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INTRODUCTION

As science and technology continues to advance, the 
increase in the volume of data, along with its higher 
dimensionality, has significantly contributed to the 
improvements in the recognition rate, accuracy, and 
success rate of artificial intelligence (AI),[1] enabling 
insights that would be otherwise challenging to 
obtain through manual methods.[2,3] This has lead 
to the application of AI in problem‑solving and 

has transformed AI into intelligent decision support 
system.[1,4,5]

AI has found applications in various contexts, including the 
medical field, such as its utilization in endoscopic diagnostic 
systems to achieve precise and efficient diagnoses. The 
current ongoing research aims to explore the potential of AI 
for the detection of bladder cancer through cystoscopy, and 

R
ev

ie
w

 A
rt

ic
le

ABSTRACT
Introduction: The emergence of artificial intelligence (AI)‑based support system endoscopy, including cystoscopy, has 
shown promising results by training deep learning algorithms with large datasets of images and videos. This AI‑aided 
cystoscopy has the potential to significantly transform the urological practice by assisting the urologists in identifying 
malignant areas, especially considering the diverse appearance of these lesions.
Methods: Four databases, the PubMed, ProQuest, EBSCOHost, and ScienceDirect were searched, along with a manual 
hand search. Prospective and retrospective studies, experimental studies, cross‑sectional studies, and case–control 
studies assessing the utilization of AI for the detection of bladder cancer through cystoscopy and comparing with the 
histopathology results as the reference standard were included. The following terms and their variants were used: 
“artificial intelligence,” “cystoscopy,” and “bladder cancer.” The risk of bias was assessed using the Quality Assessment of 
Diagnostic Accuracy Studies‑2 tool. A random effects model was used to calculate the pooled sensitivity and specificity. 
The Moses–Littenberg model was used to derive the Summary Receiver Operating Characteristics (SROC) curve.
Results: Five studies were selected for the analysis. Pooled sensitivity and specificity were 0.953  (95% confidence 
interval [CI]: 0.908–0.976) and 0.957 (95% CI: 0.923–0.977), respectively. Pooled diagnostic odd ratio was 449.79 (95% 
CI: 12.42–887.17). SROC curve (area under the curve: 0.988, 95% CI: 0.982–0.994) indicated a strong discriminating 
power of AI‑aided cystoscopy in differentiation normal or benign bladder lesions from the malignant ones.
Conclusions: Although the utilization of AI for aiding in the detection of bladder cancer through cystoscopy remains 
questionable, it has shown encouraging potential for enhancing the detection rates. Future studies should concentrate 
on identification of the patients groups which could derive maximum benefit from accurate identification of the bladder 
cancer, such as those with intermediate or high‑risk invasive tumors.
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has shown promising results.[6] Cystoscopy is the standard 
diagnostic and surveillance tool for the detection of bladder 
cancer, which is the fifth commonest cancer contributing 
to mortality among all the cancers in men (375,304 deaths; 
6.8%) according to the Global Cancer Registry 2020.[7] When 
suspicious lesions are detected on cystoscopy, transurethral 
resection of the bladder tumor  (TURBt) is performed 
for the pathological diagnosis, staging, and planning 
the subsequent management. Despite being a standard 
diagnostic procedure, urologists might overlook some of 
the bladder cancer lesions, resulting in incomplete resection 
and misdiagnosis. The reported misdiagnosis ranges up 
to 43%, across different cases.[8‑10] Flat cancerous lesions 
such as carcinoma in situ (CIS) or extremely small tumors 
might not be identified on white light  (WL) cystoscopy 
resulting in 25.2%–53.1% incidence of residual tumors.[11] 
Nevertheless, it is crucial to identify and remove all the 
tumors to accurately assess the risk and make clinical 
decisions, as this approach is highly effective in preventing 
the recurrence. Therefore, the utilization of AI during 
cystoscopy is being developed to improve the sensitivity 
of cystoscopy, aiding the urologists in differentiating the 
diverse bladder cancer lesions. We aimed to systematically 
investigate the recent research on the use of AI in aiding the 
detection of bladder cancer from the images taken during 
cystoscopy and calculate the diagnostic accuracy.

METHODS

This systematic review was performed according to the 
Preferred Reporting Items for Systematic Review and 
Meta‑analysis of Diagnostic Test Accuracy[12,13] and was 
registered in PROSPERO (CDR42023441159).

Eligibility criteria
Studies were eligible for inclusion if they fulfilled the 
following criteria:
1.	 Design: prospective and retrospective studies, experimental 

studies, cross‑sectional studies, and case–control or 
nested‑case–control studies were eligible for inclusion 
in this review. Case series or case reports were excluded.

2.	 Population: human adults aged 18 years or above who 
underwent cystoscopic examination

3.	 Index test: AI tool that identifies potentially malignant 
lesions from images or videos taken during the 
cystoscopy examination

4.	 Reference standard: we included studies that used 
histopathology results to confirm the bladder cancer 
and histopathology was taken as the reference standard

5.	 Outcomes: The reported diagnostic accuracy, including 
true positive (TP), false negative (FN), false positive (FP), 
and true negative (TN) were the outcome measures.

Information sources and search strategy
Using the medical subject headings and free text terms 
associated with AI‑aided cystoscopy for the diagnosis of 

bladder cancer, we devised search techniques to identify 
the relevant studies. The search was conducted on a variety 
of databases including PubMed, EBSCO, ProQuest, and 
ScienceDirect. A manual review of the reference lists of the 
included articles in addition to a thorough search on the 
Google Scholar was performed to identify any potentially 
overlooked article. Our search covered the synonyms and 
variations for “artificial intelligence,” “cystoscopy,” and 
“bladder cancer” without being limited by the year of 
publication [Supplementary File 1].

Data management, selection, collection, and extraction
We used Zotero to manage the studies identified during the 
search. The initial compilation of studies involved removing 
the duplicates and screening them for eligibility based on 
their titles and abstracts. This was done independently by 
two co‑authors (AH and SKL). Potentially relevant studies 
underwent a full‑text assessment after the initial screening. 
In case of any disagreement during the selection process 
and quality assessment, it was discussed with the another 
co‑author (CK). Data from the selected studies was extracted 
and cross‑checked for qualitative synthesis. We extracted 
the following data: author, year of study, country, study 
design, number of samples, number of participants, and 
diagnostic accuracy (TP, FN, FP, and TN). In the event of 
any missing data, we attempted to establish contact with 
the corresponding author of the selected study to procure 
the relevant information.

Risk of bias assessment
The Quality Assessment of Diagnostic Accuracy 
Studies (QUADAS‑2) tool,[14] a validated tool for assessing 
the quality of diagnostic accuracy studies, was used to 
evaluate the quality of each study. Patient selection, index 
testing, reference standards, and flow and timing are the four 
major categories in which this instrument assesses the risk 
of bias and application issues. Each domain is assessed for 
concerns regarding bias and applicability using the signalling 
questions. The results of the QUADAS‑2 assessment were 
employed to evaluate the overall quality of the studies and to 
guide any further analyses or interpretations of the findings.

Data analysis and synthesis
The systematic qualitative synthesis of the included articles 
was performed, with the information presented in both 
the text and the tables to describe and explain the study’s 
characteristics and conclusions. Meta‑analysis using 
a random effects model was conducted to yield pooled 
sensitivity, specificity, and diagnostic odds ratio (DOR). The 
Moses–Littenberg model was used for deriving a summary 
receiver operating characteristics (SROC) curve. Sources of 
heterogeneity were examined by the subgroup analysis and 
was qualitatively synthesized. Relevant data were combined 
and calculated using the statistical software RevMan 5.4. 
(Revman 5.4, Copenhagen: The Nordic Cochrane Centre, 
The Cochrane Collaboration)
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RESULTS

Study characteristics
Through a comprehensive database search, 371 studies were 
initially identified [Figure 1]. After removing the duplicates, 
357 studies remained, out of which 343 were excluded based 
on the inclusion criteria, leaving 14 studies for further 
assessment of eligibility. Ultimately, 5 studies were selected 
for the final analysis and quantitative synthesis.[6,15‑18] All 
included studies were case–control in design [Table 1]. All 
the studies involved samples taken from human observers 
and the images were processed as training, validation, and 
test sets. All the studies used histopathology results as the 
reference standard.

Diagnostic accuracy
The quality of the included studies showed a high 
risk of bias and high applicability concerns for the 
domain of patient selection [Figure 2]. The forest plot 
of the meta‑analysis for diagnostic accuracy is presented 
in Figure  3. Pooled sensitivity and specificity were 

0.953  (95% confidence interval  [CI]: 0.908–0.976) and 
0.957 (95% CI: 0.923–0.977), respectively. Pooled DOR 
was 449.79  (95% CI: 12.42–887.17). The SROC curve 
showed an area under the curve  (AUC) of 0.988  (95% 
CI: 0.982–0.994)  [Figure  4]. A  subgroup analysis 
showed a higher diagnostic accuracy  (AUC 0.995, 
95% CI: 0.994–0.996) when blue light cystoscopy was 
excluded [Figure 5].

Variation among studies
Our review revealed a significant amount of diversity in the 
approach and reporting across the studies in all the fields. 
The primary factors commonly observed in these studies 
were related to the problems with dataset quality, size and 
type of data, and the validation methods used. Most of the 
studies followed a case–control study design, with only one 
study adopting a prospective design and obtaining data in a 
consecutive manner. In addition, one out of the five studies 
utilized videos instead of images, and there were variations 
in the image resolution across the studies. Besides, flat lesions 
were excluded from one study.

Identification of studies via databases and registers

Records identified from*:
 Databases (n = 371)
 PubMed (n = 243)
 EBSCO (n = 13)
 Proquest (n = 89)
 ScienceDirect (n = 26)
 Registers (n = 0)

Records removed before screening:
Duplicate records removed 
(n = 14)
Records marked as ineligible
by automation tools (n = 0)
Records removed for other
reasons (n = 0)

Records screened
(n = 357)

Records excluded**
(n = 343)

Reports sought for retrieval
(n = 14)

Reports not retrieved
(n = 0)

Reports assessed for eligibility
(n = 14)

Reports excluded:
  Other than bladder cancer included
 (n = 7)
 Did not differentiate between
 benign and malignant lesion (n = 3)

Studies included in review
(n = 5)
Reports of included studies
(n = 5)In
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Figure 1: Preferred Reporting Items for Systematic Review and Meta‑analysis flow diagram 2020
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DISCUSSION

Diagnostic accuracy is a critical aspect of any diagnostic 
tool, and the pooled sensitivity and specificity reported in 
this meta‑analysis are notably high, with the sensitivity at 
0.953 and the specificity at 0.957. The pooled DOR was also 
substantial, indicating that the imaging technique shows 
promising potential for accurately diagnosing the bladder 
cancers. Furthermore, the SROC showed an impressive AUC 
of 0.989, indicating a strong overall diagnostic performance 
for discriminating benign or normal bladder lesions from 
the malignant ones.

Fluorescence cystoscopy and narrow‑band imaging 
techniques have been developed and are currently being 
utilized to enhance the detection rates of bladder cancer. 
These methods involve the extraction of microimaging 
structures and the identification of pixel‑level features 
not perceived by the human eye, serving a diagnostic 
purpose. The use of fluorescence cystoscopy (photodynamic 
diagnosis [PDD]) results in improved sensitivity (92% vs. 
71%),[9] and higher detection of papillary (7%–29%), and 
flat CIS (20%–30%) lesions, along with a 20% reduction in 
the residual tumor rate after TURBt.[11] However, one study 
using PDD showed a lower specificity and the subgroup 
analysis demonstrated a higher diagnostic accuracy when 
the findings of blue light cystoscopy were disregarded. 
Researchers and physicians assessing the efficacy of the 
various types of cystoscopy for the detection of bladder 
cancer may find this helpful.

One of the studies excluded flat lesions and this may influence 
how broadly the bladder cancer type is represented in the 
analysis and may also have an impact on how accurately 
the AI‑guided cystoscopy can make the diagnosis. One 
challenging lesion that can benefit from the use of AI are the 
flat lesions; rather than excluding them, flat lesions should 
be the lesions of particular interest.Ta
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Failure to accurately classify cystoscopic images or videos (FPs 
or FN) can be attributed to several factors. One of the issues 
is data annotation; for example, inflammation‑induced 
changes in the bladder mucosa were not included in the 
model’s learning process, so the model could not learn to 
recognize them.[16] Another issue that might contribute to 
the failure is model development, including but not limited 
to the unbalanced sample  (positive and negative results), 
insufficient training data sets, and differences in processing 
the data.[6,15‑18] Technical problems, such as the variations in 
the turbidity of the urine, issues with focus, or the distance 
of the camera from the site of the lesion, also affects the 
accuracy of the classification.[16] The size of the lesion is 
another important factor. Ikeda et  al. reported that only 

around 10% of the learning sets contained small lesions, 
which may have contributed to inaccurate classification.[16] 
Differences in the imaging modalities, as shown by Yoo 
et al., indicate that WL imaging performed better than the 
narrow‑band imaging.[18] The limited wavelength range of 
narrow‑band imaging may restrict the differentiation of the 
tumor’s intrinsic color.

The discussion does, however, also draws attention to certain 
significant problems with the included studies. A high risk 
of bias and application issues were found throughout the 
QUADAS‑2 assessment, particularly regarding the patient 
selection, which could have an impact on how generalizable 
the results are. Only 2 out of the 5 included studies specify 
the pathological grading of the included tumor. When 
employing the AI for the detection of bladder cancer, 
the emphasis should also be on considering the patient’s 
quality of life and risk stratification rather than solely 
focusing on the detection rates.[19,20] For the patients with 
low‑risk bladder cancer, the probability of progression is 
0.06%, 0.93%, and 3.7% at 1, 5, and 10 years, respectively, 
whereas those with intermediate, high, and very high risk 
have 1.0%, 3.5%, and 16% probability to progress within 
1 year, respectively.[19] Around 54% of the patients with 
CIS will progress to muscle‑invasive cancer.[21] CIS is a flat, 
high‑grade cancer, often multifocal, that could be missed 
or misinterpreted during the examination if not biopsied. 
In situations involving truly low‑risk, nonmuscle invasive 
bladder cancer, these tumors are unlikely to progress to 
life‑threatening muscle‑invasive disease.[20‑22] Detecting 
patients with low‑risk diseases through AI may lead to 
unnecessary treatment, instead of active surveillance,[19] and 
add financial burden to these individuals.

The identified issues concerning the size, kind, and quality of 
the dataset may potentially introduce bias and consequently 
influence the overall validity of the results. Furthermore, the 
variety in the study design, especially given that most of the 
studies used a case–control strategy, may make it difficult to 
demonstrate causation or extrapolate the findings to different 
populations. It is also difficult to compare the results because 
one study included videos, and another had different image 
resolution. When interpreting the findings and applying 
them in actual clinical situations, it is essential to keep these 
limitations in mind. All fields showed diversity in approach 
and reporting, suggesting that areas of standardization 
and uniformity in data collection and reporting require 
improvement. A meta‑analysis by Aggarwal et al. reported 

Figure 3: Forest plot

Figure 4: Summary receiver operating characteristic plot

Figure 5: Summary receiver operating characteristic Plot based on cystoscopy 
type
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that some studies used the STARD‑2015 checklist to 
standardise the reporting, although this checklist is not 
specifically designed for studies related to AI.[3] Most of the 
studies on AI also have a high risk of bias and tend to deviate 
from the reporting guidelines.[23] We believe that further 
research on AI in the field of medicine might improve 
with strict adherence to the reporting standards specifically 
designed for studies related to AI.

Another essential concern was that the AI models were 
generally fed specific input variables, selected by clinicians based 
on their known or suspected clinical relevance to the outcome 
of interest.[24] Recent reports suggest that biases present in the 
training data used to develop AI models could have adverse 
effects on certain populations.[25,26] It is evident that the overall 
performance of an AI model relies not only on its accuracy in 
the training and test data but also on its reliability and ability 
to generalize effectively to different settings and populations.

Study strengths and limitations
Although our findings show that AI aided cystoscopy 
performs well for the detection of bladder cancer and 
has high diagnostic accuracy, its clinical suitability and 
applicability remain challenging to ascertain. This difficulty 
arises, in part, from the considerable diversity and potential 
biases observed in the existing literature.

Future suggestions
To improve AI‑guided cystoscopy for the detection of 
bladder cancer and ensure its clinical effectiveness, several 
key points should be considered. These include the inclusion 
of large, diverse, and anonymized datasets; the focus on 
populations that would genuinely benefit from the detection 
of bladder cancer, such as those with moderate or high‑risk 
bladder cancer or unequivocal lesions; and adherence to 
specific reporting standards for research on AI.

CONCLUSIONS

Based on the recent research, the diagnostic accuracy of AI 
for the detection of malignant lesions on images or videos 
of cystoscopy is high, however, it is difficult to conclude 
whether AI can aid the urologists, particularly during the 
live‑cystoscopy for the detection of bladder cancer due 
to the diversity in the included population, study design, 
and reporting standards. AI has the potential to improve 
the detection and outcomes of bladder cancer detection if 
further research focuses on identifying the populations who 
might benefit from the identification of the bladder cancer, 
such as those with intermediate‑or high‑risk invasive 
tumors.
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