 and 280 nm with BioTek Synergy H1 microplate reader
(Winooski, VT, USA) in order to calculate the A260/280 ratios.

To determine the residual content of genetic material (DNA) in the analyzed powdered
dECM, commercially available genomic DNA isolation kits (DNeasy Blood & Tissue Kit
from Qiagen) and the Pico Green kit (Quant-iT PicoGreen dsDNA from Molecular Probes,
Life technologies, Foster City, CA, USA) were used. The procedures were carried out
following the manufacturer’s instructions attached to both sets. Quantitative analysis
of genetic material was performed using a Synergy H1 Hybrid Multi-Mode Microplate
Reader (BioTek, Winooski, VT, USA).

Native tissue samples and decellularized tissue samples were fixed with 4% paraformalde-
hyde (PFA, Sigma-Aldrich/Merck, Warsaw, Poland) and stained using DAPI (blue staining
of a nucleus, Invitrogen, Warsaw, Poland) according to the protocol provided by the
manufacturer and analyzed using fluorescent microscopy.

4.2. Mass Spectrometry Analysis

Protein extraction was carried out in RIPA buffer, then to determine the protein con-
centration in the samples, BCA (Pierce™ BCA Protein Assay Kit) analysis was performed.
Standardized amounts of proteins (40 µg protein) were loaded onto a polyacrylamide gel,
and electrophoretic separation of proteins was carried out in a constant intensity field.
After the electrophoresis, the entire gel was stained with BlueStain Sensitive Plus (EURx,
Gdansk, Poland). The prepared samples were subjected to MS analysis at Harvard Uni-
versity (Harvard Medical School, Taplin Mass Spectrometry Facility, Boston, MA, USA)
according to the procedures used in the center’s procedures. The analysis of the obtained
results was based on the UniProt database.
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Moreover, the total collagen content in the ECM powder was assessed by performing
the analysis using the Total Collagen Assay Kit (ab222942, Abcam, Cambridge, UK) accord-
ing to the manufacturer’s instruction. Samples of ECM powder produced by the variant
evaluated as the most preferred, without and after sterilization, were tested.

4.3. Assessment of the Content of Detergent Used in the Final Product of the Process

To assess the amount of detergent remaining in the final product (powdered dECM),
the powder was dissolved using collagenase (NB 8 Broad Range; Nordmark, Uetersen,
Germany) at a concentration of 20× (compared to the manufacturer’s recommended
concentration/g of tissue) for 24 h. Triton X-100 quantification was conducted spectropho-
tometrically by the potassium salt of tetrabromophthalein ethyl ester. The TBPE-K reagent
method was used for low ethoxylated non-ionic surfactants. It involves the formation of a
colored non-ionic surfactant complex with TBPE-K reagent (Alfa Aesar, Kandel, Germany)
in a slightly alkaline medium. After extracting the complex with dichloromethane (CHRO-
MASOLV from Honeywell), the extract’s absorbance was measured (Shimadzu UV-2700
spectrophotometer, Duisburg, Germany).

In the first step, the samples were diluted with water. Then 2.5 mL of the buffered
TBPE-K reagent and 0.5 mL of 0.1 M KOH (Sigma-Aldrich/Merck, Warsaw, Poland) were
added to 2.5 mL of the sample and mixed thoroughly. The entire procedure was carried out
in accordance with the manufacturer’s instructions. Samples were left for 2 min. After this
time, 5 mL dichloromethane (DCM; Sigma-Aldrich/Merck, Warsaw, Poland) was added
and shaken for 2 min. Phases were left to separate. The lower DCM phase was collected,
and absorbance at 620 nm was measured. The calibration curve was prepared from Triton
X-100 in the concentration range 1–15 mg/L (calibration curve formula: y = 0.0225x + 0.049;
R2 = 0.9956).

4.4. Total Fat Content Assessment

The fat content was determined using the classic Soxhlet method using petroleum
ether extraction. The extraction was carried out for 6 h at the solvent temperature within
70 ◦C. Quantitative analysis of fat contained in the tested samples was carried out on the
basis of differences in the weight of the thimble before and after the extraction process.

4.5. Histological Analysis

The material after decellularization was fixed in a 4% paraformaldehyde solution.
In the next stage, the test material was washed in water, dehydrated, and X-rayed using
a tissue processor (Microm STP 120, Microm International GmbH, Dreieich, Germany)
using Ottix Shaper and Ottix Plus reagents (Diapath, Microstain Division, Via Savoldini,
Martinengo, Italy). The samples were impregnated in a paraplast® (Sigma-Aldrich/Merck,
Warsaw, Poland), and then embedded in paraffin in the form of blocks, which were cut on
a rotary microtome (Microm HM 355, Microm International GmbH, Dreieich, Germany)
into sections of 4 µm thickness. Preparations adhered to slides (SuperFrost Ultra Plus,
Thermo Scientific, Waltham, MA, USA) were dewaxed and stained with Harris hema-
toxylin (Thermo Fisher Scientific, Waltham, MA, USA) and eosin (Sigma-Aldrich/Merck,
Warsaw, Poland) and then closed using synthetic DPX resin (Fluka Chemie GmbH, Buchs,
Switzerland). Staining was performed to visualize protein structures and residues of
genetic material in the form of cell nuclei.

Native tissue samples and decellularized tissue samples were fixed in 10% formalin at
5 ◦C for 24 h and dehydrated at room temperature using alcohol solution with increasing
alcohol concentrations, and finally embedded in paraffin. The samples were cut, adhered
to glass slides, and dried at 60 ◦C for 1 h. The materials were rehydrated. Alcian blue–
van Gieson (Abcam, Cambridge, UK) staining was performed according to the protocol
provided by the manufacturer.
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4.6. SEM Evaluation

Samples of the material were washed with phosphate-buffered saline (PBS, Thermo
Fisher Scientific), cut in 2 mm thick slices, and fixed. Fixation was done in a solution of
2.5% glutaraldehyde (Sigma-Aldrich/Merck, Warsaw, Poland) in sodium cacodylate buffer
(Sigma-Aldrich/Merck, Warsaw, Poland) for 15 min at room temperature. Then, samples
were consecutively washed in sodium cacodylate buffer, distilled water, and 70% ethanol,
15 min in each solution. Thereafter samples were dehydrated in graded alcohol series for
10 min each: 80% ethanol, 90% ethanol, 100% ethanol.

The samples were set aside to dry at room temperature. Then, samples were coated
with gold in a Leica EM SCD050 sputtering device (Leica Microsystems, Wetzlar, Germany).
SEM observation was performed in TM3000 scanning electron microscope (Hitachi High-
Technologies, Tokyo, Japan).

4.7. TEM Evaluation

The tissue was fixed using 2.5% glutaraldehyde (Sigma-Aldrich/Merck, Warsaw,
Poland) and 2% paraformaldehyde (Sigma-Aldrich/Merck, Warsaw, Poland) solution at
4 ◦C overnight. After fixation, the material was rinsed three times (10 min) in 0.1 M ca-
codylate buffer. Subsequent, small tissue fragments (approximately 1 mm3) were postfixed
in 1% osmium tetroxide for 1 h at room temperature. Dehydration was conducted by
incubating the analyzed sample in solution of increasing ethanol concentrations (50%, 70%,
90%, 96%, and 100%), and then in a mixture of ethanol and propylene oxide (1:1), and in
pure propylene oxide. During dehydration, samples were stained using 1% uranyl acetate
in 70% ethanol. Lastly, materials were embedded in the Epon resin. Ultrathin sections were
collected on TEM grids and poststained using uranyl acetate and Reynold’s lead citrate.
Electron micrographs were obtained with a Morada camera on a JEM 1400 transmission
electron microscope at 80 kV (JEOL Co., Tokyo, Japan) in Laboratory of Electron Microscopy,
Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland.

4.8. Cytotoxicity Evaluation

To assess the cytotoxicity of the dECM, an MTT test was conducted. Firstly, in 96-well
plates (for cell culture) with a flat bottom, mouse fibroblasts (L929 cells; Sigma Aldrich)
were seeded with a concentration of 104 cells/100 µL culture medium/well. The culture
medium (Dulbecco’s modified Eagle medium without phenol red, Gibco, Warsaw, Poland)
contained fetal bovine serum (FBS; 10%, Gibco, Warsaw, Poland), l-glutamine (Gln, 1%,
Gibco, Warsaw, Poland), and penicillin/streptomycin (Pen/Strep; 1%, Gibco, Warsaw,
Poland). To make extracts, sterile dECMs were incubated with supplemented cell-culture
medium (1 mg/mL) for 24 h at 37 ◦C, 5% CO2. The next day, fibroblasts in 96-well plates
were washed with phosphate-buffered saline without Mg2+ and Ca2+ and then put in
contact with extracts (100 µL/well) for 24 h at 37 ◦C, 5% CO2. As a negative control–control
(−), cells cultured in supplemented culture medium without contact with the analyzed
samples throughout the entire test were used. As a positive control–control (+), cells treated
with 1% Triton X-100 detergent solution were used. Triton X-100 in high concentrations
is known to be cytotoxic. This check is necessary to confirm the proper conduction of the
experiment. The following day, all extracts were collected from plates, and subsequently,
cells were washed with DPBS without calcium and magnesium ions. Lastly, 50 µL of MTT
solution (Sigma-Aldrich) was added to each well. Then, 96-well plates were incubated for
4 h at 37 ◦C, 5% CO2. After that, using a spectrophotometric microplate reader (BioTek,
Winooski, VT, USA), the absorbance of the samples was measured at 570 nm (reference
wavelength: 650 nm).

4.9. Statistical Analysis

Data are presented as mean ± standard error (SD) unless otherwise indicated. All
statistical analyzes were performed using StatView-5 software (SAS Institute, Cary, NC,
USA). Statistical values indicated for p values < 0.05.
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